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Background: Quick and accurate identification of urinary calculi patients with positive urinary cultures 
is critical to the choice of the treatment strategy. Predictive models based on machine learning algorithms 
provide a new way to solve this problem. This study aims to determine the predictive value of machine 
learning algorithms using a urine culture predictive model based on patients with urinary calculi.
Methods: Data were collected from four clinical centers in the period of June 2016, to May 2019. 2,054 cases  
were included in the study. The dataset was randomly split into ratios of 5:5, 6:4, and 7:3 for model 
construction and validation. Predictive models of urine culture outcomes were constructed and validated by 
logistic regression, random forest, adaboost, and gradient boosting decision tree (GBDT) models. Each ratio’s 
construction and verification were repeated five times independently for cross-validation. The Matthews 
correlation coefficient (MMC), F1-score, receiver operating characteristic (ROC) curve with the area under 
curve (AUC) was used to evaluate the performance of each prediction model. The additive net reclassification 
index (NRI) and absolute NRI were used to assess the predictive capabilities of the models.
Results: Four prediction models of urinary culture results in patients with urinary calculi were constructed. 
The mean AUCs of the logistic regression, random forest, adaboost, and GBDT models were 0.761 (95% 
CI: 0.753–0.770), 0.790 (95% CI: 0.782–0.798), 0.779 (95% CI: 0.766–0.791), and 0.831 (95% CI: 0.823–
0.840), respectively. Moreover, the average MMC and F1-score of GBDT model was 0.460 and 0.588, which 
was improved compared to logistic regression model of 0.335 and 0.501. The additive NRI and absolute 
NRI of the GBDT and logistic regression models were 0.124 (95% CI: 0.106–0.142) and 0.065 (95% CI: 
0.060–0.069), respectively.
Conclusions: Our results indicate that machine learning algorithms may be useful tools for urine culture 
outcome prediction in patients with urinary calculi because they exhibit superior performance compared with 
the logistic regression model.
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Introduction

Over the past 10 years, numerous reports concerning disease 
prediction models based on urological diseases have been 
published (1-3). Most diagnostic prediction models are based 
on traditional algorithms such as logistic regression, which 
is one of the most widely used statistical predictive models 
in studies published in medical journals (4). However, the 
inherent limitations of logistic regression limit its accuracy 
as a predictive model (5). Machine learning algorithms have 
developed rapidly and can recognize important risk factors in 
nonlinear features and incorporate new data to continuously 
improve accuracy (6). In recent years, machine learning 
models are gradually being applied in the medical field, and 
they have provided better predictive model in cardiovascular 
disease, gastrointestinal cancer, and medical imaging (7-9). 

A urinary tract infection is one of the common comorbidities 
in patients with urinary calculi. Urine culture tests can assist 
in guiding the use of antibiotics. Most urinary calculi patients 
with positive urine culture results are considered to have 
severe infections and require more aggressive anti-infection 
treatments. In the obstructive uropathy of urosepsis, every 
hour of delay in treatment with antibiotics reduces the mean 
survival rate by 7.6% (10). An accurate predictive model of 
urine culture based on routine examination information can 
help doctors make suitable judgments in a timely manner. 
However, existing reports concerning urine culture predictive 
models are based on logistic regression algorithms (11,12).

In this study, we used the data of urinary calculi patients 
from four clinical centers. Predictive models with different 
algorithms were constructed and verified through random 
data splitting with different ratios and number of times. 
The models included logistic regression and three machine 
learning models: random forest, adaboost, and gradient 
boosting decision tree (GBDT). We sought to compare the 
performances of different urine culture prediction models 
using traditional and machine learning algorithms.

We present the following article in accordance with the 
TRIPOD reporting checklist (13) (available at https://tau.
amegroups.com/article/view/10.21037/tau-21-780/rc).

Methods

A flow diagram of the study is shown in Figure 1.

Patient population

Data from 2,714 urinary calculi patients from four clinical 

centers (China-Japan Friendship Hospital, The First 
Affiliated Hospital of Zhengzhou University, The First 
Affiliated Hospital of China Medical University and Tianjin 
First Central Hospital) between June 2016, and May 2019, 
were collected. The information collected included medical 
record information and auxiliary test results. The auxiliary 
examination information collected from different centers 
in this study were tested by the same series of instruments 
and were combined directly (blood biochemical test 
instruments: Beckman Coulter AU480, AU680, AU5800, 
or AU5811; urine routine instruments: Sysmex UF-500 or 
1000i and Arkray Aution Max Ax-4280 or Ax-4030). Cases 
with incomplete data or contaminated urine culture results 
were excluded. For complex urinary tract infections (urinary 
tract stones), the colony count of clean mid-stage urine 
culture is >105 CFU/mL for females, and >104 CFU/mL 
for males, or the bacterial colony counts of urine specimens 
collected by the patient with catheterization >104 CFU/mL, 
it is considered that the urine culture result is positive. The 
mid-section urine culture with two or more bacteria or <104 
CFU/mL is up to the physician to judge whether the urine 
culture result is contaminated.

A total of 2,054 cases were ultimately included in the 
study. Data were randomly split into test and verification 
sets in ratios of 5:5, 6:4, and 7:3, respectively, using random 
functions in Python. Each test/verification ratio was 
repeated five times independently for cross-validation. The 
outcome predicted by the prediction model is a positive or 
negative urine culture of the patient.

Logistic regression model

Logistic regression can quantify each independent 
predictor’s unique contribution to analyze the effect on 
a binary outcome and is a useful and established tool in 
medicine (14). Linear associations were assumed to exist 
between predictors and the outcome. Multiple regression 
analysis was used to identify collinearity among predictors. 
Variance inflation factors (VIF) <5.0 were considered 
to have little collinearity. We incorporated continuous 
predictors directly into the model’s construction to reduce 
the potential of poor predictive performance (15). Finally, 
the model was calibrated via the Hosmer-Lemeshow test 
(P values >0.05 were considered as an indicator of a well-
calibrated model). A nomogram was constructed to predict 
the risk of positive urine culture based on risk factors, with 
a significance level of 5%.

https://tau.amegroups.com/article/view/10.21037/tau-21-780/rc
https://tau.amegroups.com/article/view/10.21037/tau-21-780/rc
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Machine learning models

We constructed three machine learning models, including 
random forest, adaboost, and GBDT. Random forest is a 
supervised learning algorithm based on a decision tree. In 
short, the bootstrap method is randomly repeatedly used to 
select M training sets and construct a decision tree. Then 
the samples are trained and predicted by using multiple 
decision trees (16). Adaboost is an iterative algorithm. Its 
core purpose is to train different weak classifiers on the 
same training set. After each round of learner training, the 

weights on the incorrectly classified samples are increased. 
Finally, these weak classifiers are combined to form a strong 
classifier as a predictive model (17). GBDT is an iterative 
decision tree algorithm. The main concept of this algorithm 
is that weak classifiers are identified through multiple 
iterations. Then, each classifier is trained on the residuals 
of the previous classifier. The weak classifiers identified by 
each round of training are weighted and summed to obtain 
a total classifier (18).

We select and adapt the features of the machine learning 
model based on our clinical experience. To improve the 

Data of urinary stones cases 
(n=2,714)

Cases with complete data 
(n=2,166)

Patients included  
(n=2,054)

Verification group

Test group

Random 
forest

Logistic 
regression

Adaboost

GBDT

Negative (n=1,598) Positive (n=568)

Pollution* (n=112)

Cases with incomplete data (n=548)

CJFH (n=724) TFAHZU (n=1,044) TFCH (n=449) TFHCMU (n=497)

5:5 / 6:4 / 7:3 Random allocation

Predictive models

Urine culture

Repeated 5 times 
independently

Figure 1 Flowchart of the study. CJFH, China-Japan Friendship Hospital. TFAHZU, The First Affiliated Hospital of Zhengzhou 
University. TFHCMU, The First Affiliated Hospital of China Medical University. TFCH, Tianjin First Central Hospital. GBDT, gradient 
boosting decision tree. *, the mid-section urine culture with two or more bacteria or <104 CFU/mL is up to the physician to judge whether 
the urine culture result is contaminated.
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ability to generalize and balance the two classes, SMOTE 
algorithmic was employed to counter the class imbalance. 
Then, we used grid search and adjusted the hyperparameter 
of the model to construct high-quality models. 

Performances verification and comparison of models

Matthews correlation coefficient (MMC), F1-score, and 
receiver operating characteristic (ROC) curve and the area 
under curve (AUC) were used to evaluate the performance 
of each predictive model. Different models, built on the 
same batch of test sets, were validated using the same batch 
of validation datasets. The additive net reclassification index 
(NRI) and absolute NRI were used to assess the differences 
in predictive capabilities between models. Additive NRI and 
absolute NRI >0 were considered to have better predictive 
ability (19).

Statistical analysis

Continuous variables are expressed as mean ± standard 
deviation. Chi-square tests were conducted to analyze 
differences between groups. The R language (version 3.5.2) 
was used for conventional analyses and logistic regression. 
Python 3.8.1 for Windows was used for machine learning 
analysis. P<0.05 was considered statistically significant.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the ethics committees of China-Japan 
Friendship Hospital (No. 2019-187-K128), Tianjin the First 
Central Hospital (No. 2018N018KY), the First Affiliated 
Hospital of Zhengzhou University (No. 2018-ky-72), 
the First Affiliated Hospital of China Medical University 
(No. 2018-291-2). Informed consent was waived for this 
retrospective study, which does not involve any intervention 
treatment measures.

Results

Patients’ characteristics

A total of 2,054 cases from four clinical centers were 
ultimately included in the study. The patients had a mean 
age of 51.3±13.8 years and a positive urine culture rate of 
22.3%. The association between urine culture results and 

main clinical characteristics showed that females with 60 
years and above, hypertension, diabetes, coronary heart 
disease, and smoking habits had a significant association 
to positive outcomes of urine culture. Detailed results are 
summarized in Table 1 (20).

Model construction

A logistic regression model was constructed repeatedly 
on each test set. Table S1 lists the effect-size estimates of 
predictors in association with the risk of positive urine 
culture in a typical example (Test No. 3 at a ratio of 6:4). A 
univariate analysis showed that sex, age, diabetes, symptom, 
smoking, urine potential of hydrogen potential of hydrogen 
(PH), nitrite (NIT), urine white blood cell (WBC), and 
urine bacteriuria (BACT) are the risk factors for positive 
urine culture. With the exception of diabetes and urine PH, 
other variables still have a statistically significant difference 
in the multivariate analysis. The multiple regression analysis 
suggested less collinearity among the predictors (all VIFs 
<5.0, range, 1.01–1.18). Finally, a nomogram model, used 
to predict the risk of positive urine culture, was constructed 
based on risk factors at a significance level of 5% (Figure 2A). 
The Hosmer-Lemeshow test showed that the model was 
well-calibrated (χ2=7.03, P=0.53).

For the machine learning models, 42 features were 
selected to construct the models, including sex, age, and 
smoking habits (Table S2). The hyperparameter values of 
the final model are listed in Table S3. The visualization of 
three machine learning models is shown in Figure 2B-2D. 
It should be noted that the visual model only shows a part 
of the leaves or principles of the decision tree and does not 
represent the entire model. The 10 most important features 
of each machine learning model were identified and plotted 
(Figure 3A). Urine BACT was the most important feature 
among the three machine learning models.

Model performance and comparison

Test No. 3, with a ratio of 6:4, is a typical example of model 
performance. Compared to logistic regression model, the 
MMC (0.53 vs. 0.38) and F1 score (0.65 vs. 0.54) of GBDT 
model were improved. The AUCs of the logistic regression, 
random forest, adaboost, and GBDT models were 0.75, 
0.78, 0.79, and 0.84, respectively (Figure 3B). The GBDT 
model had an AUC that was 0.09 higher than that of the 
logistic regression model. The confusion matrix was plotted 
and also suggested that the GBDT model had the best 

https://cdn.amegroups.cn/static/public/TAU-21-780-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-780-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-780-Supplementary.pdf
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predictive performance among all models (Figure 3C). The 
additive NRI and absolute NRI for the GBDT and logistic 
regression models were estimated at 0.119 and 0.058, 
respectively.

The statistical information of all models is summarized 
in Table 2. The mean AUCs of the logistic regression, 
random forest, adaboost, and GBDT models were 0.761 
(95% CI: 0.753–0.770), 0.790 (95% CI: 0.782–0.798), 0.779 

(95% CI: 0.766–0.791), and 0.831 (95% CI: 0.823–0.840), 
respectively. The GBDT model had the highest average 
AUC among all models, 0.07 higher than that of the logistic 
regression model. Moreover, the average MMC and F1-
score of GBDT model was 0.460 and 0.588, which was 
improved compared to logistic regression model of 0.335 
and 0.501. The additive NRI and absolute NRI of the 
GBDT and logistic regression models were 0.124 (95% CI: 

Table 1 Correlation between urine culture results and main clinical characteristics in 2,054 urinary calculi patients from four clinical centers

Main clinical characteristic Number of patients
Urine culture

P
Positive (%) Negative (%)

Total 2,054 456 (77.8%) 1,598 (22.2%)

General information

Sex

Male vs. Female 1,355 vs. 699 194 (14.3%) vs. 437 (62.5%) 1,161 (85.7%) vs. 262 (37.5%) <0.01*

Age

<60 vs. ≥60 1,454 vs. 600 275 (18.9%) vs. 81(30.1%) 1,179 (81.1%) vs. 419 (69.8%) <0.01*

BMI#

<23 vs. ≥23 454 vs. 1,599 87 (19.2%) vs. 369 (23.1%) 367 (80.8%) vs. 1,230 (76.9%) 0.08

Past history

Hypertension

Yes vs. No 599 vs. 1,455 159 (26.5%) vs. 297 (20.4%) 440 (73.5%) vs. 1,158 (79.6%) <0.01*

Diabetes

Yes vs. No 300 vs. 1,754 81 (27.0%) vs. 375 (21.4%) 219 (73.0%) vs. 1,379 (78.6%) 0.03*

Coronary heart disease

Yes vs. No 98 vs. 1,956 34 (34.7%) vs. 422 (21.6%) 64 (65.3%) vs. 1,534 (78.4%) <0.01*

History of abdominal/pelvic surgery

Yes vs. No 260 vs. 1,794 69 (26.5%) vs. 387 (21.6%) 191 (73.5%) vs. 1,407 (78.4%) 0.07

History of cerebrovascular disease

Yes vs. No 43 vs. 2,011 9 (21.0%) vs. 447 (22.2%) 34 (79.1%) vs. 1,564 (77.8%) 0.84

Malformation of urinary system

Yes vs. No 120 vs. 1,934 30 (25.0%) vs. 426 (22.0%) 90 (75.0%) vs. 1,508 (78.0%) 0.45

Personal history

Smoking

Yes vs. No 552 vs. 1,502 146 (26.5%) vs. 310 (20.6%) 406 (73.6%) vs. 1,192 (79.4%) <0.01*

Drinking

Yes vs. No 130 vs. 1,924 27 (20.8%) vs. 429 (22.3%) 103 (79.2%) vs.1,495 (77.7%) 0.69

*, P<0.05. BMI, body mass index; vs., versus; #, BMI was divided according to national surveys to fit Chinese actual situation (20).  
Chi-square tests. 
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0.106–0.142) and 0.065 (95% CI: 0.060–0.069), respectively. 

Discussion

The most obvious finding that emerged from this study 
is that the machine learning algorithms performed better 
than the traditional algorithm, based on a urine culture 
predictive model in patients with urinary calculi. The 
predictive accuracy of the GBDT model was, on average, 
7% higher than that of the logistic regression model. 
Meaning while, the average MMC of GBDT model was 

more improved compared to logistic regression model. 
To the best of our knowledge, this is the first research 
conducted with data from multiple centers to evaluate the 
performance of machine learning algorithms for diagnostic 
predictive models of urine culture.

Quick and accurate identification of urinary calculi 
patients with positive urinary cultures, who sometimes 
require aggressive antibiotic management in a timely 
manner, is a major challenge for urologists. As a gold 
standard, urine culture testing has high requirements for 
operation and is time-consuming. A predictive model based 
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on conventional clinical information is one of the better 
solutions. However, current reports concerning urine 
culture predictive models are based on logistic regression 

algorithms, and their results are insufficiently accurate as a 
consequence of the algorithm’s inherent limitations (11,21). 
One of the prerequisites to determine the accuracy of the 
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Figure 3 Important features in machine learning models and typical examples of performance predictions. (A) Top 10 important features 
of each machine learning model. (B) Typical receiver operating characteristic curve in four models in test No. 3 with a ratio of 6:4. (C) 
Confusion matrix of four models in test No. 3 with a ratio of 6:4. No., number.

Table 2 Performance of each model on validation data

Models
AUC MMC F1-core Additive NRI* Absolute NRI*

Average 95% CI Average 95% CI Average 95% CI Average 95% CI Average 95% CI

Logistic 
regression

0.761 0.753–0.770 0.335 0.322–0.348 0.501 0.490–0.512 – – – –

Random forest 0.790 0.782–0.798 0.406 0.395–0.417 0.530 0.521–0.540 0.020 0.004–0.035 0.065 0.057–0.065

Adaboost 0.779 0.766–0.791 0.385 0.369–0.400 0.536 0.523–0.549 0.051 0.036–0.159 0.023 0.016–0.030

GBDT 0.831 0.823–0.840 0.460 0.446–0.475 0.588 0.575–0.601 0.124 0.106–0.142 0.065 0.060–0.069

*, additive NRI and absolute NRI were calculated by comparing machine learning models to the logistic regression model. AUC, area 
under curve; 95% CI, 95% confidence interval; MMC, the Matthews correlation coefficient; NRI, net reclassification index; GBDT, gradient 
boosting decision tree. 
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logistic regression algorithm is the existence of a linear 
relationship between predictors and the outcome, but a 
typical linear relationship is uncommon in clinical practice. 
Meanwhile, some models do not consider the points 
of collinearity among predictors, which also affects the 
performance of the model. In addition, in the performance 
evaluation of the model, although the AUC area of GBDT 
is slightly larger than that of logistic regression model 
in our study, we are more concerned that the MMC has 
been significantly improved. MMC, which is an important 
adapted metrics, can better measure the model prediction 
ability of unbalanced data sets. In this study, we found that 
the MMC scores of machine learning models represented 
by GBDT are better than Logistic regression model, 
suggesting that machine learning models are more suitable 
to apply in unbalancing dataset. Unbalanced data sets 
are very common in medical databases. While paying 
attention to the accuracy of the model, we should pay more 
attention to the imbalance of data sets to avoid arrived at 
imbalanced models. Therefore, we believe that our urine 
culture predictive model based on GBDT model has 
better performance and has high clinical application value 
clinical application value. Notably, new technologies for 
urine culture outcome prediction with more sensitivity and 
speed have been reported in recent years, such as specific 
reverse transcriptase amplification, plasmonic nanosensors, 
and molecular chip-based diagnostic systems, but these 
technologies still require significantly more development 
before application in clinical practice (22-24).

The characteristics of machine learning algorithms are 
that they allow the use of as many features as desired from 
all available data to construct individual predictive models 
in a nonlinear pattern, and they do not need to consider 
the collinearity among features. These characteristics are 
the main differences from the logistic regression algorithm, 
which is “hypothesis-driven”. Machine learning models 
can also identify the importance of different features in the 
modeling process. Additionally, by continuously merging 
and learning new data, machine learning models can 
autonomously optimize and improve predictive performance.

Machine learning algorithms are widely used in many 
fields, such as financial management and environmental 
prediction, and are gradually becoming utilized in medicine. 
Articles published in recent years show that machine 
learning models have excellent performance when used 
in cardiovascular disease detection, medical imaging 
identification, and other areas (7-9), and some studies have 
applied these models in urology. It has been reported that 

an artificial neural network can enhance the accuracy of 
predicting posterior urethral obstruction with lower urinary 
tract symptoms, but only 201 patients from one center were 
included (25). However, an artificial neural network usually 
requires substantial amounts of data, at least thousands of 
samples, to build a stable model. Another study reported that 
random forest models can assist in enhancing the accuracy 
of predicting the success of shock wave lithotripsy (26).  

The study included 51 patients but did not compare the 
performance between different models. In short, lack of 
samples limits the generalizability of the results. Therefore, 
as the research sample size increases and models improve, we 
believe that the application of machine learning models has a 
high potential for impact in the field of urology. 

However, there are different opinions concerning 
the values between logistic regression algorithm and 
machine learning model. A meta-analysis including 71 
articles published between 1/2016 and 7/2018 stated 
that no significant difference was discovered between 
the machine learning model and the logistic regression 
algorithm (27). The algorithms used in prior studies in 
the literature were mainly classification trees (42%) and 
random forests (28.39%). The GBDT algorithm, which 
has achieved excellent results in this study, was under-
evaluated. Choosing a suitable model and adjusting the 
model hyperparameters appropriately are important factors 
in building a high-quality model. The feature selection 
and hyperparameter values used in model construction in 
our study were optimized based on the authors’ clinical 
experiences, leading to great performance from the machine 
learning models compared to traditional algorithms. 

The improvement in predictive accuracy is of great 
significance. For example, compared with laparoscopic 
technique, the accuracy of Da Vinci robot surgery is higher, 
so the benefit to patients is immense. It is clear that this 
method can serve as the basis for further research and may 
alter clinical practice in the near future. By connecting 
directly to the electronic medical record system, urologists 
can obtain predictions of urine cultures from machine 
learning models in a timely manner as a treatment reference. 

There are some limitations to this study. First, the 
samples for model training are still insufficient compared 
with machine learning models in other fields. Second, 
models should be trained regularly to avoid degradation in 
accuracy caused by the so-called concept drift. Additionally, 
machine learning models is called black-box models. It 
is hard to explain its specific statistical mode (28), thus 
limiting the promotion of these models in the medical field.
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Conclusions

Machine learning algorithms may be useful tools for urine 
culture outcome prediction in patients with urinary calculi 
because they exhibit superior performance compared with 
the logistic regression model. Prospective studies with 
larger sample sizes are required for further verification.
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Supplementary

Table S1 Effect-size estimation of predictors in association with the risk of positive urine culture

Variables
Univariate analysis Multivariate analysis

OR 95% CI P OR 95% CI P

Sex 3.458 2.621-4.563 <0.001 2.835 2.017-3.983 <0.001

Age 1.026 1.015-1.037 <0.001 1.013 1.0001-1.0251# 0.047

Symptom 1.069 1.001-1.140 0.045 1.094 1.014-1.178 0.020

Diabetes 1.458 1.027-2.071 0.035

Smoking 1.404 1.047-1.883 0.023 1.766 1.225-2.546 0.002

Urine WBC 1.001 1.0006-1.0011# <0.001 1.001 1.0001-1.0005# 0.002

NIT 22.452 11.589-43.496 <0.001 10.106 4.878-20.941 <0.001

PH 1.416 1.177-1.703 <0.001

Urine BACT 1.001 1.0004-1.0008# <0.001 1.001 1.0002-1.0005# <0.001

OR >1 suggests risk factors to a positive urine culture. OR, odds ratio; 95% CI, 95% confidence  interval; WBC, white blood cell; NIT, 
nitrite; PH, potential of hydrogen potential of hydrogen, BACT, bacteriuria. #, reserved to four digits after decimal point. *, P<0.05.

Table S2 Features selection to construct models

Features

Sex, Age, Height, Weight, Symptom, Duration of symptom, Hypertension, Years of hypertension, DM, Years of DM, CHD, Years of CHD, 
Pelvic surgery, Years of pelvic surgery, Cerebral infarction, Years of cerebral infarction, Urinary system anatomy, Gallstone, Smoking, 
Number of cigarettes/day, Years of smoking, Drinking, Vol. of drinking/30mL/day, Allergy, Blood type, UA, Cr, Glu, Ca, P, eGFR, SG, PH, 
NIT, Urine WBC, Urine RBC, Urine BACT, Numbers of stones, (Single)Stone location, (Single)length of stone, (Single)Hight of stone, CT 
value of stone(s)

DM, diabetes mellitus; CHD, coronary heart disease; UA, uric acid; Cr, creatinine; Glu, glucose; Ca, calcium; P, phosphorus; eGFR, 
estimated glomerular filtration rate; SG, specific gravity; PH, potential of hydrogen potential of hydrogen; NIT, nitrite; WBC, white blood 
cell; RBC, red blood cell; BACT, bacteria; CT, computed tomography.

Table S3 Hyperparameter values of the final models

Classifier Hyperparameter Value

GBDT The maximum depth of variable interactions 3

Number of trees 100

Shrinkage none

Number of minobsinnode none

Random forest Number of trees 11

Adaboost Number of estimators 100

Learning rate 1.0

GBDT, gradient boosting decision tree.


