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Introduction

Renal cell carcinoma (RCC) accounts for over 90% of all 
kidney cancer, and clear cell renal cell carcinoma (ccRCC) 
is the most frequent histology subtype (1). ccRCC affects 
around 300,000 patients worldwide and causes over  
100,000 deaths annually (2). The onset of symptoms of 

ccRCC is usually insidious, so the diagnosis occurs in the 
advanced stage (3). Besides, ccRCC tends to metastasis to 
distant organs, such as the lung and liver (4). Due to the 
resistance of ccRCC to radiotherapy and chemotherapy, the 
mortality rate of patients with metastatic ccRCC is still high (5). 
Thus, it is essential to supply novel therapeutic drugs.

Original Article

ISPRF: a machine learning model to predict the immune subtype 
of kidney cancer samples by four genes

Zhifeng Wang1#, Zihao Chen2#, Hongfan Zhao2, Hao Lin2, Junjie Wang1, Ning Wang1, Xiqing Li3,  
Degang Ding1

1Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China; 2Department of Urology, 

Nanfang Hospital, Southern Medical University, Guangzhou, China; 3Department of Oncology, Henan Provincial People’s Hospital, Zhengzhou 

University People’s Hospital, Zhengzhou, China

Contributions: (I) Conception and design: Z Wang, Z Chen; (II) Administrative support: D Ding; (III) Provision of study materials or patients: H 

Zhao, H Lin, J Wang; (IV) Collection and assembly of data: Z Wang, N Wang; (V) Data analysis and interpretation: Z Wang, Z Chen, X Li; (VI) 

Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Degang Ding. Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 

450003, China. Email: drdegang@126.com.

Background: Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma 
(RCC). Immunotherapy, especially anti-PD-1, is becoming a pillar of ccRCC treatment. However, precise 
biomarkers and robust models are needed to select the proper patients for immunotherapy.
Methods: A total of 831 ccRCC transcriptomic profiles were obtained from 6 datasets. Unsupervised 
clustering was performed to identify the immune subtypes among ccRCC samples based on immune cell 
enrichment scores. Weighted correlation network analysis (WGCNA) was used to identify hub genes 
distinguishing subtypes and related to prognosis. A machine learning model was established by a random 
forest (RF) algorithm and used on an open and free online website to predict the immune subtype.
Results: In the identified immune subtypes, subtype2 was enriched in immune cell enrichment scores 
and immunotherapy biomarkers. WGCNA analysis identified four hub genes related to immune subtypes, 
CTLA4, FOXP3, IFNG, and CD19. The RF model was constructed by mRNA expression of these four 
hub genes, and the value of area under the receiver operating characteristic curve (AUC) was 0.78. Subtype2 
patients in the independent validation cohort had a better drug response and prognosis for immunotherapy 
treatment. Moreover, an open and free website was developed by the RF model (https://immunotype.
shinyapps.io/ISPRF/).
Conclusions: The current study constructs a model and provides a free online website that could identify 
suitable ccRCC patients for immunotherapy, and it is an important step forward to personalized treatment.

Keywords: Renal cell carcinoma (RCC); immune subtypes; machine learning; online website

Submitted Jul 06, 2021. Accepted for publication Sep 10, 2021.

doi: 10.21037/tau-21-650

View this article at: https://dx.doi.org/10.21037/tau-21-650

3786

https://immunotype.shinyapps.io/ISPRF/
https://immunotype.shinyapps.io/ISPRF/
https://crossmark.crossref.org/dialog/?doi=10.21037/tau-21-650


3774 Wang et al. Kidney cancer immune subtype prediction

  Transl Androl Urol 2021;10(10):3773-3786 | https://dx.doi.org/10.21037/tau-21-650© Translational Andrology and Urology. All rights reserved.

Recently, the clinical trial results reported that immune 
checkpoint antibodies improved patient survival in some 
types of cancer, including ccRCC (6). The Food and 
Drug Administration (FDA) approved Nivolumab (PD-1 
antibody) in November 2015 for use in metastatic ccRCC 
patients who progressed on an angiogenesis inhibitor. The 
FDA made its decision based on findings from the phase 3 
CheckMate025 trial, in which the PD-1 antibody improved 
the median overall survival (OS) and reduced the risk of 
death versus Everolimus (Afinitor) (7). After that, FDA 
approved Pembrolizumab (PD-1 antibody) plus Axitinib for 
the first-line treatment of ccRCC patients by the benefit 
of OS in the Keynote426 trial (8). Besides, FDA approved 
Avelumab (PD-L1 antibody) combined with Axitinib for 
first-line treatment of ccRCC patients in May 2019 (9).

Immunotherapies including PD-1 or PD-L1 antibodies 
could significantly improve the prognosis of cancer patients, 
but the number of patients who showed consistent responses 
to the immunotherapy was limited (10,11). Moreover, 
side effects and adverse toxicities caused by immune 
checkpoint antibodies are reported (10). Thus, robust, 
reliable biomarkers/models that could select the appropriate 
patient for immune checkpoint antibodies are urgently 
needed. Currently, the clinical application of each FDA-
approved PD-1/PD-L1 antibody depends on the PD-L1 
immunohistochemistry assay results (12). However, in the 
CheckMate025 study, Nivolumab (PD-1 antibody) responses 
had no correlations with PD-L1 level, and patients with a 
high level of PD-L1 had a worse prognosis (10). Besides, PD-
L1 appears to be a dynamic biomarker since its expression 
could be largely variable after therapies, including mTOR 
inhibitors (12). However, several subtypes have distinct 
clinical behaviors and drug response rates, and various genetic 
alterations among ccRCC patients (13). Thus, identifying 
potential immune subtypes could contribute to personalized 
medicine, reduced cost, and improved survival rate in ccRCC 
patients.

We aim to build a user-friendly webserver to select 
proper cancer patients for immunotherapy in the current 
study. Multiple genomic data of primary ccRCC samples 
were downloaded to identify immune subtypes that are more 
sensitive or resistant to immunotherapy. An independent 
cohort that contained patients treated with immunotherapy 
was used to confirm the correlation of immune subtypes 
with drug response and prognosis. After that, a web server 
based on a machine learning model was constructed to 
predict the immune subtype of kidney cancer samples by the 
mRNA expression of four genes. Besides, novel therapeutic 

targets and drugs need to be supplied for the subtype 
resistant to immunotherapy. We present the following article 
in accordance with the STARD reporting checklist (available 
at https://dx.doi.org/10.21037/tau-21-650).

Methods

Data acquisition

The inclusion criteria for each dataset were set as follows: 
(I) be generated from the ccRCC patients, (II) contain 
both diseased (at least 10) and matched healthy controls (at  
least 10) in the same experimental batch, and (III) come 
from the samples without any transfection or manipulation 
which would cover the real expression of genes. The 
searching deadline was January 2021. In the current study, 
seven independent cohorts were retrieved: (I) GSE15641 (32 
ccRCC samples) (14), GSE36895 (29 ccRCC samples) (15),  
GSE40435 (101 ccRCC samples) (16), GSE46699 (67 
ccRCC samples) (17), GSE53757 (72 ccRCC samples) (18)  
and The Cancer Genome Atlas (TCGA) (530 ccRCC 
samples) (19) were used for training datasets. (II) 
IMvigor210 (20) study, which contained 348 cancer 
patients treated with Atezolizumab (anti-PD-L1) were 
taken as the testing dataset. The expression matrix and the 
corresponding clinical information of these cohorts were 
downloaded. In each dataset, the missing values for a given 
gene were replaced by the average of the present expression 
values for that gene.

Calculation of immune cell infiltration levels

The algorithm single sample Gene Set Enrichment Analysis 
(ssGSEA), an extension of the Gene Set Enrichment Analysis 
(GSEA) method, could compute the specific cell enrichment 
scores by the cell-specific-genes, including immune cell-
specific genes. In the current study, immune cell-specific 
marker genes were downloaded from the supplementary 
data of the previous article (21). A total of 28 immune cell 
enrichment scores were calculated by the ssGSEA method 
from the ‘GSVA’ package in the R language (22). Then, 
we normalized the immune cell enrichment scores by the 
equation x = (x − xmin)/(xmax − xmin), where xmin and xmax 
denoted the minimum and maximum of the score.

The assignment of immune subtypes

Consensus clustering (CC) could find the potential clusters/
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subtypes within the RNA sequencing dataset and assess the 
stability of these subtypes (23). The normalized immune 
cell enrichment score was eligible for CC analysis since 
the normalized data was necessary for CC analysis. In the 
current study, the package ‘ConsensusClusterPlus’ (24) 
in R language was implemented for CC analysis. The key 
parameters for were set as following: maxK =6, clusterAlg 
= “hc”, distance = “pearson”. Once CC analysis was 
performed and the final clusters (immune subtypes) were 
generated, the proper number of final clusters (K) could be 
estimated by commonly used methods, including tracking 
plot, cumulative density function, and relative change in 
area under cumulative density function (25).

Differentially expressed genes (DEGs) and enrichment 
analysis

Based on ‘edgeR’ package (26), fold-change (FC) and P 
value for each mRNA were obtained. Then, the Benjamini 
and Hochberg method was used to calculate the adjusted 
P values. The significant DEGs were characterized by 
false discovery rate (FDR) <0.05 and |Log2(FC)|>1. The 
GSEA software was downloaded, and the enrichment 
analysis (27) was conducted in the TCGA dataset between 
immune subtypes. In the current study, enrichment analysis 
was completed on the reference gene sets (c2.cp.kegg.
v6.1.symbols.gmt) that come from the Molecular Signatures 
Database.

Construction of a co-expression network

To identify the modules and genes highly associated with 
the obtained ccRCC immune subtypes, a co-expression 
network that contains the genes (points) and their 
correlations (lines) were built by the weighted correlation 
network analysis (WGCNA) method from the ‘WGCNA’ 
package of R language (28). In the current study, only 
immune subtype DEGs (1,136 genes) obtained in the last 
step were selected for WGCNA analysis since the necessary 
calculation resources would be reduced, and the modules 
with higher correlations with the immune subtype would 
be found. The construction steps of the network in this 
study contained: (I) filtering outliers and bad samples; (II) 
selecting the β value to ensure a scale-free network; (III) 
calculating the correlation matrix; (IV) setting the minimum 
size of a module; (V) calculating the relationships between 
modules and immune subtypes. The module with the 
strongest association with the immune subtype was selected 

for further analysis.

Construction of a random forest (RF) model for predicting 
immune subtypes

The RF model, one of the most accurate supervised learning 
methods, was used to construct a model for predicting 
immune subtypes. The data used for the RF model was the 
hub genes expression matrix of TCGA samples. Step 1:  
the input data was randomly separated into the training 
dataset (70%) and the testing dataset (30%). Step 2: the best 
parameters for the RF model were selected by 5-fold cross-
validation (CV) in the training dataset. Step 3: after setting 
the best parameter, the prediction accuracy of the RF model 
for the immune subtype prediction was tested in the testing 
dataset. Step 4: an independent dataset (IMvigor210) was 
selected to validate the correlation of predicted immune 
subtype with the immunotherapy response rates and 
prognosis (20).

Construction of a user-friendly website for immune subtype 
prediction

Shiny is a framework from the R language and could build 
web applications. In the current study, the machine learning 
(RF) model was implemented in the ‘Rshiny’ package in 
the R language. The web application was named Immune 
Subtype Prediction by Random Forest (ISPRF) and could 
be accessed via the URL (https://immunotype.shinyapps.io/
ISPRF/). Any user or organization could freely use ISPRF 
App without limitations. The ISPRF App has been tested 
in different environments (Linux, Windows, and Mac OS) 
and is also compatible with popular web browsers, including 
Chrome, Firefox, and Internet Explorer.

Potential drugs for the immunotherapy-resistant subtype

Drugs targeting immunotherapy-resistant subtype hub 
genes were selected using the Drug-Gene Interaction 
Database (DGIdb; https://www.dgidb.org/) (29). For 
the drugs from DGIdb, only the FDA-approved drugs 
were retained. Discovery Studio software could predict 
the pharmacologic properties of small molecules. These 
pharmacologic properties, including aqueous solubility 
level, blood-brain barrier (BBB) level, CYP2D6 binding, 
hepatotoxicity, human intestinal absorption level, and 
plasma protein binding (PPB) properties, directly determine 
the viability of a drug candidate (30).

https://immunotype.shinyapps.io/ISPRF/
https://immunotype.shinyapps.io/ISPRF/
https://www.dgidb.org/
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Statistical analysis and ethical statement

OS plus progression-free survival (PFS) were selected 
to compare survival time between groups using the 
Kaplan-Meier model in the R package ‘survival’ (31). We 
obtained immune cytolytic activity (CYT) according to 
the summation of two cytolytic effectors’ expression values 
(GZMA and PRF1) (32). The Wilcoxon rank-sum test was 
used to compare the average value for analyzing the levels 
of immunotherapy indicators in different immune subtypes.

All the expression data and clinical information were 
retrieved from publicly available datasets, which were free 
to download and analyze without limitations. Investigators 
of each study obtained approval from their local ethics 
committee and informed patient consent. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Results

Molecular immune subtypes in ccRCC patients

Six datasets, GSE15641 (32 ccRCC samples), GSE36895 
(29 ccRCC samples), GSE40435 (101 ccRCC samples), 
GSE46699 (67 ccRCC samples), GSE53757 (72 ccRCC 
samples) and TCGA (530 ccRCC samples) were downloaded. 
The gene expression matrix of these six datasets was used 
to calculate the immune cells enrichment scores (ssGSEA 
score) by adopting the ssGSEA method. The survival analysis 
of immune cells enrichment scores in the TCGA dataset 
showed that six immune cells, including activated CD4 T 
cells, activated CD8 T cells, were significant survival-related 
biomarkers, and the patients with high levels had worse OS 
than those in the low levels group (Figure S1). The PCA 
results of these six datasets gene expression matrix indicated 
the obvious batch effects since these datasets displayed a 
significant difference (Figure S2A). However, the PCA 
results of these six datasets’ immune cells’ enrichment scores 
(normalized ssGSEA score) showed that differences between 
datasets were eliminated (Figure S2B).

CC of 831 ccRCC patients from six datasets using 
immune cells enrichment scores was performed. Two main 
immune subtypes were identified and named subtype1/
subtype2 (Figure 1A). The tracking plots showed that two 
was the best value of subtypes number (Figure 1B), while 
cumulative distribution function (CDF) results indicated 3  
(Figure S3A,S3B). Since the sample numbers in subtypes 3 
to subtype 6 were too small (Figure 1B), two main immune 

subtypes were finally identified. The distribution of immune 
subtypes (subtype1 and subtype2) among different datasets 
was shown in Table 1. As shown in Figure 1C,1D, both in 
the OS and PFS analysis, differences in the survival curves 
between the subtype1 and subtype2 were statistically 
significant (P=0.027 and P=0.014, respectively). Patients 
in subtype1 had a better prognosis than subtype2 patients. 
Subsequently, ssGSEA scores indicated that subtype2 samples 
were highly infiltrated with innate and adaptive immune cells, 
including B cells, CD8 T cells, CD4 T cells, macrophages, 
NK cells, and regulatory T cells (Tregs), while subtype1 
samples only showed a high level of neutrophils (Figure 2).  
Besides, some immune checkpoint therapy biomarkers, 
including CD8A, PDL1, PD1, and tumor mutational burden 
(TMB), were also enriched in subtype2 (Figure S4).

DEGs and enriched pathways between immune subtypes

DEGs between immune subtypes were analyzed. A total 
of 614 DEGs were highly expressed in subtype2, and  
522 DEGs were defined as down-regulated DEGs in 
subtype2. The volcano plot of the TCGA cohort was shown 
in Figure S5. Metabolism pathways including oxidative 
phosphorylation, fatty acid metabolism, retinol metabolism, 
and tyrosine metabolism were mostly enriched in subtype1 
(Table S1). However, immune-related pathways involving 
natural killer cell-mediated cytotoxicity, T cell receptor 
signaling pathway, antigen processing, and presentation 
were mostly enriched in subtype2 (Table S2).

Construction of co-expression network

The TCGA dataset was selected for WGCNA since the 
clinical information of other datasets was not available, 
and the expression matrix of DEGs from TCGA was 
used to construct the co-expression network. Based on 
the results of scale-free topology fitting indices R2 and 
mean connectivity (Figure 3A,3B), the best value of β was 3 
since it could construct a scale-free network. A total of 11 
different modules, ranging in size from 30 to 525 genes, 
was provided by WGCNA results (Figure 3C). Among 
these modules, the turquoise module was selected, as it 
had the highest correlation value with the immune subtype 
(correlation =0.62; P<0.01) (Figure 3D). Besides, the blue 
module was selected since it had a significantly negative 
correlation with the immune subtype (correlation =−0.55; 
P<0.01) (Figure 3D).

https://cdn.amegroups.cn/static/public/TAU-21-650-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-650-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-650-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-650-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-650-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-650-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-650-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-650-Supplementary.pdf
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Identification of protein-protein interactions (PPIs) and 
hub genes

The PPI networks of the turquoise module and the blue 
module were individually retrieved from the STRING 
database and then visualized by Cytoscape software. 

Subsequently, 10 hub genes (FOXP3, CTLA4, PTPRC, 
CD28, CD19, LCK, CD27, CD2, IFNG, and CD5) from the 
network of the turquoise module were selected with the 
cut-off value of degree >10, using the cytoHubba plug of 
Cytoscape (Figure 4A). The survival analysis results of these 
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Figure 1 CC for the ccRCC by combining six datasets GSE15641, GSE36895, GSE40435, GSE46699, GSE53757, and TCGA). (A) 
Consensus matrix heatmap plots when k=2. (B) Tracking plot for k=2 to 6. In the tracking plot, the colors in each row represented the 
samples in different subtypes (C) Five-year Kaplan-Meier curves for OS of ccRCC patients stratified by the immune subtypes. (D) Five-year  
Kaplan-Meier curves for PFS of ccRCC patients stratified by the immune subtypes. The log-rank test calculated the P value among 
subtypes. CC, consensus clustering; ccRCC, clear cell renal cell carcinoma; TCGA, The Cancer Genome Atlas; OS, overall survival; PFS, 
progression-free survival.

Table 1 The distribution of immune subtypes among different datasets

Immune subtypes GSE15641 GSE36895 GSE40435 GSE46699 GSE53757 TCGA

ccRCC samples 32 29 101 67 72 530

Subtype1 18 15 46 38 36 301

Subtype2 14 14 55 29 36 229

TCGA, The Cancer Genome Atlas; ccRCC, clear cell renal cell carcinoma.
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hub genes revealed that high expression levels of CTLA4, 
FOXP3, IFNG, and CD19 were associated with the worse OS 
(Figure S6). Similarly, 10 hub genes (AGTR1, CRP, G6PC, 
IGFBP1, MGAM, PCK1, PLG, REN, SLC5A1, and WT1) 
from the network of the blue module were identified with the 
cut-off value of degree >4 (Figure 4B). The survival analysis 
result revealed that high expression levels of three genes (CRP, 
IGFBP1, and WT1) and low expression levels of seven genes 
(AGTR1, G6PC, MGAM, PCK1, PLG, REN, and SLC5A1) 
were associated with the worse OS (Figure S7).

Validation of immune subtypes in the independent cohort

The two subtypes were further validated in an external 
cohort of IMvigor210, using a RF model. The hub 
genes (CTLA4, FOXP3, IFNG, and CD19) from the 
turquoise module were selected to construct a RF model 
for predicting immune subtypes by gene expression. 
IMvigor210 contains 348 tumor patients who received 

treatment with the immune checkpoint inhibitor therapy 
(Atezolizumab). Clinical data of these 348 tumor patients 
were described in Table S3.

The pipeline of machine learning (RF) workflow was 
plotted in Figure 5. In the training phase, the input data 
(TCGA dataset samples with their subtype information 
and four genes expression matrix) was randomly separated 
into the training dataset (70%) and the testing dataset 
(30%). Based on the median value, the expression values of 
CTLA4, FOXP3, IFNG, and CD19 were divided into ‘high’ 
and ‘low’ groups, respectively. Eight variables including 
‘CTLA4_high’, ‘CTLA4_low’, ‘FOXP3_high’, ‘FOXP3_
low’, ‘IFNG_high’, ‘IFNG_low’, ‘CD19_high’, and ‘CD19_
low’ were generated, thus the four genes expression matrix 
was transformed into eight variables matrix. The parameter 
tuning results showed that 2 and 300 were the best value for 
‘mtry’ and ‘ntree’ due to their highest value of area under the 
receiver operating characteristic curve (AUC) (Figure 6A,6B). 
The RF is then trained with the best parameter (mtry =2, 
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ntree =300). The rank of importance value in the constructed 
model for these eight variables were FOXP3_high (0.99), 
IFNG_high (0.97), IFNG_low (0.94), FOXP3_low (0.82), 
CTLA4_low (0.47), CTLA4_high (0.27), CD19_high (0.06) 
and CD19_low (0.01). In the testing phase, the AUC value in 
the testing dataset indicated a good prediction performance 
with 0.78 (Figure 6C). Subsequently, the immune subtype 
of patients from the IMvigor210 cohort was predicted by 
their expression data profiles of four hub genes (CTLA4, 
FOXP3, IFNG, and CD19). Patients in subtype2 behaved 
a better overall response rate to Atezolizumab, about 29%, 
whereas subtype1 worst objective response rate (ORR), 
about 16% (Figure 6D). The OS analysis results in the 

IMvigor210 cohort confirmed that patients with subtype2 
had better prognoses than subtype1 patients (Figure 6E). 
Consistent with results from the TCGA cohort, subtype2 in 
the IMvigor210 cohort was characterized as high expression 
of various immunotherapy indicators (CD8A, PDL1, TIGIT, 
CTLA4, CYT, IFNG, LAG3, PDCD1, TMB) in Figure S8.

Web tool development

Using the RStudio shiny package, a web application (https://
immunotype.shinyapps.io/ISPRF/) was built to predict 
immune subtypes. In this web application, expression 
profiles of four hub genes (CTLA4, FOXP3, IFNG, and 
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Figure 3 Identification of key modules connected with clinical features and immune subtypes through WGCNA. (A,B) The scale-free 
fit index and the mean connectivity for various soft-thresholding powers, respectively. When the soft-thresholding powers (β) equaled 
three, the average degree of connectivity was close to zero. (C) The cluster dendrogram of 5,000 module eigengenes from the TCGA 
dataset. Each branch in the figure represented one gene, and every color below represented one co-expression module. (D) Heatmap of the 
correlation between module eigengenes and clinical traits, including molecular subtypes. The color of cells in the heatmap represented the 
correlation coefficients of different sizes. Specifically, red colors represented the positive correlations, and green colors stood for the negative 
correlations. The figure without brackets in each cell indicated the clinical feature correlation coefficients. The corresponding P value was 
shown below in parentheses. WGCNA, weighted correlation network analysis; TCGA, The Cancer Genome Atlas.
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CD19) were required as input data (Figure 7A). The input 
data will be sent to the servers where the application pre-
processes the data, including four steps: (I) combining the 
input data with the training dataset; (II) transforming the 
matrix into the one-hot matrix by the median value of each 
gene; (III) deleting the training dataset. (IV) After pre-

processing the input data, this application predicts the 
probability of immune subtypes using the RF model. Then, 
the immune subtype that results in the highest probability 
is picked as the predicted immune subtype. In Figure 7B, 
the interface shows an example of predicting the immune 
subtype by four genes expression.

A B

Figure 4 PPI network of genes in selected modules. The color intensity and the size of nodes were positively correlated with the degree 
score. (A) Turquoise module. (B) Blue module. PPI, protein-protein interaction.

TCGA samples with 
immune subtype 

information

Training 
dataset 
(70%)

Testing 
dataset 
(30%)

Validation 
dataset

5-fold CV for 
parameter tuning

AUC (calculated 
by predicted/real 
immune subtype)

The correlation of predicted 
immune subtype with 

immunotherapy response

Random forest 
model testing

Random forest 
model testing
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Figure 5 The pipeline of machine learning (RF) workflow. RF, random forest; TCGA, The Cancer Genome Atlas; CV, cross-validation; 
AUC, area under the receiver operating characteristic curve.
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Identification of potential drugs for the immunotherapy-
resistant subtype

Since patients from immune subtype1 might have a low 
response rate to immune checkpoint antibodies, some 
potential drugs are needed. Thus, hub genes in the blue 
module, which had a negative correlation with the immune 
subtype, could be the targets for identifying potential 
drugs. According to the above significant survival prognosis 
results, three hub genes from the blue module (CRP, 
IGFBP1, and WT1) were selected for further analysis due 
to their negative effect on the prognosis. A total of 6 small 
molecules, 1 monoclonal antibody, and 1 synthetic peptide 
for targeting these hub genes were provided by the DGIdb 
website that contained drug-gene interactions (Table 2). 

Pharmacologic properties of six small molecule drugs 
were unearthed under Discovery Studio 2019 software 
(Table 3): (I) the aqueous solubility results showed no drug 
was characterized with low aqueous solubility ability; (II) 
only one drug was high penetrant for BBB; (III) all small 
molecules drugs were non-inhibitor of CYP2D6, which 
was responsible for drug metabolism; (IV) two drugs, 
ZINC150338696 and ZINC169294721, were non-toxic 
drugs based on hepatotoxicity prediction results; (V) one 
drug had the good intestinal absorption level; (VI) as to 
PPB, three drugs were predicted to be absorbent strong. 
Based on the above results, ZINC169294721 was selected 
as the potential small molecule drug for immune subtype1 
patients since it had good aqueous-solubility ability and was 
non-toxic.
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Step1: Input the gene expression
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Figure 7 The workflow and homepage of Shiny APP. (A) The workflow of RF model in Shiny APP (https://immunotype.shinyapps.io/
ISPRF/). (B) The interface shows an example of predicting the immune subtype by four genes expression. RF, random forest.

Table 2 The drugs from DGIdb

Gene Drug Zinc ID Type Interaction PMID

CRP Adalimumab Not available Monoclonal antibody Inhibitor 23517933

Fenofibrate ZINC584092 Small molecule Inhibitor 21939559

Rosuvastatin ZINC1535101 Small molecule Inhibitor 21641360

WT1 Sirolimus ZINC169294721 Small molecule Inhibitor 18927120

Daunorubicin ZINC3917708 Small molecule Inhibitor 30837363

IGFBP1 Buserelin Not available Synthetic peptide Promoter 1721621

Octreotide ZINC150338696 Small molecule Inhibitor 9604870

Streptozocin ZINC3995968 Small molecule Promoter 1698152

DGIdb, Drug-Gene Interaction Database.

Table 3 The pharmacologic properties of drugs

Compounds Solubility level BBB level CYP2D6 Hepatotoxicity Absorption level PPB level

ZINC3917708 2 4 0 1 3 0

ZINC150338696 1 4 0 0 3 0

ZINC3995968 4 4 0 1 3 0

ZINC584092 2 1 0 1 0 1

ZINC1535101 3 4 0 1 2 1

ZINC169294721 3 4 0 0 3 1

Aqueous-solubility level: 0, extremely low; 1, very low, but possible; 2, low; 3, good. BBB level: 0, very high penetrant; 1, high; 2, medium; 
3, low; 4, undefined. CYP2D6 level: 0, noninhibitor; 1, inhibitor. Hepatotoxicity: 0, nontoxic; 1, toxic. Human-intestinal absorption level:  
0, good; 1, moderate; 2, poor; 3, very poor. PPB: 0, absorbent weak; 1, absorbent strong. BBB, blood-brain barrier; CYP2D6, cytochrome 
P-450 2D6; PPB, plasma protein binding.

https://immunotype.shinyapps.io/ISPRF/
https://immunotype.shinyapps.io/ISPRF/


3783Translational Andrology and Urology, Vol 10, No 10 October 2021

  Transl Androl Urol 2021;10(10):3773-3786 | https://dx.doi.org/10.21037/tau-21-650© Translational Andrology and Urology. All rights reserved.

Discussion

Immunotherapies, including PD-1/PD-L1 antibodies, are 
considered promising tumor intervention methods since 
immunotherapies prolonged the OS time of ccRCC patients 
in different clinical trials (33). However, the response rate 
of cancer patients to immunotherapy is still limited and 
unsatisfactory (34). Since the tumor heterogeneity exists 
among cancer samples, identifying potential immune 
subtypes with different immunotherapy drug responses 
could contribute to the individualized immunotherapy 
treatment. Currently, some indicators, including PD-L1 
and TMB, were recommended for selecting appropriate 
immunotherapy candidates (35,36). However, PD-L1 is a 
dynamic biomarker since its expression could be remodeled 
using antiangiogenic drugs (37). TMB, defined as the 
total number of nonsynonymous mutations per coding 
area of a tumor genome, is determined using whole-
exome sequencing, which is cost-effective and needs a 
long turnaround time (38). Thus, robust biomarkers and 
prediction models for selecting the patients for immune 
checkpoint therapies are urgently needed.

We pooled data from TCGA and GEO datasets in the 
current study to enlarge our sample size and used immune 
cells enrichment scores to eliminate the batch effect 
among different datasets successfully. Using the immune 
cells enrichment scores from multiple datasets (a total of  
831 samples) and the CC method, we subdivided the 
ccRCC samples into two immune subtypes. These two 
immune subtypes were named subtype1 and subtype2, 
demonstrating distinct prognoses. In the TCGA dataset, 
subtype1 patients had a better prognosis than subtype2 
patients with the surgical treatment. The immune-related 
characteristics or immunotherapy biomarkers, including 
T-cell cytolytic activity, immune checkpoints, and active 
IFN signaling, were significantly higher in subtype2. 
Thus, subtype2 patients were recommended to receive 
immunotherapy.

By bioinformatical methods including DEG analysis and 
WGCNA, four hub genes (CTLA4, FOXP3, IFNG, and 
CD19) were selected. These four hub genes have deep and 
complicated associations with tumor microenvironment 
such as immune cells. A previous study found that CTLA4 
expression value was strongly correlated with the levels 
of T cells in 33 cancer types (39). But CTLA4 usually 
negatively regulates T cell activation and was accompanied 
by an immunosuppressed phenotype (40). FOXP3 could 
reprogram T cell metabolism, improve the T-regulatory 

cells (Tregs), and suppress the cell function and proliferation 
of CD8+ T cells (41). In contrast, IFNG could serve as the 
CD8+ T cell differentiation signal and induce the CD8+ T 
cell proliferation. CD4 T cells and macrophages could also 
be activated by IFNG, while Th2 cells were inhibited by 
IFNG (42). CD19 could activate the B cells by decreasing 
its threshold for receptor-dependent signaling (43).

Usually, drug response prediction requires robust 
models based on many samples, effective biomarkers, 
and efficient computational tools. In the current study, 
we built a RF model to predict the immune subtype by 
inputting the expression levels of only four mRNAs. The 
model indicated a good prediction performance in the 
testing dataset by the value of AUC (0.78). Moreover, the 
drug response and prognosis of subtype2 patients in the 
validation cohort, which contains patients treated with 
immune checkpoint inhibitors, were better than subtype1 
patients. In the previous study, a total of 12 immune-
associated lncRNAs were identified, and a risk score model 
was built to predict the prognosis of ccRCC patients (44). 
However, a convenient web server that is built by a smaller 
number of genes is needed. We have developed the open 
and free online website of ISPRF to make the RF model 
available for organizations or individuals. The ISPRF offers 
an appropriate framework to employ machine learning 
algorithms on four mRNAs expression to predict a patient’s 
immune subtype and thus provide the advice for the 
immunotherapy treatment choice.

To identify more potential drugs for the immunotherapy-
resistant subtype, eight candidate drugs were obtained from 
the prediction of the DGIdb dataset depending on hub genes. 
Among the eight drugs, Sirolimus was the most promising 
drug. Sirolimus (rapamycin) is a macrolide and is usually 
produced by Streptomyces hygroscopicus. Sirolimus could 
reduce cell proliferative action by binding with FK-binding 
protein-12 and inhibiting mTORC1 (45). Moreover, Sirolimus 
can inhibit the growth of renal cancer cells (46). For the 
target of Sirolimus, the expression of WT1 is extremely low 
in kidney normal epithelial cells but higher in kidney cancer 
cells (47). Besides, WT1 can promote the survival of various 
cancer cells through anti-apoptotic functions (48).

Of note,  the immune subtypes of  ccRCC were 
constructed based on the TCGA and GEO cohorts, which 
were treated with surgery and did not receive immune 
checkpoint therapies. Although we validated the identified 
immune subtypes in an independent cohort (IMvigor210), 
these two immune subtypes still require to be tested in 
clinical trials that focus on the correlation of immune 
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subtypes and drug responses. Secondly, functional research 
of hub genes that could elucidate the underlying potential 
mechanisms is needed. Besides, the hub genes and the 
selected drug for immunotherapy-resistant subtype need 
validation by in vitro and in vivo experiments, and it will be 
implemented in our future practice and research.

Conclusions

We identified two ccRCC immune subtypes with distinct 
clinical behavior and prognosis. Furthermore, a machine 
learning model to predict the ccRCC immune subtype by 
four mRNAs expression was constructed, and the model 
was also implemented on the online website and available 
for organizations and individuals. Our study has important 
clinical significance, and clinicians could take the model as a 
reference for individualized treatment.
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Supplementary

Figure S1 OS results of immune cells are significantly different between groups (determined by the median value). OS, overall survival.

Figure S2 Two-dimensional plots are shown of principal components calculated PCA. (A) PCA of the expression matrix of six different 
datasets. (B) PCA of the immune cells enrichment scores of six different datasets. PCA, principal components analysis; TCGA, The Cancer 
Genome Atlas.
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A B

Figure S3 The selection of immune subtype numbers. (A) CC CDF for k=2 to 6. (B) Delta area curve of CC, indicating the relative change 
in area under CDF curve for each category number k compared with k−1. The horizontal axis represents the category number k, and the 
vertical axis represents the relative change in area under the CDF curve. CC, consensus clustering; CDF, cumulative distribution function.
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Figure S4 Comparison of the tumor immunotherapy indicators between the two immune subtypes in the TCGA dataset. Subtype2 tumors 
had significantly higher CD8A, PDL1, TIGIT, CTLA4, CYT, IFNG, LAG3, PD1 (PDCD1) and TMB than subtype1 tumors (P<0.05). TCGA, 
The Cancer Genome Atlas; TMB, tumor mutational burden.
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Figure S5 Volcano plot showing the gene expression differences between immune subtypes. Blue dots, down-regulated genes in subtype2. 
Red dots, upregulated genes in subtype2. FDR, false discovery rate.

Figure S6 OS results of four hub genes in the turquoise module are significantly different between groups (determined by the median 
value). OS, overall survival.
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Figure S7 OS results of ten hub genes in the blue module are significantly different between groups (determined by the median value). OS, 
overall survival.
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Figure S8 Comparison of the tumor immunotherapy indicators between the two immune subtypes in the IMvigor210 dataset. Subtype2 
tumors had significantly higher CD8A, PDL1, TIGIT, CTLA4, CYT, IFNG, LAG3, PD1 (PDCD1) and TMB than subtype1 tumors (P<0.05). 
TMB, tumor mutational burden.
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Table S1 The enriched pathways in immune subtype1

Pathway Padj NES Size

PPAR signaling pathway <0.05 −2.076462405 69

Oxidative phosphorylation <0.05 −2.075496402 116

Vibrio cholerae infection <0.05 −2.01780083 52

Fatty acid metabolism <0.05 −1.99482005 42

Retinol metabolism <0.05 −1.927153616 63

Tyrosine metabolism <0.05 −1.908248892 41

Drug metabolism cytochrome P450 <0.05 −1.829246779 70

Glycolysis gluconeogenesis <0.05 −1.793530881 61

Propanoate metabolism <0.05 −1.779770488 32

Epithelial cell signaling in Helicobacter pylori infection <0.05 −1.773782491 67

A negative NES means that genes over-represented in the gene set are upregulated in immune subtype1. Padj, adjusted P values (the 
FDR); FDR, false discovery rate; NES, normalized enrichment score.

Table S2 The enriched pathways in immune subtype2

Pathway Padj NES Size

Natural killer cell mediated cytotoxicity <0.05 2.101136753 130

Leishmania infections <0.05 2.112326976 69

Asthma <0.05 2.147862606 28

T cell receptor signaling pathway <0.05 2.203600853 106

Chemokine signaling pathway <0.05 2.213683506 184

Allograft rejection <0.05 2.244700522 35

Graft versus host disease <0.05 2.25556481 37

Primary immunodeficiency <0.05 2.271887799 35

Cytokine-cytokine receptor interaction <0.05 2.28028487 257

Intestinal immune network for IgA production <0.05 2.310500831 46

Antigen processing and presentation <0.05 2.363167045 79

A positive NES means that genes over-represented in the gene set are upregulated in immune subtype2. Padj, adjusted P values (the 
FDR); FDR, false discovery rate; NES, normalized enrichment score.
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Table S3 Baseline characteristics of patients in the IMvigor210 
cohort

Clinical type Sample [%]

Immunotherapy outcome

CR/PR 68 [19]

SD/PD 230 [66]

NA 50 [15]

Gender

Male 272 [78]

Female 76 [22]

Tobacco history

Previous 197 [57]

Never 116 [33]

Current 35 [10]

Received platinum

Yes 272 [78]

No 76 [22]

CR, complete response; PR, partial response; SD, stable 
disease; PD, progressive disease; NA, data is not available.


