
  Transl Androl Urol 2021;10(11):4161-4172 | https://dx.doi.org/10.21037/tau-21-674© Translational Andrology and Urology. All rights reserved.

Introduction

Renal cell carcinoma (RCC) is one of the most common 
urological cancers originating from the renal epithelium; it 
accounts for >90% of kidney cancers (1,2). Approximately 
30% of patients already have locally advanced or metastatic 
disease, and 1 of 3 patients will die from this disease, 
highlighting its poor prognosis (3). RCC is classified into 

several subtypes by pathology, including kidney renal 
clear cell carcinoma (KIRC), kidney renal papillary cell 
carcinoma (KIRP), chromophobe, collecting duct, and 
unclassified RCC. KIRC and KIRP are the two most 
common subtypes, representing nearly 90% of RCCs (2,3). 
However, RCC, including its subtypes, cannot be diagnosed 
accurately, and an accurate and timely diagnosis of RCC 
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is important. Thus, there is a need for a high-sensitivity 
method to diagnose RCC.

DNA methylat ion typica l ly  re fers  to  cytos ine 
methylation, which is a DNA modification that is generally 
related to transcriptional silencing (4,5). There are different 
methylation patterns between disease and normal samples, 
and changes in the expression of genes could promote 
oncogenesis (6-8). Understanding epigenetic changes is a 
promising approach for better diagnosing renal carcinoma. 
The CpG-based methylation profile may be of use as a 
biomarker in the diagnosis of RCC. DNA methylation 
has been observed as a hallmark in many types of urologic 
cancers, including KIRC, bladder urothelial carcinoma 
(BLCA) and prostate adenocarcinoma (PRAD) (9-12). 
However, the methylation site status has not been used as a 
marker to identify different RCC subtypes.

In this study, we analyzed the frequently observed 
RCC subtypes (KIRC and KIRP) from an integrated and 
comparative perspective and found that methylation markers 
could distinguished KIRC and KIRP in the diagnosis of 
RCC. We compared the differential methylation profiles 
of KIRC and KIRP cancer tissues with matched normal 
tissues by analyzing 485,000 CpG sites. We identified 15 
methylation markers specific to KIRC and KIRP with 
high sensitivity and accuracy, and then we verified these 
15 methylation markers in the testing group. Using these 
15 sites, we calculated the diagnostic score and subtyping 
score to distinguish normal tissues, RCC tissues and 
different RCC subtypes. Through the scoring evaluation 
system, we obtained good classification performance, and a 
scoring system is more intuitive and practicable for clinical 
application. Importantly, 10 of 15 methylation marker-
associated genes also had value in predicting prognosis. 
These results show that DNA methylation may be used 
as a biomarker in the diagnosis of renal cell cancer and to 
discern KIRC from KIRP.

We present the following article in accordance with the 
STARD reporting checklist (available at https://dx.doi.
org/10.21037/tau-21-674).

Methods

Data sources

The 450K methylation array data were obtained from The 
Cancer Genome Atlas (TCGA, https://www.cancer.gov/
about-nci/organization/ccg/research/structural-genomics/

tcga) datasets for the training group of KIRC samples 
(n=216), KIRP (n=183), and matched adjacent normal 
tissue samples (n=136), as well as the testing group of KIRC 
samples (n=108), KIRP samples (n=92) and matched normal 
samples (n=69). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

The taining and testing datasets

The datasets of KIRC, KIRP and normal tissue were 
randomly divided into a training group and a testing group 
in a 2:1 ratio, in which the normal tissue group was a 
combination of KIRP-adjacent normal tissue and KIRC-
adjacent normal tissue.

Building the diagnostic and subtyping models

All analysis was conducted in R version 4.0.3. First, the 
noise signal was removed from the training group using 
the ‘Limma moderated t-test’ with the R package ‘limma’ 
(version 3.44.3). Then, the least absolute shrinkage and 
selection operator (LASSO) method was applied by the 
R package ‘glmnet’ (version 4.1.1), with multinomial 
distribution and 10-fold cross-validation. Finally, a 
diagnostic prediction model was constructed using a logistic 
regression method.

All statistical tests were two-sided. P<0.05 was considered 
to be statistically significant.

T-SNE analysis and PCA

t-Distributed stochastic neighbor embedding (t-SNE) 
analysis was performed by the R package t-sne (version 
0.1-3). PCA was performed by R function princomp and 
visualized by the first two principal components.

The diagnostic score and subtyping score

We defined the diagnostic score as the negative logarithmic 
multipl icat ion of  beta values  of  cg20740711 and 
cg22274117. We calculated the mean values of cg06215107, 
cg08223003, cg12496156, cg22571393, cg03290131, 
cg08163918, cg09643398, cg16284684, cg23264429 and 
cg24170040 as value 1 and the mean values of cg05548488, 
cg16283183 and cg23528791 as value 2. We defined the 
subtyping score as the 10-fold subtraction of value 1 and 
value 2.

https://dx.doi.org/10.21037/tau-21-674
https://dx.doi.org/10.21037/tau-21-674
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Gene enrichment analysis

GO enrichment was analyzed online by DAVID 6.8 (https://
david.ncifcrf.gov).

ROC curve

The R package pROC (version 1.14.0) was used for ROC 
analysis to compare the abilities of various models to 
distinguish normal tissues, KIRC and KIRP by area under 
the curve (AUC) analysis.

Survival analysis

In this study, survival analysis was conducted online by 
GEPIA (https://gepia.cancer-pku.cn/), with data from 
TCGA and GTEx. Kaplan-Meier Plotter was used to 
generate the survival curve.

Statistical analysis

We used R software (version 4.0.3) to perform all statistical 
analyses. In this study, Student’s t-test was used to calculate 
the global methylation levels of KIRC, KIRP and their 
adjacent tissues, and the difference in DNA methylation 
between KIRC normal and KIRP normal tissues. All p 
values are based on two-sided statistical analysis, and P<0.05 
was considered to indicate statistical significance.

Results

Landscape of DNA methylation for the different subtypes 
of RCC

The methylation profiles of KIRC samples (n=324), KIRP 
samples (n=275) and adjacent nontumor samples of each 
subtype of RCC (KIRC normal n=160, KIRP normal n=45) 
were obtained from The Cancer Genome Atlas (TCGA) 
database. We used tSNE and PCA to visualize the genome-
wide DNA methylation of different samples and found 
that the DNA methylation patterns showed pathologic 
differences (Figure 1A,1B). In addition, we found that there 
was no obvious difference between the adjacent normal 
tissue of the two types of RCCs.

Furthermore, we calculated the global methylation levels 
of KIRC, KIRP and their adjacent tissues. Compared to 
normal tissue, KIRP exhibited global hypermethylation 
(P=5.2×10−7, Student’s t-test). However, KIRC exhibited 
hypomethylation globally (P=8.0×10−4, compared with 

normal, Student’s t-test, Figure 1C). Based on the DNA 
methylation level of normal tissue, the opposite changing 
direction was altered in, when comparing KIRC with KIRP 
tissues. These results may indicate different mechanisms of 
development for the two RCC subtypes that originate from 
the same organ. At the same time, we found no significant 
difference between the adjacent tissues of the two subtypes 
at the global DNA methylation level, which was consistent 
with the results in Figure 1A,1B. The DNA methylation 
levels of all target sites in the array demonstrated the 
known bimodal distribution in KIRC, KIRP and their 
adjacent tissue (Figure 1D), and we observed that the low-
methylation peak was decreased in cancer samples compared 
with the adjacent normal tissues. However, the high-
methylation peak was decreased in KIRC and increased in 
KIRP, which was consistent with the change in direction of 
genome-wide methylation.

In addition, we also found that the two types of normal 
tissues exhibited similar bimodal distribution patterns. Since 
there was no difference in the genome-wide methylation 
level between the two types of normal tissues, we merged 
the two types of normal tissues in the following study.

Establishment of the model to discriminate RCC subtypes

To establish and validate the model to distinguish different 
subtypes of RCC, we randomly split the three types of 
samples into training and testing groups at a 2:1 ratio. 
After splitting, we obtained a training group containing 
535 samples and a testing group containing 269 samples. 
Then, we attempted to build the model using the ‘limma 
moderated t-test’ method with the training group. The 
research route is shown in Figure 2.

The ‘Limma moderated t-test’ method was employed 
with empirical Bayes for removing the noise signal, and the 
Benjamini-Hochberg procedure was used to restrict P<0.05 
and the false discovery rate (FDR) at a significance level 
of 0.01 (13). The top 1,000 sites of the ‘Limma moderated 
t-test’ results were selected according to the P value 
between KIRC and normal tissue. The same processes were 
performed for comparison between KIRP and normal tissue 
and between KIRC and KIRP. Merging all sites in three 
comparisons, we obtained 2,603 sites for further study.

We used the combination of 2,603 sites to classify the 
samples in the training group and testing group, and the 
results were illustrated by an unsupervised heatmap and 
t-SNE cluster analysis. We found that the 2603 sites were 
able to discriminate cancer from normal renal tissues. 

https://david.ncifcrf.gov
https://david.ncifcrf.gov
http://gepia.cancer-pku.cn/
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Furthermore, the model could distinguish KIRC and KIRP 
in both the training and testing groups (Figure 3).

Identification of the RCC subtypes by 15 sites

We used the least absolute shrinkage and selection operator 
(LASSO) method with multinomial distribution and 10-
fold cross-validation to further decrease the number of sites 
for discrimination (Figure 4A). After LASSO, we obtained 
15 methylation sites that could identify KIRC, KIRP and 
normal tissues (Table 1). More specifically, cg20740711 
and cg22274117 can be used to distinguish between 
normal tissue and cancer tissue. The hypermethylation of 
cg06215107, cg08223003, cg12496156 and cg22571393, 
combined with the hypomethylation of cg05548488, 
cg16283183 and cg23528791, indicated KIRP. Similarly, the 
hypomethylation of cg03290131, cg08163918, cg09643398, 
cg16284684, cg23264429 and cg24170040 indicated KIRC.

To test these 15 sites as potential diagnostic markers, we 
calculated the classification accuracy. Among the training 
group of 535 samples, the classification sensitivity reached 
95.63%, 94.44% and 100% in KIRP, KIRC and normal 
tissues, respectively. The total sensitivity reached 96.26% 
(Table 2). Unsupervised hierarchical clustering and tSNE 
of these 15 markers were performed, and the results were 
visualized (Figure 4B,4C). Next, we tested the discrimination 
performance of these 15 markers in the testing group 
of 269 samples, and the classification sensitivity reached 
92.39%, 95.37% and 100% in KIRP, KIRC and normal 
tissues, respectively (Table 3). Unsupervised hierarchical 
clustering and tSNE of these 15 markers were performed, 
and the results were visualized (Figure 4D,4E). There was 
coincidence with the training group via a total sensitivity 
of 97.03%. In particular, the true negative ratio was 100%. 
This result indicates that people without RCC will not be 
misdiagnosed, which improves the accuracy of the diagnosis. 

Figure 1 Genome-wide DNA methylation profiles of KIRC, KIRP, and normal kidney tissue. (A) t-SNE analysis highlights the data 
structure and sample relationship among the sample groups. (B) PCA analysis confirms the data structure and sample relationship of the t-SNE 
analysis. (C) Average methylation levels of normal, KIRC, and KIRP samples. (D) Density plot reveals distribution of methylation levels 
in normal, KIRC, and KIRP samples measured by methylation array. t-SNE, t-Distributed stochastic neighbor embedding; KIRC, kidney 
renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma. 
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And the methylation level of 15 markers in KIRC, KIRP 
and normal tissue were shown in Figure 5.

The potential clinical application of the 15 markers

According to the above results, 2 of the 15 markers can 
be used to distinguish RCC from normal tissues, and the 

remaining 13 markers can be used for RCC subtyping. 
In further consideration of the usability for clinicians, 
we calculated a diagnostic score using the two markers 
cg20740711 and cg22274117. From the training group, 
the threshold was set to 3, and we obtained the best 
classification performance. The sample will be reported as 
RCC if the diagnostic score is more than 3, and the reverse 

450K TCGA samples

n=804 ( 324 KIRC/275 KIRP/205 normal)

Training cohort

n=535 (216 KIRC/183 KIRP/136 normal)

Testing cohort

n=269 (108 KIRC/92 KIRP/69 normal)

Prediction

Confuse matrix

Training cohort

n=535 (216 KIRC/183 KIRP/136 normal)

Prediction

Confuse matrix

Limma moderated t test

Top 1,000 probe (FDR<0.01, p<0.05)

Marker selection

15 markers by Lasso model

Annotated 15 markers to genes

Predict survival

KIRC KIRP Normal

Figure 2 Study flowchart showing steps involved in construction of diagnostic and subtyping model for renal cell carcinoma. 450K 
methylation array datasets of KIRC and KIRP from TCGA were randomly divided into training and testing groups in a 2:1 ratio. Left 
panel: LASSO was applied to the training group consisting of 216 KIRC, 183 KIRP and 136 normal samples to identify the 15 diagnostic 
markers. Right panel: Selected markers were tested in both training group and testing group. Bottom panel: These 15 methylation markers 
were annotated to genes and used to predict the diagnosis of KIRC and KIRP. KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal 
papillary cell carcinoma.
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will be reported as normal tissue (Figure 6A). ROC curve 
analysis of the diagnosis score for all 535 samples produced 
an AUC of 1 with specificity and sensitivity of 1.00 and 
1.00, respectively (Figure 6B). Then, we validated the 
diagnosis in the testing group, and ROC curve analysis of 
the diagnosis score for all 269 samples produced an AUC 
of 0.99 with specificity and sensitivity of 1.00 and 0.99, 
respectively. Only one KIRP sample was misclassified as 
normal tissue (Figure 6C,6D). To confirm the effectiveness 
of the diagnostic score, we performed Student’s t-test for 
cg20740711 and cg22274117 between the two types of 
normal tissues. The results did not exhibit a significant 
difference, with p values of 0.30 and 0.82 in cg20740711 
and cg22274117, respectively (Table S1).

For RCC subtyping, we used the remaining 13 
markers to calculate a subtyping score. To obtain the best 
classification performance, a threshold set as 2.26 was 
selected in the training group. RCC tissues will be reported 
as KIRC if the diagnostic score is more than 2.26, and the 
reverse will be reported as KIRP (Figure 6E). ROC curve 
analysis of the subtyping score for all 399 samples produced 
an AUC of 0.98 with specificity and sensitivity of 0.96 
and 0.95, respectively (Figure 6F). Then, we validated the 
diagnosis in the testing group (Figure 6G), and ROC curve 
analysis of the subtyping score for all 200 samples produced 
an AUC of 0.99 with specificity and sensitivity of 0.94 and 
0.98, respectively (Figure 6H).

The quantified diagnostic score and subtyping score may 

Figure 3 2,603 methylation sites identify different RCC subtypes from normal tissues. (A) Unsupervised hierarchical clustering of the top 
1,000 sites with the most significantly different rates of methylation between 216 KIRC, 183 KIRP and 136 normal tissues of the training 
group. (B) t-SNE analysis highlights the classification performance of the 1,000 sites in training group. (C) 108 KIRC, 92 KIRP and 69 
normal tissues of the testing group. (D) t-SNE analysis highlights the classification performance of the 1,000 sites in testing group. Each 
column represents an individual patient, and each row represents a CpG marker. The scale shows the methylation beta values. t-SNE, 
t-Distributed stochastic neighbor embedding; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma. 
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become direct indicators to assist clinicians in making a 
diagnosis.

Discussion

The identification of precise biomarkers for cancer 
subtypes has become increasingly important in recent 
years, especially in the implementation of personalized 
medicine for clinicians. Many studies have attempted to 
uncover biomarkers that are applicable for early disease 

detection and possess prognostic and predictive capabilities  
(14-16). DNA methylation analysis requires a small amount 
of tissue to obtain enough DNA. This, permits the use of 
lower-quality biopsies, which may be an ideal diagnostic 
model for many diseases. It may have utility in diagnosing 
metastatic lesions, particularly when the primary cancer 
type is unknown. Cancer-specific changes include CpG 
hypermethylation in gene promoters, hypomethylation of 
non-CpG islands, and an increase in methylation variation 
(7,17). In urological cancers, many studies have investigated 

Figure 4 LASSO discriminates 15 markers from the 2,603 methylation sites. (A) Identification of the optimal penalization coefficient λ in 
the LASSO model with 10-fold cross validation. (B) Unsupervised hierarchical clustering of 15 methylation markers selected for use in the 
diagnostic prediction model in the training group. (C) t-SNE analysis highlights the classification performance of the 15 markers in training 
group. (D) Unsupervised hierarchical clustering of 15 methylation markers selected for use in the diagnostic prediction model in the testing 
group. (E) t-SNE analysis highlights the classification performance of the 15 markers in testing group. t-SNE, t-Distributed stochastic 
neighbor embedding.
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Table 1 Characteristics of 15 methylation markers and their coefficients in KIRC and KIRP diagnosis

Marker Chromosome Start End Coefficient

Normal cg20740711 chr2 112692702 112692703 2.548

cg22274117 chr6 16713382 16713383 2.018

KIRC cg09643398 chr3 187736694 187736695 –0.017

cg23264429 chr10 88882246 88882247 –0.104

cg03290131 chr10 110504073 110504074 –0.29

cg16284684 chr7 1124427 1124428 –0.474

cg24170040 chr14 33946550 33946551 –0.951

cg08163918 chr12 57234871 57234872 –1.119

KIRP cg06215107 chr4 150583573 150583574 1.586

cg22571393 chr13 112843994 112843995 0.249

cg08223003 chr8 133273077 133273078 0.191

cg12496156 chr2 217801325 217801326 0.062

cg16283183 chr3 45677313 45677314 –0.099

cg05548488 chr3 50621041 50621042 –0.212

cg23528791 chr6 154478529 154478530 –1.06

KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma. 

Table 2 Confusion table of the TCGA training cohort

Training cohort Normal kidney KIRC KIRP

Normal kidney 136 1 1

KIRC 0 204 7

KIRP 0 11 175

Total 136 216 183

Correct 136 204 175

Sensitivity (%) 100.00 94.44 95.63

Total sensitivity (%) 96.26

KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma. 

Table 3 Confusion table of the TCGA testing cohort 

Test cohort Normal kidney KIRC KIRP

Normal kidney 69 0 0

KIRC 0 103 3

KIRP 0 5 89

Total 69 108 92

Correct 69 103 89

Sensitivity (%) 100.00 95.37 96.74

Total sensitivity (%) 97.03

KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma. 
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specific methylation levels or genome-wide profiles of 
kidney cancer, bladder cancer and prostate cancer (18-22). 
However, few studies have attempted to distinguish between 
different subtypes and normal tissues in RCC. There are 
many studies focusing on constructing a predictive model 
to diagnose RCC rather than differentiating between its 
subtypes. KIRC and KIRP are the most common subtypes 
of RCC, and their pathology, location, cell type of origin, 
and genetic alterations vary, making it even more important 
to characterize each subtype. From this perspective, we 
first determined differentially methylated CpG sites to 
distinguish KIRC samples, KIRP samples and normal 
samples and used methylation signatures along with gene 
annotations to predict prognostic sites. By applying the 
moderated t-test and LASSO for 485,000 CpG sites along 
with a machine learning algorithm, we discovered a novel 
and reliable set of molecular marker classifiers. Meanwhile, 
a 15-methylation marker panel was used for subtypes of 
RCC to construct a diagnostic prediction model. Moreover, 

the diagnostic sensitivity reached more than 95%; thus, this 
panel has the potential to be used as a new set of clinical 
markers for the diagnosis of RCC subtypes.

With such high sensitivity and specificity, the 15 
methylation markers can be used to relatively accurately 
distinguish between renal carcinoma and normal tissue, as 
well as to distinguish different renal carcinoma subtypes. 
Therefore, these 15 markers were quantitatively scored 
and could be applied clinically. By selecting 3 and 2.26 as 
the diagnostic score and subtype score, respectively, we 
obtained relatively accurate classification performance. We 
could distinguish between normal tissue and RCC by the 
diagnostic score and distinguish between KIRC and KIRP 
by the subtyping score. Because the classification results are 
quantified in the form of scores, it is more convenient for 
clinical pathologists to issue a diagnostic report according 
to the score. Reports in the form of a score is intuitive and 
easy to adopt in clinical practice, and thus, this model could 
become a potential clinical diagnostic indicator.

Figure 5 The methylation level of 15 markers in KIRC, KIRP and normal tissue. KIRC, kidney renal clear cell carcinoma; KIRP, kidney 
renal papillary cell carcinoma.
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Considering the good performance of the 15 markers, 
their underlying mechanism was explored. Then, we 
annotated these 15 methylation markers to the genome and 
found that except for one marker, cg20740711, that was 
located in the intergenic region, 14 markers were located in 
the gene region (Table S2). In this study, ATXN1 was the 
only gene to be annotated, and it could distinguish normal 
tissue from RCC. ATXN1 may play a key role in growth and 
development or tumorigenesis and has been reported to be 
associated with the development of prostate adenocarcinoma 
and stomach adenocarcinoma (23). In addition, we 
determined the expression levels and performed survival 
analysis for the 14 genes and found that 10 genes showed 
significant survival differences. Of the 10 genes, 9 were 
related to KIRP survival, and 2 were related to KIRC 
survival (Figure S1). These 10 genes have been observed in 
many studies to be associated with poor prognosis in many 
types of cancer (24-27), especially STAMBPL1, EGLN3, 
SHMT2, and LIMD1, which have been validated to be 

associated with the development of kidney cancer (28-31). 
These results validate the accuracy of our gene selection 
strategy. Significantly, the LRBA gene was associated 
with the survival of both KIRC and KIRP, and it has been 
reported that LRBA also plays an important role in the 
development of colorectal cancer and breast cancer. The 
mutational features of LRBA have also been reported 
in KIRP. In the GO analysis of the 10 genes, response 
to hypoxia and regulation of cell proliferation pathways 
were enriched. Although the results of the enrichment 
analysis were not statistically significant, on account of 
the fundamental functions of the two pathways in RCC, 
we speculate that they could function in RCC diagnosis, 
prognosis and subtype classification.

One of the limitations of this study was the retrospective 
nature of the cohort. Further prospective studies are 
warranted, and it is necessary to expand the sample 
quantity to explore the clinical applications of methylation 
sequencing for diagnosis. The genes we annotated should 

Figure 6 Diagnostic score and subtyping score build by 15 markers. (A) Average methylation level of normal, KIRC and KIRP tissues in 
training group. (B) ROC curve of diagnostic score in training group. (C) Average methylation level of normal, KIRC and KIRP tissues in 
training group. (D) ROC curve of diagnostic score in testing group. (E) Average methylation level of KIRC and KIRP tissues in training 
group. (F) ROC curve of subtyping score in training group. (G) Average methylation level of KIRC and KIRP tissues in testing group. (H) 
ROC curve of subtyping score in testing group. KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma.
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be further researched to validate their relationship with 
prognosis. Another limitation was that the selected genes 
need further functional verification. Moreover, urine-based 
diagnostic assays represent a new, noninvasive diagnostic 
technique, especially for RCC. DNA methylation markers 
that are detectable in urine could be used to predict 
urological cancers (32,33). These methylation markers may 
be useful for diagnosing subtypes of RCC in urine samples. 
Noninvasive methods for the diagnosis of renal cancer will 
be the way forward. It is also our research direction in the 
future.

Overall, these findings raise the possibility that 
methylation patterns may help identify subtypes of RCC 
and predict the prognosis of different subtypes. Further 
studies are warranted to explore the use of methylation 
sequencing in clinical applications to help personalize the 
treatment of RCC patients.
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Supplementary

Table S1 Difference in the DNA methylation between KIRC and KIRP normal

Sites KIRP(N)_mean KIRC(N)_mean KIRP(N)_median KIRC(N)_median diff_mean diff_median P-value FDR

cg22274117 0.43 0.43 0.43 0.43 0.00 0.00 0.82 0.82 

cg20740711 0.88 0.87 0.88 0.88 -0.01 0.00 0.30 0.34 

diff_mean: KIRC(N)_mean minus KIRP(N)_mean; diff_median: KIRC(N)_median minus KIRP(N)_median

Table S2 Characteristics of 15 methylation markers and their corresponding genes in RCC diagnosis and prognosis

Sample Marker Ref Gene Diagnosis Prognosis

Normal cg20740711 Intergenic √

cg22274117 ATXN1 √

KIRC cg09643398 BCL6 √

cg23264429 STAMBPL1 √ √

cg03290131 DUSP5 √

cg16284684 C7orf50 √

cg24170040 EGLN3 √ √

cg08163918 SHMT2 √ √

KIRP cg06215107 LRBA √ √

cg22571393 ATP11A √ √

cg08223003 NDRG1 √ √

cg12496156 TNS1 √ √

cg16283183 LIMD1 √ √

cg05548488 MAPKAPK3 √ √

cg23528791 CNKSR3 √ √
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Figure S1 The genes DNA methylation markers located could predict the prognosis of KIRC and KIRP. Ten genes were associated with the 
prognosis of KIRC and KIRP; 9 of 10 genes improved the predictive ability of KIRC (A), n(high)=258, n(low)=258, and 2 of 10 genes had 
value for predicting the prognosis of KIRP (B), n(high)=141, n(low)=141. LRBA could be used as a shared predictive factor for the prognosis 
of KIRP and KIRC.


