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Background: Bladder cancer (BC) is the ninth most common malignant tumor, accounting for an estimate 
of 549,000 new BC cases and 200,000 BC-related deaths worldwide in 2018. The prognosis of BC has not 
substantially improved despite significant advances in the diagnosis and treatment of the disease.
Methods: The RNA sequencing (RNA-seq) data and clinical information of BC patients were downloaded 
from The Cancer Genome Atlas (TCGA) database. The Cell-type Identification By Estimating Relative 
Subsets Of RNA Transcripts (CIBERSORT) algorithm was used to assess immune infiltration. The survival 
analyses were performed using the selected components of a ceRNA network and selected immune cell types 
by least absolute shrinkage and selection operator (LASSO) Cox regression to calculate the risk score. The 
accuracy of prognosis prediction was determined by receiver operating characteristic (ROC) curves, survival 
curves, and nomograms. Finally, the correlation analysis was performed to investigate the relationships 
between the signature components of the ceRNA network and the immune cell signature.
Results: Two completed survival analyses included selected components of the ceRNA network (ELN, 
SREBF1, DSC2, TTLL7, DIP2C, SATB1, hsa-miR-20a-5p, and hsa-miR-29c-3p) and selected immune 
cell types (M0 macrophages, M2 macrophages, resting mast cells, and neutrophils). ROC curves, survival 
curves (all P values <0.05), nomograms, and calibration curves indicated that the accuracy of the two survival 
analyses was acceptable. Moreover, the correlations between TTLL7 and resting mast cells (R=0.24, 
P<0.001), DSC2 and resting mast cells (R=−0.23, P<0.001), ELN and resting mast cells (R=0.44, P<0.001), 
and hsa-miR-29c-3p and M0 macrophages (R=−0.29, P<0.001) were significant, indicating that interactions 
of these factors may play significant roles in the prognosis of BC.
Conclusions: TTLL7, DSC2, ELN, hsa-miR-29c-3p, resting mast cells, and M0 macrophages may 
play an important role in the development of BC. However, additional studies are needed to confirm this 
hypothesis.
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Introduction

Bladder cancer (BC) is the ninth most common malignant 
tumor worldwide (1), accounting for an estimate of 549,000 
new BC cases and 200,000 BC-related deaths in 2018 (2). 
BC is classified into non-muscle invasive bladder cancer 
(NMIBC) and muscle invasive bladder cancer (MIBC), and 
transitional cell carcinoma is the most common pathological 
type (3,4). NMIBC accounts for 75% of BC cases, and 
50% of NMIBC cases progress to MIBC (5). Transurethral 
resection of bladder tumor (TURBt) is considered the 
main treatment for NMIBC, and radical cystectomy is 
the strategy for MIBC treatment (6). However, current 
treatment strategies for BC have not significantly improved 
the 5-year survival rate over the past decade (7). Moreover, 
BC has become one of the most expensive to treat solid 
tumors due to high recurrence rate (8). Therefore, it is 
essential to identify biomarkers that can accurately evaluate 
the diagnosis, treatment, and prognosis of BC.

Noncoding RNAs (ncRNAs), including long noncoding 
RNAs (lncRNAs) and microRNAs (miRNAs), have 
been recently recognized as the key regulatory factors in  
tumors (9). Overexpression of lncRNA DLX6 antisense 
RNA 1 (DLX6-AS1) and insulin-like growth factor binding 
protein 4-1 (IGFBP4-1) may lead to a poor prognosis in 
BC patients (10,11). Upregulation of miRNA-133b and 
miR-375-3p inhibits the proliferation and metastasis of 
BC cells (12,13). The occurrence of tumors is closely 
related to interactions between lncRNAs, mRNAs, and 
miRNAs (14). LncRNAs and mRNAs can competitively 
bind miRNAs by miRNA response elements (MREs) to 
generate a competitive endogenous RNA (ceRNA) network 
to regulate the expression of various RNAs and proteins 
(15,16). This ceRNA network can be used to investigate the 
functions of lncRNAs and to identify biomarkers related 
to the diagnosis and prognosis of BC, which is essential for 
assisting the clinicians with early diagnosis, risk assessment, 
and appropriate treatment decision-making for patients 
with BC (17,18).

Immunotherapy has become a promising antitumor 
strategy that recognizes tumors as foreign antigens and 
inhibits the proliferation and metastasis of the tumor cells 
by inducing active or passive immune responses (19,20). In 
BC, Bacillus Calmette-Guerin vaccine (BCG) suppresses 
tumor cells by activating immune cell infiltration and 
is the gold standard for therapy of high-risk NMIBC 
(21,22). However, approximately 40% of BC patients do 
not respond to BCG, and 15% of BC patients experience 

progression to MIBC after the treatment (23,24). Recent 
studies have shown that immune-related genes were 
significantly associated with the prognosis of cancer. High 
expression of ENDRA was associated with lower survival 
rate in patients with advanced BC (25). Overexpression 
of RAC3 promoted the migration of cancer cells and was 
associated with a decrease in the recurrence-free survival in 
ER3-positive breast cancer (26). The exploration of immune 
checkpoint inhibitors (ICIs) facilitated great progress in 
immunotherapy. In phase II clinical trials, the neoadjuvant 
use of ICIs resulted in pathological complete responses in 
patients with MIBC (27).

A number of recent studies demonstrated important 
roles of the ceRNA networks and immune cell infiltration 
in evaluation of prognosis in patients with malignant tumors 
(28,29). Some studies suggested that a combination of a 
ceRNA network and immune cell infiltration has potential 
value in cancer research (30,31). Therefore, we constructed 
a ceRNA network for BC using the data downloaded from 
The Cancer Genome Atlas (TCGA) database. Two survival 
analyses were performed, including analysis based on 
selected genes included in the ceRNA network and analysis 
based on the data on immune cell infiltration estimated by 
the Cell-type Identification By Estimating Relative Subsets 
Of RNA Transcripts (CIBERSORT) algorithm. These two 
survival analyses were used to identify the key factors and 
immune cells that can accurately predict patients with BC, 
and these factors were combined for subsequent analysis, 
which is very important for early diagnosis and treatment 
of BC. Finally, the relationships between these two survival 
analyses were analyzed (Figure 1). The article is presented in 
accordance with the STROBE reporting checklist (available 
at http://dx.doi.org/10.21037/tau-20-1250).

Methods

Identification of differentially expressed genes (DEGs)

The data for 411 BC tissues and 19 normal tissues were 
downloaded from the TCGA dataset (The Cancer Genome 
Atlas) (https://portal.gdc.cancer.gov/) and used for mRNA 
and lncRNA analysis. The data for 418 BC tissues and 19 
normal tissues were downloaded from the TCGA dataset and 
used for miRNA analysis. The clinical data of 409 patients 
with BC were obtained from TCGA (including age, gender, 
grade, stage, and TNM classification) (Table 1). The DESeq2 
method was used to identify DEGs, including lncRNAs, 
miRNAs, and mRNAs. DESeq2 can improve the stability and 
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Table 1 Characteristics of the included BC patients obtained from 
the TCGA database

Basic information Total (n=409)

Age 69 (median)

Gender

Female 106

Male 303

Grade

High 385

Low 21

Unknow 3

Stage

I & II 132

III & IV 275

Unknow 2

T classification

T1 & T2 124

T3 & T4 253

TX 1

Unknow 31

N classification

N0 237

N1 &N2 & N3 131

NX 36

Unknow 5

M classification

M0 194

M1 11

MX 202

Unknow 2

BC, bladder cancer; TCGA, the The Cancer Genome Atlas.

Figure 1 The flow diagram of the present study. BC, bladder 
cancer; TCGA, The Cancer Genome Atlas; DEGs, differentially 
expressed genes; ceRNA, competitive endogenous RNA; 
CIBERSORT, cell-type identification by estimating relative subsets 
of RNA transcripts.

Co-expression analysis

The transcriptome data (mRNA, miRNA and lncRNA) and clinical 
data of BC were obtained from TCGA database (TCGA-BLCA)

ldentification of DEGs

Establishment of ceRNA 
network

Construction of risk 
signature using selected 

members in ceRNA network

CIBERSORT was used to 
evaluate the immune infiltration

Construction of risk signature 
using selected members in 

immune cells

interpretability of estimation fold change (FC) and dispersion 
by shrinkage estimators (32,33). The data corresponding to 
duplicate and abnormal samples (not primary tumors and 
abnormal samples) were deleted, and the remaining data 
were normalized by the trimmed mean of M-values (TMM) 
method implemented in edgeR and further transformed by 
the voom method provided in limma. TMM normalization is 
a simple and effective method for estimation of relative RNA 
levels using RNA sequencing (RNA-seq) data. Moreover, 
voom is faster and more convenient than existing methods 
of RNA-seq analysis and converts RNA-seq data into a form 
that can be analyzed using tools similar to those used for 
microarray analysis. The cutoff criteria were defined as |log2 
FC| >1.0 and false discovery rate (FDR) adjusted P<0.05. 
Ethical approval was not required because the data used in 
the present study were obtained from public databases. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Construction of a ceRNA network

StarBase was introduced to predict the lncRNA–miRNA 

and miRNA–mRNA interactions (34). StarBase (http://
starbase.sysu.edu.cn/) is an open-source database that 
can display extensive and complex RNA-RNA (miRNA-
lncRNA, miRNA-pseudogene, miRNA-circRNA, and 
miRNA-mRNA) and protein-RNA interaction networks 
by analyzing millions binding sites of Argonaute (Ago) 
and other RNA-binding protein (RBP) identified by 

http://starbase.sysu.edu.cn/
http://starbase.sysu.edu.cn/
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crosslinking immunoprecipitation and high-throughput 
sequencing (CLIP-seq) (35). Interactions with P values 
<0.05 for the hypergeometric and correlation tests were 
considered significant. We used Cytoscape software version 
3.8.0 to display the ceRNA network.

Survival analysis based on the components of the ceRNA 
network

All components of the ceRNA network were incorporated 
into a univariate Cox regression model to identify the genes 
related to survival (P<0.05). The survival analysis of the 
components of the ceRNA network was performed by least 
absolute shrinkage and selection operator (LASSO) Cox 
regression to avoid overfitting (36). The median value of the 
risk score calculated by LASSO was used as the cutoff value 
to divide patients into the high-risk and the low-risk groups. 
Kaplan-Meier survival curves were compared using the log-
rank test and a nomogram to assess the survival outcomes 
[overall survival (OS)]. A receiver operating characteristic 
(ROC) curve and a calibration curve were constructed to 
evaluate the accuracy of the risk score.

Immune cell infiltration

We used CIBERSORT to evaluate the immune infiltration 
data for each BC sample downloaded from TCGA. 
CIBERSORT is a deconvolution algorithm that can predict 
the abundance of 22 immune cell types based on the gene 
expression data (37,38).

Survival analysis based on selected immune cells

All immune cells were incorporated into a univariate Cox 
regression model to identify immune cells related to survival 
(P<0.05). The survival analysis based on immune cells was 
performed by LASSO Cox regression to avoid overfitting. 
The patients were divided into the high-risk and low-risk 
groups based on the median value of the risk score. Kaplan-
Meier survival curves were compared using the log-rank 
test and a nomogram to assess the survival outcomes (OS). 
A ROC curve and a calibration curve were constructed to 
evaluate the accuracy of the risk score. Finally, Pearson 
correlation analysis was used to assess the correlations 
between various immune cells and between the components 
of the immune cell signature and the components of the 
ceRNA network signature.

Multidimensional validation

Multidimensional verification was performed using a 
series of external databases, including Gene Expression 
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/), the 
Gene Expression Profiling Interactive Analysis (GEPIA), 
and TargetScan database (http://www.targetscan.org/), to 
reduce possible errors. We also downloaded the relevant 
immunohistochemical images from the public database 
Human Protein Atlas database (HPA) (https://www.
proteinatlas.org/) to detect the gene expression in tumor 
tissues and normal tissues, but no specific staining method 
was provided in the database.

Statistical analysis

All statistical analyses were performed using R 3.53 
software. A ceRNA network was constructed using the 
GDCRNATools package of R (39). The log-rank test and 
univariate Cox regression analyses were performed using the 
survival package of R. The survival time and status of the 
patients were assumed to be dependent variables, and the 
expression of the components of the ceRNA network and 
immune cell infiltration were assumed to be independent 
variables in Cox regression used for two survival analyses. 
LASSO Cox regression was performed using the glmnet 
package of R. ROC curves were generated and plotted using 
the survivalROC package of R. Nomograms and calibration 
curves were generated using the rms package of R. The 
differences in the gene expression levels were evaluated by 
the Mann-Whitney U test.

Results

DEGs

We identified 2,581 differentially expressed mRNAs (1,261 
upregulated and 1,320 downregulated mRNAs), 223 
differentially expressed miRNAs (152 upregulated and 71 
downregulated miRNAs), and 216 differentially expressed 
lncRNAs (39 upregulated and 177 downregulated lncRNAs) 
in BC versus normal tissues (Figure 2A,B,C).

Construction of a ceRNA network and survival analysis

We constructed a ceRNA network composed of 110 
mRNAs, 15 miRNAs, and 7 lncRNAs (Figure 3). Then, all 
components of the ceRNA network were incorporated into 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Figure 2 DEGs. Differentially expressed mRNAs (A), lncRNAs (B), and miRNAs (C) were identified in BC. Red dots represent upregulated 
genes, and green dots represent downregulated genes. DEGs, differentially expressed genes; BC, bladder cancer.

Figure 3 A ceRNA network. We constructed a ceRNA network using differentially expressed mRNAs, lncRNAs, and miRNAs. Purple 
ellipses represent mRNAs, green ellipses represent lncRNAs, and red ellipses represent miRNAs. The size of red ellipses corresponds to the 
number of the edges. CeRNA, competitive endogenous RNA.
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Table 2 The genes related to survival identified by univariable Cox 
regression

Gene HR 95% CI (low) 95% CI (high) P

TIMP2 1.142 1.045 1.247 0.003

ELN 1.131 1.054 1.214 0.001

NTN1 1.099 1.024 1.179 0.009

MYLK 1.109 1.025 1.200 0.010

KIF26A 1.154 1.047 1.273 0.004

CYBRD1 1.120 1.015 1.236 0.024

SREBF1 1.174 1.021 1.349 0.024

TNS1 1.102 1.010 1.202 0.030

PTHLH 1.064 1.011 1.119 0.017

SEC23A 1.424 1.165 1.740 0.001

SRPX 1.129 1.047 1.218 0.002

RASD1 1.101 1.011 1.200 0.026

EFEMP1 1.119 1.056 1.186 0.000

AKT3 1.128 1.015 1.253 0.026

CTGF 1.121 1.032 1.217 0.007

RECK 1.147 1.021 1.288 0.021

PMEPA1 1.143 1.050 1.244 0.002

ATXN1 1.163 1.015 1.334 0.030

DSC2 1.113 1.041 1.191 0.002

PI15 1.100 1.023 1.183 0.010

THBS1 1.145 1.038 1.264 0.007

TTLL7 1.175 1.069 1.291 0.001

TPM1 1.185 1.060 1.325 0.003

ATP8B2 1.235 1.105 1.381 0.000

LRIG1 1.160 1.065 1.264 0.001

SETD7 1.252 1.019 1.538 0.032

DAAM2 1.139 1.022 1.269 0.019

LATS2 1.232 1.042 1.457 0.015

DIP2C 1.322 1.103 1.584 0.003

MSX1 1.162 1.050 1.285 0.004

FSTL1 1.192 1.053 1.350 0.005

EDIL3 1.121 1.013 1.241 0.027

ZCCHC24 1.135 1.018 1.265 0.023

JCAD 1.123 1.008 1.251 0.036

Table 2 (continued)

Table 2 (continued)

Gene HR 95% CI (low) 95% CI (high) P

MAPRE2 1.181 1.025 1.360 0.021

ZEB2 1.124 1.003 1.259 0.044

PCDH7 1.068 1.001 1.139 0.045

SH3RF3 1.164 1.041 1.302 0.008

ZBTB4 1.349 1.037 1.754 0.026

SATB1 0.853 0.761 0.956 0.006

RFLNB 1.205 1.050 1.382 0.008

DUSP8 1.122 1.003 1.255 0.044

RUSC2 1.160 1.005 1.339 0.042

AC074117.1 0.746 0.607 0.918 0.006

hsa-let-7c-5p 1.161 1.067 1.264 0.001

hsa-miR-106b-5p 0.795 0.642 0.985 0.036

hsa-miR-17-5p 0.835 0.706 0.988 0.036

hsa-miR-20a-5p 0.804 0.688 0.939 0.006

hsa-miR-29c-3p 0.846 0.745 0.961 0.010

hsa-miR-93-5p 0.775 0.653 0.919 0.003

HR, hazard ratio; CI, confidence interval.

a univariate Cox regression model to identify components 
related to survival (P<0.05) (Table 2). The survival analysis 
by LASSO Cox regression used the selected components 
(Figure 4A,B; Table 3). The median value of the risk score 
(1.072) calculated by LASSO was used as the cutoff value to 
divide BC patients into the high-risk and low-risk groups. 
ROC curve showed that OS of BC patients was perfectly 
predicted by the risk score [area under the curve (AUC) for 
1-year survival =0.690; AUC for 3-year survival =0.707; and 
AUC for 5-year survival =0.743] (Figure 4C). The prognosis 
of BC patients in the high-risk group was worse than that 
in the low-risk group (P<0.001) (Figure 4D). A nomogram 
predicted the probability of 1-, 3-, and 5-year OS  
(Figure 4E). The calibration curve indicated that prediction 
using the nomogram was accurate (Figure 4F).

Immune cell infiltration

CIBERSORT was used to evaluate the immune infiltration 
data for each BC sample downloaded from TCGA, and 
bar plots and heatmaps were used to visualize the data  
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Figure 4 The ceRNA network signature. The ceRNA signature was constructed based on the components of the ceRNA network 
associated with survival according to LASSO Cox regression analysis (A,B). The results of ROC curve (C), Kaplan-Meier survival curve (D), 
nomogram (E), and calibration curve (F) analyses are shown. CeRNA, competitive endogenous RNA; LASSO, least absolute shrinkage and 
selection operator; ROC, receiver operating characteristic.

(Figure 5A,B). The proportions of naive B cells (P=0.001), 
M0 macrophages (P<0.001), M1 macrophages (P<0.001), 
and resting mast cells (P=0.012) were different in the tumor 
and normal tissues (Figure 5C). Analysis of correlations 
between DEG expression and immune cell infiltration 
in BC and normal tissues (Figure 5D) indicated that high 
levels of CD4 memory-activated T cells (P=0.033) and 
CD8 T cells (P=0.014) were associated with favorable OS, 
and high levels of memory B cells were associated with 

unfavorable survival (P=0.002) (Figure 5E,F,G). Additionally, 
we evaluated correlations between clinical and pathological 
factors and immune cells (Figure 6).

Survival analysis based on immune cells

All immune cells were incorporated into a univariate Cox 
regression model to identify immune cells associated with 
survival (P<0.05) (Table 4). LASSO Cox regression was used 
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for survival analysis to avoid overfitting (Figure 7A,B) (Table 5).  
The median value of the risk score (0.805) calculated by 
LASSO was used as the cutoff value to divide patients into 
the high-risk and low-risk groups. ROC curves indicated that 
OS of BC patients was perfectly predicted by the risk score 
(AUC for 1-year survival =0.704; AUC for 3-year survival 
=0.666; and AUC for 5-year survival =0.648) (Figure 7C).  
The prognosis of BC patients in the high-risk group was 
worse than that in the low-risk group (P=0.004) (Figure 7D). 
A nomogram predicted the survival probability of 1-, 3-, and 
5-year OS (Figure 7E). The calibration curve confirmed that 
prediction using the nomogram was accurate (Figure 7F).  
Finally, correlations between the components of the ceRNA 
signature and immune cell signature were analyzed (Figure 8A).  
Tubulin tyrosine ligase like 7 (TTLL7) and resting mast 
cells (R=0.24, P<0.001), desmocollin 2 (DSC2) and resting 
mast cells (R=−0.23, P<0.001), elastin (ELN) and resting 
mast cells (R=0.44, P<0.001), and hsa-miR-29c-3p and 
M0 macrophages (R=−0.29, P<0.001) had significant 
correlations (Figure 8B,C,D,E).

Multidimensional validation

Multidimensional verification included a series of external 
databases (GEO, GEPIA, HPA, and TargetScan database) 
to verify the characteristics of significant factors in the 
coexpression test and survival analysis based on immune 
cells. Four GEO cohorts were used, including GSE13507, 
GSE7476, GSE32894, and GSE31684. The results obtained 
using the TCGA database indicated that the expression 
of ELN and TTLL7 was higher in normal tissues and the 
expression of DSC2 was higher in BC tissues. Analysis 

using the GEPIA database confirmed that both ELN and 
TTLL7 were expressed at a low level in tumor tissues, and 
the expression of DSC2 was upregulated. Analysis of the 
GSE13507 cohort indicated a lack of significant differences 
in the expression of ELN and DSC2, and the expression 
of TTLL7 was decreased in BC tissues compared with 
that in normal tissues. In the GSE7476 cohort, DSC2 was 
overexpressed and the expression of TTLL7 was decreased 
in BC tissues; however, the expression of ELN was not 
significantly different in tumor and normal tissues. The 
above results were summarized in Table 6. HPA database 
search results showed that the expression levels of ELN, 
DSC2, and TTLL7 were significantly increased in BC 
tissues (Figure 9A,B,C,D,E,F). Analysis of the data of 
multiple databases (TCGA and GSE31894) indicated that 
high levels of ELN, DSC2, and TTLL7 were significantly 
associated with poor prognosis of BC patients (Figure 
10A,B,C,D,E,F). Finally, we used GSE31684 to validate 
the survival analysis based on immune cells. The prognosis 
of the high-risk group was worse than that of the low-
risk group (P<0.001) (Figure 10G). A nomogram was able 
to predict the survival probability of 1-, 3-, and 5-year 
OS (Figure 10H). The calibration curve indicated that 
prediction using the nomogram was accurate (Figure 10I). 
Unfortunately, we were unable to verify the survival analysis 
based on the components of the ceRNA network due to a 
lack of databases that include mRNA, miRNA, lncRNA, 
and complete clinical data, which were present only in 
the TCGA database. Query of the TargetScan database 
identified binding sites for hsa-miR-29c-3p in ELN 
and DSC2, and a binding site for hsa-miR-374b-5p was 
identified in TTLL7 in the ceRNA network (Figure 10J).

Discussion

The number of estimated new BC cases reported in 2019 
was 80,470, and 17,670 BC-related deaths were registered. 
BC is characterized by complex biological behavior, a high 
rate of metastasis, and a high recurrence rate (40,41). After 
diagnosis, the physical, mental, and social health-related 
quality of life (HRQoL) of patients with BC significantly 
declines (42). Increasing evidence indicated that ceRNAs 
and dysregulation of the immune system are involved in the 
progression of human tumors (43-48).

Two survival analyses were performed in the present 
study based on the selected components of a ceRNA 
network (including ELN, SREBF1, DSC2, TTLL7, 
DIP2C, SATB1, hsa-miR-20a-5p, and hsa-miR-29c-3p) 

Table 3 The coefficients of included genes obtained from LASSO 
Cox regression

Gene Coefficient

PARVB 0.0962 

RAP1B 0.0529 

PIK3CA −0.0132 

PGF −0.0604 

VEGFA 0.0294 

SDC1 0.1073 

SPP1 0.1006 

FLNC 0.0940 

LASSO, least absolute shrinkage and selection operator.
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Figure 5 Immune cell infiltration. The composition of immune cells was assessed by the CIBERSORT algorithm in BC (A,B). The proportions 
of naive B cells, M0 macrophages, M1 macrophages, and resting mast cells were different in BC and normal tissues (C). The results of the 
correlation analysis between DEG expression and immune cell infiltration are shown as a heatmap (D). High level of activated memory CD4 
T cells (E) and CD8 T cells (F) was associated with favorable OS, and a high level of memory B cells was associated with unfavorable OS (G). 
CIBERSORT, cell-type identification by estimating relative subsets of RNA transcripts; BC, bladder cancer; OS, overall survival.
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Table 4 The immune cells related to survival identified by univariable Cox regression

Immune cell HR 95% CI (low) 95% CI (high) P

T cells CD8 0.041 0.004 0.477 0.011

T cells follicular helper 0.001 0.000 0.660 0.037

Macrophages M0 7.020 1.530 32.219 0.012

Macrophages M2 19.460 2.017 187.741 0.010

Mast cells resting 93.920 1.173 7,517.048 0.042

Neutrophils 38,449.382 6.225 237,470,827.229 0.018

HR, hazard ratio; CI, confidence interval.

Figure 7 The immune cell signature. The immune cell signature was generated by LASSO Cox regression analysis based on immune cells (A,B). 
The results of ROC curve (C), Kaplan-Meier survival curve (D), nomogram (E), and calibration curve (F) analyses are shown. LASSO, least 
absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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Table 5 The coefficients of included immune cells obtained from 
LASSO Cox regression

Immune cell Coefficient P

Macrophages M0 2.229 0.006

Macrophages M2 3.022 0.014

Mast cells resting 3.386 0.137

Neutrophils 13.294 0.004

LASSO, least absolute shrinkage and selection operator.

Figure 8 Coexpression analysis. The results of the correlation analysis of DEGs expression and immune cell infiltration are shown as a heatmap 
(A). The correlations between TTLL7 and resting mast cells (B), DSC2 and resting mast cells (C), ELN and resting mast cells (D), and hsa-
miR-29c-3p and M0 macrophages (E) were significant. ELN, elastin; DSC2, desmocollin 2; TTLL7, tubulin tyrosine ligase like 7; DEGs, 
differentially expressed genes.

and selected immune cells (including M0 macrophages, 
M2 macrophages, resting mast cells, and neutrophils). 
Overexpression of SREBF1 was associated with a poor 
prognosis and promoted metastasis of esophageal 
carcinoma cells, and inhibition of SREBF1 augmented 

the efficacy of immune checkpoint blockades (49,50). 
Downregulated expression of DIP2C was detected in breast 
cancer, especially in basal-like and HER-2 subtypes (51). 
Numerous studies confirmed that SATB1 is involved in 
the occurrence and development of various human tumors 
(52-55). Hsa-miR-20a-5p inhibits epithelial mesenchymal 
transition (EMT) and invasion of tumor cells by targeting 
STAT3 in endometrial cancer (56). The infiltration of M2 
macrophages expressing the CD163 antigen decreases 
the disease-free survival (DFS) rate in high-grade oral 
tongue squamous cell carcinoma and increases the 
mortality rate of patients with prostate cancer (57,58). The 
interaction between neutrophils and cancer is complex. 
Neutrophil-mediated tumor inflammation can promote 
the proliferation, invasion, and angiogenesis of tumor 
cells; however, some studies demonstrated that compounds 
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produced by neutrophils can suppress tumor development 
(59-61).

The present study demonstrated significant correlations 
between TTLL7 and resting mast cells, DSC2 and resting 
mast cells, ELN and resting mast cells, and hsa-miR-29c-
3p and M0 macrophages. Another study suggested that DS2 
can be used as a new immunohistochemical biomarker for 
urothelial carcinoma (UC) with squamous differentiation; 
this cancer is more advanced and has worse prognosis 
than those in UC without squamous differentiation (62).  
In breast cancer, prostate cancer, and lung cancer, 
increased levels of mast cell infiltration were associated 
with improved survival rate of patients (63). Decreased 
expression of hsa-miR-29c-3p was associated with advanced 
clinical and pathological factors and poor prognosis in 
laryngeal squamous cell carcinoma, and infiltration of M0 
macrophages was associated with poor OS, suggesting a 
negative correlation between these factors in tumors (64,65). 
Unfortunately, other components of ceRNA signature 
were rarely investigated in tumors, and previous studies did 
not assess possible relationships of these components with 
immune cells.

The present study has certain limitation. First, our 
data were obtained from public databases, and clinical 
and pathological factors included in these databases were 

not comprehensive; the number of tumor tissue samples 
was different from the number of normal tissue samples. 
Second, specific mechanism of infiltration of various 
immune cell types was not studied in detail. Third, the 
correlations between the components of the ceRNA 
network signature and the immune infiltrating cell signature 
were not confirmed in experiments.

Thus, two survival analyses performed in the present 
study were based on the selected components of the ceRNA 
network and selected immune cell types and were used to 
predict the prognosis of patients with BC; the nomograms 
containing both of these signatures may provide assistance 

Figure 9 HPA. HPA database search results showed that the 
expression levels of ELN (A,B), DSC2 (C,D), and TTLL7 (E,F) 
were significantly increased in BC tissues. HPA, Human Protein 
Atlas database; ELN, elastin; DSC2, desmocollin 2; TTLL7, tubulin 
tyrosine ligase like 7; BC, bladder cancer.

Table 6 Multidimensional validation

Database Gene Tumor vs. normal P

TCGA ELN Down regulated <0.001

DSC2 Up regulated <0.001

TTLL7 Down regulated <0.001

GEPIA ELN Down regulated <0.001

DSC2 Up regulated <0.001

TTLL7 Down regulated <0.001

GSE13507 (GEO) ELN NS 0.184

DSC2 NS 0.687

TTLL7 Down regulated <0.001

GSE7476 (GEO) ELN Down regulated 0.009

DSC2 Up regulated 0.036

TTLL7 Down regulated 0.009

TCGA, the The Cancer Genome Atlas; GEPIA, Gene Expression 
Profiling Interactive Analysis; GEO, Gene Expression Omnibus; 
NS, no significance.
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Figure 10 Analysis of the data of multiple databases (TCGA and GSE31894). High levels of ELN, DSC2, and TTLL7 were significantly 
associated with poor prognosis of BC patients (A-F). Finally, we used GSE31684 to validate the survival analysis based on immune cells. The 
prognosis of the high-risk group was worse than that of the low-risk group (G). A nomogram was able to predict the survival probability of 1-year, 
3-year, and 5-year OS (H). The calibration curve indicated that prediction using the nomogram was accurate (I). Query of the TargetScan 
database identified binding sites for hsa-miR-29c-3p in ELN and DSC2, and a binding site for hsa-miR-374b-5p was identified in TTLL7 in 
the ceRNA network (J). ELN, elastin; DSC2, desmocollin 2; TTLL7, tubulin tyrosine ligase like 7; BC, bladder cancer; OS, overall survival.
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to clinicians to improve individual management of BC 
patients. Moreover, significant correlations between 
TTLL7 and resting mast cells, DSC2 and resting mast 
cells, ELN and resting mast cells, and hsa-miR-29c-
3p and M0 macrophages were detected, suggesting that 
these correlations play significant roles in the prognosis of 
BC. The present study provides some useful information 
for prediction of the prognosis of BC patients; however, 
further studies are needed to clarify the relationships 
between ceRNAs and immune infiltrating cells and relevant 
molecular mechanisms.
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