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Introduction

Kidney transplantation (KT) currently serves as the optimal 
treatment for patients with end-stage kidney disease, and 
a highly growing demand for organs has prompted the 

rising usage of donation after cardiac death (DCD) donors 

(1,2). However, due to its additional warm ischemia time 

(WIT), DCD kidneys are more vulnerable to ischemia-

reperfusion injury (IRI) than kidneys from donation after 
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brain death (DBD) donors or living donors. Delayed graft 
function (DGF), generally defined as the requirement for 
dialysis within the first week after KT, is one of the most 
common early complications following deceased-donor 
KT, particularly among those receiving DCD kidneys (3,4). 
DGF has attracted increasing attention because apart from 
its high incidence, it is closely related to poorer short-
term outcomes (such as prolonged hospitalization, higher 
cost, and acute rejection) and long-term outcomes (such 
as graft failure), which pose great challenges to transplant 
clinicians (5,6). Thus, it is urgent and meaningful to deeply 
explore the mechanisms of DGF and precisely predict its 
occurrence pre- or early post-KT with DCD allografts 
(DCD KT) to prevent or minimize the impact of DGF.

In the last few years, several predictors associated with 
DGF occurrence have been identified, and numerous 
clinical or histologic models for DGF prediction have 
been proposed (7-11). However, considering the unique 
pathophysiological processes of DCD kidneys, the accuracy 
and applicability of these models for DGF prediction in 
DCD KT are limited, which indicates that the conventional 
clinicopathologic evaluations no longer meet the needs 
of clinical practice, and the transition from macroscopic 
assessment to molecular evaluation is necessary in the era of 
precision medicine (12,13). Fortunately, some efforts have 
been attempted to explore the molecular characteristics 
of DCD kidneys based on transcriptomic analyses of 
pre- or early postoperative biopsy (14,15). Nevertheless, 
DGF-related biomarkers for DCD KT remain to be 
investigated, and a gene-based predictive model specifically 
for predicting the likelihood of DGF in DCD KT has been 
rarely established to date. 

By thoroughly searching the Gene Expression Omnibus 
(GEO), a reliable public database archiving massive 
genomic data and relevant clinical data in the biomedical 
field, we found a valuable dataset (GSE43974) that included 
the clinical and microarray data of kidney biopsies taken 
from human DBD or DCD allografts after cold storage and 
short-time reperfusion (timepoint 3, T3) (16). In this study, 
we aimed to identify DGF-related biomarkers for DCD 
kidneys based on the T3 kidney biopsies that could fully 
and timely reflect the whole IRI process of kidney allografts, 
and to further establish a genomic model specifically for 
DGF prediction in DCD KT. Of note, except for early 
posttransplant DGF prediction, the rise of normothermic 
machine perfusion (NMP) also promotes the feasibility 
and prospects of genomic models for accurate DGF 
prediction before DCD KT via ex vivo simulation of normal 

physiological status (17). We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at http://dx.doi.org/10.21037/tau-20-1533).

Methods

Data preparation and DGF-related genes screening

The GSE43974 dataset, which includes the microarray 
data of kidney biopsies taken from three types of donations 
(living, DBD and DCD donors) at different time points, 
was downloaded from the GEO database (14). In the DCD 
(type III, awaiting cardiac arrest) cohort, kidney needle 
biopsies enrolled in this study were collected at three 
time points: the DCD-T1 group (after cardiac arrest and 
WIT, and before organ retrieval, n=38), the DCD-T2 
group (after cold ischemia time (CIT), and before organ 
implantation, n=53) and the DCD-T3 group (at 45–60 min 
after reperfusion, n=64). In the DBD cohort, biopsies taken 
at 45–60 min after reperfusion (DBD-T3 group, n=105) 
were enrolled in this study. The key characteristics of the 
allografts in the DCD-T3 and DBD-T3 groups, which were 
both divided into two comparable subgroups (Cohort 1 and 
Cohort 2) in the raw data, are generally shown in Figure 1A 
and summarized in detail in Table S1. Moreover, the gene 
expression profile of 37 normal kidney tissues taken from 
living donor nephrectomy before clamping the renal artery 
was also enrolled in this study as normal controls. The R 
package “lumi” was used to preprocess and normalize the 
raw data, and the Z-score was further computed for each 
selected gene as its relative expression level during the 
modeling. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) (18).

To reliably screen the DGF-related differentially 
expressed genes (DEGs) in T3 kidney biopsies specific 
to DCD KT, cohort A (DCD-T3-C1 plus DBD-T3-C1) 
and cohort B (DCD-T3-C2 plus DBD-T3-C2) were first 
set up, in which three subgroups (normal controls, T3-
IGF controls and T3-DGF group) were then defined. In 
brief, the T3-DGF group comprised the patients requiring 
dialysis within the first week after DCD KT. T3-IGF 
controls were patients undergoing immediate graft function 
(IGF) after KT with DBD or DCD renal allografts. Normal 
controls were normal kidney biopsies, which were randomly 
assigned to the two cohorts. The details of the grouping 
information are shown in the Figure 1B. The DEGs of the 
T3-DGF group compared to T3-IGF controls and normal 
controls were screened out by R package “limma” using “fold 
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WIT

DCD

DBD

C1 (n=29)(I/D=6/23) 16 (9 to 35) (min) 956 (517–1,500) (min)

C1 (n=67)(I/D=45/22)

C2 (n=35)(I/D=5/30) 18 (9 to 33) (min) 998 (579–2,092) (min)
45 to 60 min

Biopsy-T3

45 to 60 min

5 genes

NA 1,096 (461–1,817) (min)

NA 1,005 (600–1,430) (min)C2 (n=38)(I/D=24/14)

Cohort A

Normal controls: normal kidney tissues (n=18)

T3-IGF controls: DBD-C1-T3-IGF(n=45) + DCD-C1-T3-IGF (n=6)

T3-DGF group: DCD-C1-T3-DGF (n=23)
Normal controls: normal kidney tissues (n=19)

T3-IGF controls: DBD-C2-T3-IGF (n=24) + DCD-C2-T3-IGF (n=5)

T3-DGF group: DCD-C2-T3-DGF (n=30)

Cohort B

Screening of DGF-related genes 
specific to DCD renal allografts 
• Criteria: FC >1.1 and P<0.05

Cohort A 
• T3-DGF group vs. T3-IGF controls 
• T3-DGF group vs. normal controls

Cohort B 
• T3-DGF group vs. T3-IGF controls 
• T3-DGF group vs. normal controls

Overlapping analysis 
(51 genes)

Selecting the best genes for modeling 
• LASSO-penalized Logistic regression model

Assessing the contributions of the prognostic genes 
• Multivariate Logistic regression model

Observation of the genes expression change during I/RConstruction of the gene-based 
risk score

Identification and visualization of the prognostic value of the gene-based risk score.  
• t-test & ROC curve analysis & Nomogram & Calibration curve

Enrichment analysis (GSEA)

CIT Reperfusion

A

B

C

Figure 1 General information and overall design of this study. (A) The key characteristics of the allografts in the DCD-T3 and DBD-T3 
groups; (B) the details of grouping information; (C) the flowchart describing the overall design of this study. DCD, donation after cardiac 
death; DBD, donation after brain death; min, minutes; WIT, warm ischemia time; CIT, cold ischemia time; C, cohort; IGF(I), immediate 
graft function; DGF(D), delayed graft function; NA, not applicable; FC, fold change; I/R, ischemia and reperfusion.

change (FC) >1.1 with adjusted P<0.05” as the threshold 
in both the cohort A and the cohort B. Then, overlapping 
analyses between the two cohorts were further performed to 
identify the potential DGF-related DEGs specific to DCD 
renal allografts.

Gene selection and model construction

To select the optimal genes among DEGs for modeling, 
LASSO-penalized logistic regression analysis was performed 
in the DCD-T3 group (n=64) using the R package “glmnet”. 
The optimal gene set for modeling was determined on the 
basis of 10-fold cross-validation and lambda.min. After that, 

the selected genes were enrolled into multivariate logistic 
regression model to calculate their coefficients (β values). 
The gene-based risk score was constructed using the 
following formula: Risk score= (β1 * Z-score of gene1) + (β2* 
Z-score of gene2) +...+ (βn* Z-score of genen). 

Gene set enrichment analysis (GSEA)

The 64 patients in the DCD-T3 group were segmented 
into two groups (low- or high risk of DGF) based on 
the optimal cutoff values of the risk score using receiver 
operating characteristic (ROC) curve analysis. Then, we 
conducted GSEA between the two groups to explore the 
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underlying pathways significantly associated with high 
risk of DGF in DCD KT. “C2.cp.kegg.v7.0.symbols.gmt” 
was chosen as the reference gene set, and gene set with a 
normalized P<0.05 was deemed significantly enriched. 

Statistical analysis

Continuous variables between the different groups were 
compared by Student’s t-test or one-way analysis of variance. 
ROC curves were utilized to evaluate the predictive 
effectiveness of the risk score for DGF. A predictive 
nomogram based on the risk score was established using the 
R package “rms”, and its performance was comprehensively 
evaluated by generating calibration plot and calculating the 
concordance index (C-index). Logistic regression model 
analysis was applied to assess the relevant factors in terms 
of DGF occurrence. R 3.4.2, SPSS 22.0 and GraphPad 
Prism 8.0.2 were used for statistical analysis and graphing. 
A P<0.05 was regarded as statistically significant.

Results

Screening of DGF-related DEGs in DCD kidney allografts

The flowchart describing the overall design of this study 
is shown in Figure 1C. The DEGs in the T3-DGF group 
compared to T3-IGF controls and normal controls were 
first recognized in both the cohort A and the cohort B 
(Figure 2A,B), and subsequent overlapping analysis further 
identified 30 upregulated genes and 21 downregulated genes 
significantly associated with DGF occurrence following 
DCD KT (Figure 2C). The relative expression levels of the 
51 genes in different groups are briefly presented in the 
heat map (Figure 2D).

Construction of gene-based risk score

As shown in Figure S1, the optimal genes for modeling 
were identified by LASSO-penalized logistic regression 
analysis, including one upregulated gene (carbohydrate 
sulfotransferase 3, CHST3) and four downregulated genes 
(golgi phosphoprotein 3, GOLPH3; zinc finger BED-
type containing 5, ZBED5; aldo-keto reductase family 1 
member C4, AKR1C4; ERBB receptor feedback inhibitor 
1, ERRFI1). The associations between the expression of the 
five genes in T3 biopsies and DGF occurrence after DCD 
KT were confirmed by univariate logistic regression model 
analyses (all P<0.05) (Table S2). 

Using the microarray data of kidney biopsies taken from 
DCD allografts at three time points (T1, T2 and T3), 
we observed the expression changes of five genes during 
the processes of ischemia and reperfusion compared to 
normal controls and IGF controls. As shown in Figure 3, 
the expression levels of CHST3, GOLPH3 and ZBED5 
were significantly changed in the DCD-T3-DGF group 
compared with the normal controls and DCD-T3-IGF 
controls (all P<0.05), while their expression levels in 
the other groups were not significantly different from 
the normal controls (all P>0.05), suggesting that the 
dysregulation of the three genes might mainly indicate 
injury of reperfusion. For AKR1C4, we found that its 
expression level was significantly downregulated after 
CI and reperfusion in the DGF groups (DCD-T2-DGF 
and DCD-T3-DGF), indicating that AKR1C4 might be 
a signature associated with injury of CI and reperfusion. 
Interestingly, the expression level of ERRFI1 began to 
dramatically decline after WI and was maintained until 
the end of CI both in the IGF groups (DCD-T1-IGF and 
DCD-T2-IGF) and DGF groups (DCD-T1-DGF and 
DCD-T2-DGF). After reperfusion, while ERRFI1 mRNA 
expression rose to relatively normal levels in the DCD-
T3-IGF group, its level in the DCD-T3-DGF group 
remained low compared to the normal controls and IGF 
controls. This implied that ERRFI1 might be sensitive to 
renal ischemia and was a good signature reflecting the acute 
kidney injury (AKI) induced by IRI. 

Next, the coefficients of five genes were further obtained 
by using a multivariate logistic regression model in the 
DCD-T3 group. The gene-based risk score was calculated 
using the following formula: Risk score = (1.685* Z-score 
of CHST3) + (−2.066* Z-score of GOLPH3) + (−1.023* 
Z-score of ZBED5) + (−3.831* Z-score of AKR1C4) + 
(−1.529* Z-score of ERRFI1) (Table S2).

Identification of the predictive value of gene-based risk 
score

In the DCD-T3 cohort, the risk score in the DGF group 
(n=53) was remarkably higher than that in the IGF group 
(n=11) (P<0.0001) (Figure 4A). ROC analyses further 
confirmed that the risk score had an excellent diagnostic value 
for DGF in DCD KT (AUC =0.9708, P<0.0001), which was 
obviously higher than that of the five genes alone (Figure 4B).  
In addition, to enhance its applicability, a convenient, visual 
and predictive nomogram based on the risk score was also 
established in this study (Figure 4C). The C-index of the 
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Figure 2 Screening of DGF-related DEGs specific to DCD allografts. (A,B) Volcano plots representing the screening of DEGs in the 
T3-DGF group compared to those in the T3-IGF controls and normal controls separately in both the cohort A and the cohort B. (C) 
Identification of the DGF-related DEGs specific to DCD allografts by overlapping analyses. (D) Heat map displaying the relative expression 
levels of the 51 genes in different groups. IGF, immediate graft function; DGF, delayed graft function; CA, cohort A; CB, cohort B; DEGs, 
differentially expressed genes. 
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Figure 3 Expression changes of the five genes during the processes of ischemia and reperfusion. (A) The sampling information in the DCD 
cohort. (B,C,D,E,F) Expression levels of the five genes in different groups. *, P<0.05; **, P<0.01; ****, P<0.0001. IGF, immediate graft 
function; DGF, delayed graft function; WIT, warm ischemia time; CIT, cold ischemia time; DCD, donation after cardiac death. 

nomogram was equivalent to the AUC, and the calibration 
plot displayed high consistency between the nomogram-
predicted probability of DGF and the actual probability of 
DGF, suggesting that the nomogram was an ideal model for 
precise DGF prediction in DCD KT (Figure 4D).

Enrichment analysis

To further explore the potential biological pathways 
related to DGF occurrence in DCD KT, GSEA was 
performed between the low or high-risk groups in terms 
of DGF defined by the risk score. As shown in Figure S2,  
a total of eight KEGG pathways were significantly 
enriched, including “drug metabolism cytochrome p450”, 
“arachidonic acid metabolism”, “glutathione metabolism”, 
“lysosome”, “proximal tubule bicarbonate reclamation”, 
“metabolism of xenobiotics by cytochrome p450”, “arginine 

and proline metabolism” and “retinol metabolism” (all 
P<0.05). 

Discussion

Along with the increasing attention to the molecular 
mechanisms of DGF, several DGF-related biomarkers in 
varied sample sources taken at different timepoints, such as 
NGAL, HIF-1α, HSP72 and TIMP-1, have been identified 
(5,19-23). Nevertheless, their specificity and sensitivity 
are still insufficient for precise DGF prediction. This may 
attribute to the following reasons. First, the optimal sample 
types (kidney tissue, serum, urine, perfusate or preservation 
fluid) and sampling timepoint (before organ retrieval, 
pretransplant or postreperfusion) for DGF prediction are 
currently disputable (24). Given that DGF occurs in the 
context of IRI, the biomarkers or models identified based 
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Figure 4 Identification of the predictive value of the gene-based risk score, and establishment and validation of the predictive nomogram. (A) 
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abilities of the genomic risk score and the five genes alone. (C) The nomogram based on the genomic risk score for DGF prediction in DCD 
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on the samples taken from donors or allografts before organ 
retrieval or pretransplant might not fully reflect the actual 
renal damage caused by ischemia or reperfusion (25,26). 
Consistent with this, no reliable DGF-related gene was found 
in the DCD kidney biopsies taken prior to transplantation 
(T1 and T2), as reported by Damman et al. (14). Of note, 
certain sample types (such as postoperative kidney needle 
biopsy) are either difficult to obtain in routine clinical 
practice or more invasive for recipients, and the predictive 
ability and timeliness of some sample types (such as first-day 
posttransplant blood) for DGF prediction are still inferior to 
those of kidney tissue biopsies (5). In addition, the different 
pathophysiological processes of varied donor types (living/
DBD/DCD donors) should be taken into consideration, 
and unspecific research objects in most previous studies may 
diminish the predictive power of the existing biomarkers 
(19,24). Finally, the unsatisfactory predictive ability of the 
individual biomarkers alone may also underline the necessity 

of integrating multiple molecular signatures into a single 
model to enhance DGF predictive accuracy. 

With these considerations in mind, DGF prediction 
based on transcriptomics analysis of kidney tissue biopsy 
taken after short-time reperfusion (such as 1-hour biopsy) 
undoubtedly has tremendous advantages over the other 
sample types from the perspective of timeliness, reliability, 
and feasibility. The identification of DGF-related 
biomarkers and establishment of a gene-based predictive 
model for DGF prediction specific to DCD KT are highly 
anticipated. In this study, thanks to the public clinical and 
microarray data provided by the GSE43974 dataset, the five 
key DGF-associated genes (CHST3, GOLPH3, ZBED5, 
AKR1C4, and ERRFI1) in T3 kidney biopsies were first 
identified by rigorous study design and reasonable statistical 
approaches, all of which exhibited good discrimination 
for DGF in DCD KT. In addition, for the purpose of 
strengthening their predictive accuracy, a risk score based on 
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the above five genes was further established and displayed 
excellent predictive ability that was obviously higher than 
that of the five genes alone. Moreover, to enhance its 
clinical applicability, a convenient and visual nomogram 
based on the genomic risk score was also constructed. The 
high predictive accuracy of the genomic nomogram suggests 
that it may be an ideal model for precise DGF prediction 
that is specific to DCD KT.

The primary mechanism underlying DGF is thought to 
be associated with IRI, which is an inevitable and complex 
pathophysiological phenomenon (involving inflammatory 
and immune responses) in DCD KT leading to acute 
tubular necrosis (25). More insights gained in the molecular 
pathophysiology of IR in DCD renal allografts would open 
a door to the understanding and management of DGF. 
Consistent with the observed alterations of the five genes 
in DCD kidneys during IR in this study, previous studies 
have suggested that the above genes are closely involved 
in the pathogenic process of IRI to some extent (27-31). 
The general information of the five genes and the potential 
correlations between their dysregulation and renal IRI 
or DGF occurrence have been properly discussed in the 
Appendix 1. In addition, by conducting GSEA according to 
the genomic risk score, the underlying biological pathways 
associated with DGF occurrence specific to DCD kidneys, 
such as “arachidonic acid metabolism”, “lysosome”, 
“proximal tubule bicarbonate reclamation”, “glutathione 
metabolism”, were identified in this study, which might 
contribute to the development of mechanism research on 
DGF and its targeted therapies in DCD KT in the future.

In view of the good performance of the five-mRNA-
based risk score for DGF prediction, this model may 
provide necessary guidance for early posttransplant or 
even pretransplant decision-making in DCD KT. On the 
one hand, transcription analysis of 1-hour renal biopsy by 
microarray or qPCR may provide timely warning of the risk 
of DGF immediately after DCD KT, which could promote 
timely therapeutic or preventive interventions to minimize 
the impact of DGF on KT recipients, including the close 
monitoring strategy, the adjustment of immunosuppressive 
regimen, the optimization of volume management and 
the administration of thymoglobulin (26,32). Meanwhile, 
patients with lower DGF risk may benefit from a shorter 
intensive monitoring period, therefore resulting in 
shorter overall hospital stays and lower medical costs (32). 
However, it is worth noting that the timeliness of gene 
expression quantification is key to the utility of the genomic 

model in clinical practice, which relies on the further 
development of rapid nucleic acid quantification technology 
and the optimization of whole processes of gene detection, 
including specimen collection and preparation, nucleic acid 
quantification and results return (33). On the other hand, 
given the limited recipient-based interventions for DGF, a 
more objective, reliable, and accurate quality assessment of 
DCD kidney grafts before KT may have greater practical 
significance (26). Fortunately, the ongoing improvement 
of NMP and rapid nucleic acid quantification undoubtedly 
enhances the feasibility and prospects of the genomic model 
in clinical practice for DGF prediction prior to DCD KT 
(17,33). The accurate risk stratification of DGF before 
transplantation based on the genomic model may not only 
guide comprehensive quality evaluation of DCD kidneys, 
reasonable allocation or discard of DCD kidneys and 
recipient-based preventive interventions (such as induction 
therapy by anti-thymocyte globulin), but also contribute to 
the speedy development of extracorporeal targeted therapies 
for DCD kidneys in the context of NMP, therefore 
preventing or minimizing the impact of DGF and effectively 
expanding the donor pool. Of note, ex vivo NMP is 
currently unable to perfectly simulate normal physiological 
status (including immune microenvironments), and the ideal 
and optimal NMP platform for donor kidney evaluation is 
still evolving. Thus, the feasibility of the genomic model for 
DGF prediction prior to DCD KT based on ex vivo NMP 
is worth further exploring in the future.

The excellent predictive ability and applicability of 
the genomic model for DGF prediction in DCD KT 
should be recognized, as well as the several limitations in 
our study. First, although the patients’ clinical baseline 
characteristics have been summarized in the original 
article of Damman et al. (14), these raw data have not 
been shared in detail in the GSE43974 dataset. Thus, the 
construction of a promising genomic-clinicopathologic 
nomogram integrating the genomic risk score and 
clinicopathological factors with independent predictive 
value for DGF could not be achieved in this study. In 
addition, due to the limited clinicopathological data in the 
GSE43974 dataset, the predictive ability of the genomic 
model cannot be compared with that of the existing 
clinical predictive models. Finally, unfortunately, except 
for the GSE43974 dataset, no other appropriate dataset 
was found after a thorough search in the GEO database. 
Therefore, the efficiency of the genomic model deserves 
more external validation using independent DCD KT 



1645Translational Andrology and Urology, Vol 10, No 4 April 2021

  Transl Androl Urol 2021;10(4):1637-1646 | http://dx.doi.org/10.21037/tau-20-1533© Translational Andrology and Urology. All rights reserved.

cohorts with larger sample sizes in the future.

Conclusions

In conclusion, we established a novel and powerful 
genomic model based on the expression of five genes in 
kidney biopsies taken after short-time reperfusion for 
DGF prediction specific to DCD KT. This model may be 
a promising tool for risk stratification of DGF in DCD 
KT, which could provide necessary guidance for early 
posttransplant decision-making or even pretransplant 
decision-making in the context of NMP in the future. 
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Supplementary

Supplementary discussion

Potential roles of the dysregulation of the five genes in 
DCD kidneys

CHST3 is  an enzyme catalyzing the synthesis  of 
chondroitin 6-sulfate proteoglycan, which belongs to 
the chondroitin sulfate proteoglycan family serving as 
key drivers or mediators in inflammation and leukocyte 
infiltration (27,34,35). Interestingly, Kai et al. reported 
that silencing CHST3 in a murine pulmonary emphysema 
model could significantly inhibit TNF-α and MMP-9 
expression and macrophage accumulation promoting lung 
recovery (27). Activation of matrix metalloproteinases 
(MMPs) plays crucial roles in renal IRI in KT by facilitating 
extracellular matrix (ECM) degradation and subsequent 
leukocyte movement across endothelial cells and the 
ECM with the release of cytokines and free radicals 
(36,37,38). Thus, there is a simple hypothesis that CHST3 
upregulation in transplanted kidneys could increase the 
expression of MMPs promoting ECM degradation and 
leukocyte recruitment, finally leading to renal IRI and DGF 
after DCD KT. GOLPH3 is a Golgi-associated protein, 
and its role in some pathological conditions (especially 
tumors) has been widely reported (28,39). Importantly, its 
protective role in IRI has been preliminarily revealed in a 
finding that the antioxidative stress effects of salvianolate 
on brain IRI rely on activation of the GOLPH3-Akt-
mTOR signaling pathway (28). In addition, its role in the 
modulation of mTOR-related pathways (including the 
PI3K-AKT-mTOR and MAPK-ERK-mTOR pathways) 
also deserves attention (28,40-42). It has been found 
that excessive autophagy is common in DCD allografts 
suffering prolonged CIT, which could aggravate renal IRI 
by depriving the cell necessary energy and further increase 
the risk of DGF (25). In this light, excessive autophagy via 
mTOR inhibition induced by GOLPH3 downregulation 
may be one of the mechanisms underlying renal IRI 
after DCD KT. Moreover, it has been demonstrated that 
PI3K-Akt-mTOR pathway is responsible for HIF-1α 
accumulation, which plays a protective role during IRI (25). 
Thus, it is possible that GOLPH3 downregulation could 
also influence the accumulation of HIF-1α by inhibiting the 

PI3K-Akt-mTOR pathway, thereby promoting renal IRI. 
Emerging evidence suggests that EGFR (epidermal growth 
factor receptor), a transmembrane receptor with intrinsic 
tyrosine kinase activity, plays a dual role in renal IRI (43). 
Previous studies have indicated that proper activation of 
EGFR contributes to the tubular reparative response in 
the early phase of IRI (2 days), whereas its sustained or 
overactivation triggers renal fibrogenesis and potentiates 
the kidney IRI (43,44). Therefore, balanced modulation 
of EGFR is crucial for renal functional recovery during 
kidney IRI. Zhou et al. found that GOLPH3 could inhibit 
Rab5-mediated endocytosis and degradation of EGFR, 
thereby activating EGFR-related pathways (45). And Chen 
et al. identified that ERRFI1, a known negative feedback 
regulator of EGFR, could reduce proinflammatory 
mediator production (such as TNF-α and IL-1β) by 
controlling excessive EGFR activation in LPS-induced 
endotoxemia or LPS-treated nucleus pulposus cells (46,47). 
Importantly, Ma et al. reported that downregulation of 
ERRFI1 in AKI of sepsis targeted by miR-152-3p could 
promote the activation of the STAT3 signaling pathway, 
thereby aggravating cell apoptosis and the inflammatory 
response (31). It seems that both dysregulation of GOLPH3 
and ERRFI1 in DCD kidneys may lead to disorder of 
EGFR expression resulting in enhanced renal IRI and 
DGF in DCD KT. AKR1C4 is a member of the aldo-keto 
reductases that plays a vital role in NADPH-dependent 
reductions, and its isoforms have been implicated in anti-
inflammatory effects and alleviation of oxidative stress 
(OS) damage in some disease models, which strongly 
indicates that AKR1C4 downregulation in transplanted 
kidneys may aggravate renal IRI via reactive oxygen species 
(ROS) generation and uncontrolled OS damage (30,48,49). 
ZBED5 belongs to the ZBED gene family originating from 
domesticated hAT DNA transposons (29). Based on the 
identified roles of its homologs in the regulation of diverse 
functions, we speculate that the dysregulation of ZBED5 
may be implicated in the transcriptional reprogramming 
of transplanted kidneys during IRI (25,29). Overall, the 
correlations between the dysregulation of the above five 
genes and renal IRI or DGF occurrence deserve in-depth 
studies in the future. 
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Table S1 The clinical characteristics of the patients enrolled in the study (14)

Variable DCD-C1 (n=29) DCD-C2 (n=35) DBD-C1 (n=67) DBD-C2 (n=38)

Donor age (years)* 52 (18 to 66) 42 (9 to 65) 52 (10 to 76) 53 (17 to 72)

ECD donor (%) 14 17 16 32

Donor gender (% female) 41 51 51 58

Cause of death (%)

CVA 45 40 75 71

Trauma 31 34 15 18

Other 24 26 10 11

Duration of BD (min) NA NA 602 (184 to 3,325) 607 (220 to 2,850)

WIT (min)* 16 (9 to 35) 18 (9 to 33) NA NA

Recipient age (years)* 59 (25 to 68) 59 (22 to 75) 56 (19 to 73) 56 (23 to 71)

Recipient gender (% female) 24 37 46 47

Recipient transplants (% first) 97 94 90 84

CIT (min)* 956 (517 to 1,500) 998 (579 to 2,092) 1096 (461 to 1,817) 1,005 (600 to 1,430)

DGF (%) 79 77 33 34

*, median (range). DBD, donation after brain death; DCD, donation after cardiac death; C, cohort; WIT, warm ischemia time; CIT, cold 
ischemia time; DGF, delayed graft function; NA, not applicable. 

Figure S1 Selection of the optimal genes for modeling by LASSO-penalized logistic regression analysis. (A) The optimal gene group was 
chosen by 10-fold cross-validation and lambda.min; (B) LASSO coefficient profile of the genes.
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Table S2 Logistic regression model analyses of correlations between the expression of the five genes in T3 kidney biopsies and DGF occurrence 
following DCD KT

Variables
Univariate analysis

Multivariate analysis, coefficient (β)
OR (95% CI) P value

CHST3 5.158 (1.873, 14.206) 0.002 1.685

GOLPH3 0.284 (0.124, 0.649) 0.003 −2.066

ZBED5 0.188 (0.072, 0.492) 0.001 −1.023

AKR1C4 0.315 (0.123, 0.806) 0.016 −3.831

ERRFI1 0.276 (0.123, 0.619) 0.002 −1.529

OR, odd ratio; CI, confidence interval.

Figure S2 Gene set enrichment analysis based on the risk score using the GSE43974 dataset. A total of 8 KEGG signaling pathways 
were significantly enriched in the high-risk group defined by the genomic risk score, including “arachidonic acid metabolism” (A), “drug 
metabolism cytochrome p450” (B), “lysosome” (C), “proximal tubule bicarbonate reclamation” (D), “arginine and proline metabolism” 
(E), “metabolism of xenobiotics by cytochrome p450” (F), “retinol metabolism” (G), and “glutathione metabolism” (H). NES, normalized 
enrichment score; NOM p, normalized P value. 
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