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Introduction

Urinary tract infections (UTIs) are a common cause 
of clinical infectious disease. Pathogenic Escherichia coli 
(E. coli) is the most common pathogen causing UTIs, 
accounting for 80% to 90% of community-acquired UTIs 
and 40% to 50% of hospital UTIs (1). Approximately 
95% of UTIs in the clinic are simple bladder infections 
(cystitis). UTIs predominantly occur in individuals with 
normal anatomy. These infections are characterized by 
urinary tract burning, frequent urination, urgency, and 

discomfort in the suprapubic area. About 40% of women 
and 12% of men have at least one UTI in their lifetime (2). 
Besides E. coli (86%), Staphylococcus saprophyticus (4%) is a 
common pathogen in UTI (3). Innate immunity defects 
increase susceptibility to UTI, including polymorphisms 
in pathways like Toll-like receptor 1/2/4 (TLR 1/2/4), 
C-X-C chemokine receptor 1/2 (CXCR1/2), C-X-C motif 
chemokine ligand 8 (CXCL8) and interferon regulatory 
factor 3 (IRF3), etc. The high recurrence rate of UTIs, 
which may be partly due to endogenous recurrence rather 
than secondary infection with new strains, is reportedly 
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due to defects in the host's memory immune response. 
Bladder mast cells exhibit extensive immunosuppressive 
transcriptional activity as a consequence of UTIs. This 
phenomenon results in the secretion of IL-10 and the 
inhibition of humoral immune responses in the bladder (4).  
Inflammatory activation of NOD-, LRR- and pyrin 
domain-containing protein 3 (NLRP3) has been shown to 
be an important mediator of cyclophosphamide-induced 
bladder inflammation, and some studies have also shown 
that human bladder epithelial cells express high levels of 
NLRP3 (5). Currently, there is insufficient evidence to 
suggest that NLRP3 has an effect on the onset of bladder 
pain syndrome/interstitial cystitis (BPS/IC) (6).

The NLRP3 inflammasome is a group of cytosolic 
protein complexes that mediate host immune responses 
to microbial infections and cell damage (7). NLRP3 
inflammatory bodies induce procaspase-1 proteolysis to 
activate caspase-1, which subsequently converts the cytokine 
precursors pro-IL-1β and pro-IL-18 into mature active IL-
1β and IL-18, respectively (8). The active form of IL-1β is 
a pro-inflammatory mediator of many immune responses, 
including the chemotactic response of innate immune cells 
and the regulation of adaptive immune cells. The activation 
of NLRP3 inflammatory bodies requires the participation 
of dual signals, which are divided into 2 stages: priming and 
activation. Expression of NLRP3 is induced by priming 
with microbial components such as toll-like receptor (TLR) 
ligands, endogenous molecules, tumor necrosis factor 
(TNF), or IL-1β through the activation of nuclear factor 
kappa B (NF-κB). Priming positively regulates the NLRP3 
inflammasome through the induction of NLRP3 expression. 
The structural diversity of NLRP3 suggests that it is less 
likely to interact with activators. It is possible that NLRP3 
may respond to signaling pathways that are induced by 
NLRP3 activators (9).

We observed that NLRP3 gene-deficient mice exhibited 
a specific inflammatory response in a bacterial cystitis 
model established following the inoculation of mouse 
bladders with conventional E. coli ATCC 25922. We believe 
that this model will help scientists to better understand the 
molecular mechanisms that underpin bacterial cystitis. We 
used immunohistochemistry and qPCR to detect changes 
in the inflammatory pathway triggered by prostatitis in 
NLRP3-deficient mice. Finally, we attempted to confirm 
a possible role for NLRP3 in bacterial cystitis. We present 
the following article in accordance with the ARRIVE 
reporting checklist (available at https://tau.amegroups.com/
article/view/10.21037/tau-22-67/rc).

Methods

Bacterial culture and animal surgery

NLRP3−/− mice (B6. 129S6-Nlrp3tm1Bhk/J, stock no. 
021302) were purchased from the Jackson Laboratory (Bar 
Harbor, ME, USA). Bacterial cystitis was established as 
previously described by transurethral intravesical injection 
of the mice with E. coli (Difco Laboratories, Detroit, MI, 
USA) (10). Briefly, E. coli cells (1×108/mL, 20 μL containing 
2×106 E. coli per mouse) were resuspended in sterile 
phosphate-buffered saline and transurethrally instilled 
into NLRP3−/− and wild-type (WT) control mice under 
isoflurane anesthesia. The urethral syringe consisted of a 
polyethylene tube covering a 30-G hypodermic needle. The 
catheter was mounted on a sterile 1 mL disposable syringe 
containing E. coli. The E. coli strain was inoculated in 
sterile Luria-Bertani (LB) medium (10 g/L glucose, 10 g/L  
peptone, 5 g/L yeast, 10 g/L NaCl, and pH =7) following 
resuscitation. After culturing for 24 to 48 h in a constant 
temperature incubator at 30 ℃, passaging was carried out. 
After 3 passages, the bacteria were harvested and washed 
with physiological saline solution (PSS), and the bacteria 
were subsequently suspended in PSS (11). An appropriate 
concentration of the bacterial suspension in PSS was used as 
an inoculum. Mice were anesthetized with intraperitoneal 
injection of sodium pentobarbital (50 mg/kg) (12). After 
the distal end of the catheter was inserted into the urethra 
of male mice to a distance length of approximately 0.6 to 
0.8 cm, the inoculated bacteria were directly injected and 
deposited into the bladder (13). The inoculated mice were 
euthanized 1, 3, and 7 days following inoculation. Finally, 
inoculated mice were placed in the supine position, and 
the lower abdomen was dissected to expose the bladder. 
The bladder tissue was collected and analyzed. No criteria 
were used for excluding animals during the experiment, 
and no data were excluded during the analysis. The present 
study was approved by the Research and Animal Ethics 
Association of Shanghai Jiao Tong University [license No. 
HKDL(2016)149], in accordance with the institutional 
guidelines for the care and use of laboratory animals. Animal 
experiments were done in Shanghai Jiao Tong University. A 
protocol was prepared before the study without registration.  

Determination of bacterial loads in mice

The bacterial loads in the bladder cavity of mice were 
determined using standard plate counts (SPC) and in vivo 
bioluminescence imaging (BLI) methods (14,15). The mice 
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were inoculated via a transurethral intravesical injection 
with 2×106 colony-forming unit (CFU) of bioluminescent 
E. coli (20 μL per mouse). Bioluminescent signals from the 
infection site were recorded at 0 and 72 h post-infection 
using the IVIS Lumina II Imaging System (PerkinElmer, 
MA, USA). The signal was quantified as total photon 
emission within a designated region of interest using 
Living Image Software version 3.0 (Caliper Life Sciences, 
Hopkinton, MA, USA).

Histological analysis and immunohistochemistry

For histological analysis, dissected bladder tissue was 
fixed overnight with 10% buffered neutral formalin and 
then embedded in paraffin and sectioned at a thickness 
of 4 μm. Sections were stained with hematoxylin and 
eosin (H&E) to visualize inflammation and pathological 
changes. The degree of inflammatory cell infiltration was 
evaluated by H&E staining. NLRP3 (cat. No. ab214185, 
Abcam, Cambridge, MA, USA) and interleukin-1 receptor-
associated kinase M (IRAKM; cat. no. ab8116, Abcam) levels 
were detected by immunohistochemistry. Immunoreactivity 
was quantified using Image-Pro Plus v.6.0 software (Media 
Cybernetics, Bethesda, MD, USA).

qRT-PCR analysis

Total RNA (1 μg) was isolated from tissue samples using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according 
to the manufacturer’s instructions. Reverse transcription 
(RT) was performed using TaqMan reagents (Applied 
Biosystems, Foster City, CA, USA). RT was carried out at 
42 ℃ for 60 minutes followed by inactivation at 94 ℃ for  
5 minutes, and immediate cooling at 4 ℃ (16). qRT-PCR 
was carried out using SYBR Green Universal Master Mix 
on a Step One Plus Real-Time PCR system (Applied 
Biosystems). The relative quantity of target mRNAs was 
determined with the comparative cycle threshold method and 
normalized to human cyclophilin or mouse glyceraldehyde 
3-phosphate (17). The primer sequences were as follows (18):  
mouse TNF-α, 5'-CTGTAGCCCACGTCGTAGC-3' 
and 5'-TTGAGATCCATGCCGTTG-3'; mouse IL-
1β ,  5 ' -TGTAATGAAAGACGGCACACC-3'  and 
5'-TCTTCTTTGGGTATTGCTTGG-3'. The qPCR 
reactions were carried out in a final volume of 10 μL with 
each reaction containing 200 μM dNTPs and 2 μM of 
each primer. The reactions were performed at 95 ℃ for  
2 minutes followed by 40 cycles of 95 ℃ for 15 seconds,  

55 ℃ for 20 seconds, and 72 ℃ for 45 seconds. Relative gene 
expression was calculated from the Ct value using the ∆∆Ct 
method (19).

Statistical analysis

Data were analyzed using Prism v.7.0 software (GraphPad 
Inc., La Jolla, CA, USA). The IOD SUM function of 
Integrated Performance Primitives (IPP) 6.0 (Intel, CA, 
USA) was used to quantify the expression of NLRP3 and 
IRAKM evaluated by immunohistochemistry. Differences 
between groups were assessed by one-way analysis of 
variance (ANOVA) and Bonferroni’s multiple comparisons 
test. P<0.05 was considered statistically significant.

Results

Histological examination of bladder tissue in cystitis model 
mice

There was no significant bladder histological difference 
in H&E staining between WT and NLRP3−/− group at 
day 0 (Figure 1A,1B). Accentuated bladder pathology was 
more obvious in WT mice 1 day after E. coli injection 
than in the NLRP3−/− group (Figure 1C,1D). On day 3, 
infection in WT mice started to decrease (Figure 1E), while 
NLRP3−/− mice showed obvious intraepithelial infiltration 
of bladder mucosa by lymphocytes 3 days after prostate 
infection (Figure 1F). Lymphocyte infiltration persisted in 
the NLRP3−/− group after it was no longer detected in the 
WT group (Figure 1G,1H). Initially, there was no difference 
in IL-1β and TNF-α expression between the 2 groups, as 
determined by qRT-PCR (Figure 1I,1J). However, 1 day  
after infection, both IL-1β (Figure 1K, P=0.0084) and 
TNF-α (Figure 1L, P=0.0012) were elevated in the WT 
group compared to NLRP3−/− mice, whereas the opposite 
trend was observed on day 3 (P=0.0003 and 0.0005, 
respectively; Figure 1M,1N). After 7 days, the expression 
of both cytokines was still higher in mutants, although 
the difference between the 2 groups was not significant  
(Figure 1O,1P). These results indicate that NLRP3−/− 
mice exhibit a delayed inflammatory response to bacterial 
infection.

IVIS tracking of E. coli

IVIS analysis revealed obvious differences in the evacuation 
of E. coli through the urethra after 72 h. E. coli inoculation 
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Figure 1 Hematoxylin and eosin (H&E) staining (×200) of the bladder and qPCR analysis of IL-1β and TNF-α expression. There was 
no significant bladder histological difference between WT and NLRP3−/− group at day 0 (A,B). Accentuated bladder pathology was more 
obvious in WT mice 1 day after E. coli injection than in the NLRP3−/− group (C,D). The WT group exhibited an obvious reduction in 
inflammatory responses until they completely disappeared after 7 days. However, the NLRP3−/− group exhibited a slower and progressively 
worsening inflammatory response, which was still evident on the 7th postoperative day (E-H). qPCR analysis revealed that there was no 
significant difference between IL-1β and TNF-α expression (I,J, *, P>0.1). One day after infection, the WT group exhibited significant 
increases in IL-1β (K, #P=0.0004) and TNF-α (L, ##, P=0.0012) expression compared with the NLRP3−/− group. Three days after injection 
the NLRP3−/− group exhibited increased expression of IL-1β (M, ###, P=0.0003) and TNF-α (N, *#, P=0.0005) compared with the WT group. 
One week after injection there was no significant difference in the expression of IL-1β and TNF-α. However, expression of these cytokines 
was still higher in the NLRP3−/− group compared with the WT group (O,P, **, P>0.1). The NLRP3−/− group exhibited a relatively slow 
inflammatory response. WT, wild-type; IL, interleukin; TNF, tumor necrosis factor.
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Figure 2 Tracking of bioluminescent E. coli after intravesical injection. E. coli inoculation were detected in both WT (A) and NLRP3 KO 
(B) group at 0 h. The radiographic performance of both experimental groups was significantly reduced but still detectable after 72 h (C,D). 
There was no significant difference between the NLRP3−/− and control group. E. coli, Escherichia coli; WT, wild-type. NLRP3, NOD-, LRR- 
and PYD domains-containing protein. KO, knockout.

were detected in both WT (Figure 2A) and NLRP3 KO 
(Figure 2B) group at 0 h. A limited number of bioluminescent 
E. coli remained in mice from the WT group after 72 h 
(Figure 2C,2D). However, IVIS analysis revealed that the 
radiographic performance of both experimental groups was 
significantly reduced but still detectable, confirming that 
some E. coli cells remained in the bladder.

Immunohistochemical detection of inflammatory marker 
expression in cystitis mice model 

NLRP3 was expressed in the bladder of the WT group at 
day 0 (Figure 3A), markedly reduced after 1 day infection 
(P=0.0010; Figure 3B) and gradually increased at day 3  
(Figure 3C) and day 7 (Figure 3D), which showed no 
difference compared with the initial value (P=0.1438; 
Figure 3E). The alterations in NLRP3 expression were 
inversely proportional to the degree of inflammation. 

A similar trend was observed for IRAKM expression. 
IRAKM was highly expressed in WT group at day 0 
(Figure 4A), and was significantly lower in NLRP3 KO 
group (Figure 4B). IRAKM level was decreased 1 day after 
surgery in WT mice (P=0.026; Figure 4C) while no change 
in NLRP3 KO mice (Figure 4D). On day 3, IRAKM 
expression started to increase in WT group (Figure 4E) 
and was significantly higher than NLRP3 KO group 
(Figure 4F). On day 7, IRAKM expression returned to 
a similar level to that originally observed in WT group 
(Figure 4G), whereas it was significantly downregulated in 
NLRP3−/− mice (Figure 4H,4I).

Discussion

NLRP3 is a member of the NLR family of proteins that 
mediate inflammatory responses to microbial infection and 
cellular damage by inducing the formation of inflammatory 
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Figure 3 NLRP3 expression of the WT group following IHC (×200) and IPP6.0 statistical analyses. NLRP3 expression was significantly 
altered in WT mice after intravesical injection. NLRP3 was expressed in the bladder of the WT group at day 0 (A), which was significantly 
reduced after 1 day (B,E, *, P=0.0010, IHC ×200). However, the expression gradually increased at day 3 (C) and day 7 (D) until there was no 
significant difference compared to the initial expression (E, #, P=0.7871). The change in NLRP3 expression was inversely proportional to the 
degree of the inflammatory response. WT, wild-type; IHC, immunohistochemistry.

corpuscles (7). The NLRP3 inflammasome activates IL-
1β through caspase-1 (20). IL-1R and TLR2/IL-1 activate 
myeloid differentiation primary response 88 (MyD88)/
IRAK/NF-κB signaling, which is inhibited by IRAKM (21). 
Thus, during acute inflammation, NLRP3 is positively and 
negatively correlated with IL-1β and IRAKM expression, 
respectively.

The results of our study suggest that NLRP3−/− mice 
exhibit a slower inflammatory response than their WT 
counterparts in a cystitis model. A previous study reported 
exacerbation of acute cystitis in NLRP3−/− and Asc−/− 
mice (22). Our model revealed that NLRP3 knockout 
alone accentuated bladder pathology while delaying the 
acute inflammatory response time. We also confirmed a 
positive relationship between NLRP3 and IL-1β in the 
acute stage of E. coli-induced cystitis. However, NLRP3−/− 
mice showed a gradual reduction of the inflammatory 
response after the initial phase. In our cystitis model, the 
inflammatory response in WT mice subsided after 1 week. 
Bacterial cystitis in NLRP3−/− mice was characterized by a 
slower onset and attenuation of inflammation, which was 

associated with a negative correlation between NLRP3 and 
IL-1β levels and a positive correlation between NLRP3 
and IRAKM expression. Our results suggest the presence 
of distinct signaling pathways in WT and NLRP3−/− mice. 
NLRP3 deletion may result in a gradual upregulation of IL-
1β and NF-κB following the acute phase of inflammation, 
implying that NLRP3 has a bidirectional effect in the 
progression of inflammation, with IRAKM playing a 
synergistic role.

In summary, the results of our study provide evidence 
that NLRP3 deficiency contributes to chronic inflammation 
associated with cystitis. Chronic cystitis is a common 
disease that is difficult to cure and can often only be 
treated symptomatically. This is the first study to report 
that chronic cystitis may be related to defects in traditional 
inflammation pathways. However, further research is 
needed to clarify the mechanisms by which NLRP3 
deficiency leads to chronic cystitis. Our results indicate that 
therapeutic strategies targeting the inflammatory response 
or NLRP3 might be effective for the future treatment of 
chronic cystitis.
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Figure 4 IRAKM expression in mouse cystitis model. IRAKM was highly expressed in WT group at day 0 (A), and was significantly lower 
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