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Introduction

Stress urinary incontinence (SUI) affects about 167 million 
women worldwide (a prevalence of 3.3%) (1,2), with 45.9% 
of women in the United States reporting symptoms of 

SUI (3). Furthermore, pelvic organ prolapse (POP) has an 

estimated prevalence of 3–6%, and as high as 50% when 

evaluated based on vaginal examination alone (1,4). Non-

surgical treatment options for SUI and POP include the 
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exercises of pelvic floor muscle, electric stimulation, and 
creams with different hormones. While these conservative 
therapies are pretty safe, the durability and efficacy are 
limited. In the US, the mainstay of surgical treatment 
for SUI is the mid-urethral sling, but can also include 
autologous fascial pubovaginal slings, urethral bulking, or 
colposuspension. For symptomatic POP, surgical procedures 
include repair with native tissue, abdominal sacrocolpopexy, 
and transvaginal mesh. Currently, the surgeries with 
meshes for both SUI and POP are very effective, but mesh 
exposure, infection, severe pelvic pain, and the dyspareunia 
are complications in the clinic. In the United States alone, 
those clinical complications have resulted in more than 
140,000 lawsuits, and the complete cessation of transvaginal 
mesh kits for POP has been issued in the USA (5), in 
Australia, and in UK. At the same time, from July 2018, the 
mesh surgeries for SUI were also stopped in UK.

Awareness of mesh-related complications, interest in 
applying regenerative medicine approaches to restore the 
structure and function of urethral sphincter and pelvic floor 
was increased (6-10). Currently, the stem cell therapy for 
SUI is dominated (11-13), as well as the tissue engineering 
associated with stem cells for POP (14). However, extensive 
investigation before its clinical application is needed. 
Very recently, using products related to stem cells and the 
tissue-resident stem/progenitor cells (15,16) to enhance 
the regeneration process is another research hot topic  
(10,17-19).

The pathophysiology of pelvic floor disorders (PFDs) 
such as SUI and POP is still unclear, but it has been 
demonstrated that involves genetic susceptibility, connective 
tissue abnormal, hormone effects, obesity, pregnancy, 
hysterectomy, constipation, and advanced age (20). It has 
been demonstrated that pelvic floor muscle dysfunction is a 
key factor in the development of PFDs. However, as muscle 
physiologists tend to study the behavior of contracting 
muscles, this focus on muscle contraction means that the 
research on the mechanical properties of relaxing muscles 
has been relatively neglected. The passive properties of 
muscles play a central role in various physiological and 
pathophysiological processes (21,22) and merit more 
attention and research (23,24).

Many studies using low-energy shock waves on other 
organs have been published (25,26). However, there are 
limited studies on the mechanobiological effects of the 
microenergy acoustic pulses (MAP) which is a modified 
low-intensity shock wave with a different wave form, on the 

bladder, urethra, and pelvic floor muscles (PFM) (27-30). In 
current study, we propose to further elucidate the molecular 
mechanisms involved. 

This study aims to measure the passive biomechanical 
properties of PFM because the biomechanical properties 
of PFM affect their stretching range and position. In this 
current study, a stress-relaxation test on fresh rat pelvic 
floor muscle tissue was conducted, and the effects of MAP 
therapy on the structure and function of PFM was assessed. 
The following article is presented in accordance with 
the ARRIVE reporting checklist (available at https://tau.
amegroups.com/article/view/10.21037/tau-22-30/rc).

Methods 

Experimental animals and design

Experiments were performed under a project license  
(No. AN187720) granted by ethics board of the Institutional 
Animal Care and Use Committee at the University of 
California, San Francisco, in compliance with the guidelines 
for the care and use of animals. A total 24 female Sprague-
Dawley rats at 12 weeks old were purchased from Charles 
River Laboratories (Wilmington, MA, USA), and randomly 
grouped into 4 including the sham control (sham) group, 
vaginal balloon dilation and ovariectomy (VBDO) group, 
VBDO and β-aminopropionitrile (BAPN) group, and 
VBDO plus BANP treated with MAP twice a week for  
4 weeks (MAP group). The VBDO procedure was 
performed as reported (31). Briefly, under the anesthesia 
with ketamine/xylazine, an 18 Fr Foley catheter was placed 
into the rat’s vagina, and the balloon was subsequently filled 
with 4 mL water. A constant pull to direct the force to the 
pelvic floor of 130-g weight was placed on the suspended 
end of the catheter, which was left in place for 4 hours. 
Seven days later, bilateral ovaries were removed. All animals 
in the BAPN and MAP groups received 300 mg/kg of 
BAPN (intraperitoneal injections, twice a week for 4 weeks), 
and the rats in MAP groups were then treated with MAP. 
After 1 week of wash-out post the last MAP treatment, the 
leak point pressure (LPP) was measured in all rats. The rats 
were sacrificed and the PFM were harvested for muscular 
biomechanical and histological study (Figure S1).

MAP therapy

A compact electromagnetic unit as acoustic pulse source 
of MAP was applied (LiteMed Inc., Taipei). To overlay the 

https://tau.amegroups.com/article/view/10.21037/tau-22-30/rc
https://tau.amegroups.com/article/view/10.21037/tau-22-30/rc
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area of the urethra and pelvis, the MAP probe was coupled 
to the skin by using ultrasound gel (Aquasonic, Parker 
Laboratories Inc., Fairfield, NJ, USA) and targeted to the 
pelvis of rat. The energy flux density was 0.033 mJ/mm2, 
500 pulses at 3 Hz. The MAP treatment was conducted 
twice a week for 4 weeks. The LPP measurement were 
performed after 1-week wash-out in all rats followed by 
sacrifice and tissue harvest for histological studies.

Urethral LPP assay

The urethral LPP was assessed as described previously (32).  
Br ie f ly,  wi th  the  anesthes ia  of  urethane ,  a  tube 
(polyethylene-90) was placed into the bladder dome. The 
bladder volume was recorded by slowly filling with warmed 
phosphate buffered saline (PBS), which was repeated  
3 times to obtain the average bladder capacity. The bladder 
was then emptied via aspiration and manual pressure. A 
40% of bladder capacity was then filled and increasing 
manual extravesical pressure was applied until leakage was 
noted. The intravesical pressure changes were recorded 
by a computer with LabView 6.0 software (National 
Instruments, Austin, TX, USA). In general, this procedure 
was repeated six times to get average LPPs.

Ex vivo pelvic floor muscle biomechanical assays 

The PFM, including iliococcygeus (IC) and pubococcygeus 
(PC) (33,34), were harvested from experimental animals to 
determine parameters describing their structural properties. 
The viscoelastic behavior of pelvic floor muscle was 
checked with a biomechanical assay. A stress-strain curve 
was generated by applying the pelvic floor muscle strip on 
the Force Transducer Head of 400B series of high-level 
output force transducers (Aurora Scientific, Aurora, ON, 
Canada) (Figure S2) (23). In brief, the muscle strips of PC 
and IC were applied on the hook of force sensor and length 
controller. The muscle strip was kept at equilibrium for 
5 minutes before and between each force was applied. A 
maximum force of 330 gm was applied to each muscle strip 
and the force was held constantly. Then the muscular creep 
phenomenon was measured and recorded with Myobath 
Tissue Bath System II (World Precision Instruments, 
Sarasota, FL, USA). The muscle rebound activity (MRA) 
was calculated with following equation: MRA (N/cm2) = 
[force (g) × muscle length (cm) ×1.06]/[muscle weight (g) 
×0.00981] (35). 

In addition, the elastic region and plastic region of the 
pelvic floor muscle stress-strain curve were also analyzed. 
The muscular flexibility can be measured by calculating 
the muscular stiffness (K), which is defined as the extent 
to which an object resists deformation in response to an 
applied force. In general, the more flexible an object is, the 
less stiff it is (36). The equation for K is: K = F/δ (37). F is 
the force on the pelvic floor muscle, δ is the displacement 
produced by the force long the same degree of freedom 
of the pelvic floor muscle. A fixed 330 gm stress stimulus 
was applied to the muscle strip, and then left to bounce 
back on its own. The stress-relaxation curve of the muscle 
bounce-back within 2 minutes was recorded with Myobath 
Tissue Bath System II. The time for muscle rebound of  
60 gm force from the limit point 300 gm stress stimulus 
was recorded, and the K was calculated. Differences among 
groups were statistically analyzed.

Immunofluorescence staining and Masson’s trichrome 
stain

Tissue samples were fixed and embedded in OCT 
Compound (Sakura Finetic USA, Torrance, CA, USA) 
and tissue section were made. The tissues slides were 
incubated overnight at 4 ℃ with primary antibodies for 
Laminin (1:500; Abcam, Waltham, MA, USA). Control 
tissue sections were similarly prepared except no primary 
antibody was added and followed by secondary antibody 
conjugated with Alexa-594 (1:500; Invitrogen, Carlsbad, 
CA, USA). The Alexa-488-conjugated phalloidin (1:500; 
Invitrogen) was used to stain muscle fiber. The tissues were 
then stained with 4',6-diamidino-2-phenylindole (DAPI, for 
nuclear staining, 1 μg/mL, Sigma-Aldrich, St. Louis, MO, 
USA) followed imaging with fluorescence microscopy. Five 
randomly selected fields per tissue were photographed and 
recorded using a Retiga Q Image digital still camera and 
analyzed with ACT-1 software (Nikon Instruments Inc., 
Melville, NY, USA).

Statistical analysis

The current results were analyzed using GraphPad Prism 
version 5.0 (GraphPad Software, San Diego, CA, USA) and 
expressed as mean ± standard error of the mean. One-way 
analysis of variance followed by the Tukey’s post hoc test for 
multiple comparisons were performed, while the differences 
were considered significant at P<0.05.

https://cdn.amegroups.cn/static/public/TAU-22-30-supplementary.pdf
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Results

MAP therapy improved urethral LPP

In general, the urethral injury recovered quickly in the 
VBDO animal model. Urethral LPP in VBDO alone 
(34.6±1.8 cmH2O) recovered more than that in BAPN 
group (28.2±4.2 cmH2O), but both significantly lower than 
sham group (57.3±8 cmH2O) (n=6, P<0.05). BAPN is an 
irreversible LOX inhibitor that affects the crosslinking of 
collagen and elastin. Therefore, after BAPN treatment, the 
urethral injury is difficult to recover. Our results showed 
that even at the 10th week after the injury, the urethral 
LPP was still significantly lower than the sham and VBDO 
groups. Compared to the VBDO and BAPN groups, 
application of MAP therapy significantly improved the LPP 
to 52.8±8.4 cmH2O (P<0.05).

Effect of MAP therapy on pelvic floor muscle biomechanical 
properties

The PFM are the dominate tissues that bear the weight 
of pelvic organs and intra-abdominal pressure. Therefore, 
in addition to muscular contraction and relaxation, the 
static mechanical properties of PFM are very important. 
The biomechanical properties of PFM include muscle 
stiffness, flexibility, and ability to rebound. In order to 
determine these characteristics of the PFM, we carefully 
dissected PC and IC muscular strips, the stress-relaxation 
curve was recorded via the 400B series of high-level output 
force transducers (Aurora Scientific) (Figure S2). The K 
coefficient and the MRA were then calculated. Our results 
showed thicker endomysium and perimysium in IC than PC 
muscle, which may explain the higher K coefficient of IC 
muscle than that of PC muscle. This trend is similar in all 
groups (Figure 1).

In regard to MRA, the PC muscles have stronger 
rebound force than that of IC, 291.26±45.33 and 
241.18±14.23 N/cm2, respectively. The VBDO significantly 
decreased the MRA of both PC (227.79±93.35 N/cm2) 
and IC (211.99±86.88 N/cm2). BAPN also decreased the 
rebound force in both PC (219.44±29.94 N/cm2) and IC 
(182.07±51.78 N/cm2). The MAP treatment significantly 
improved the muscle rebound force of PC and IC 
(381.20±52.95 and 371.17±40.47 N/cm2, respectively), and 
both are higher than the sham group (Figure 2). 

In terms of K coefficient, VBDO increased the 
stiffness of PC muscles, and the addition of BAPN further 
aggravated this increase in stiffness. The MAP treatment 

improved the K coefficient, but not to the level of the 
normal control (Figure 3). In IC muscles, the increase of 
K coefficient by VBDO and BAPN is more pronounced. 
Similarly, MAP treatment improved the K coefficient, but 
not to normal control levels (Figure 4).

MAP therapy restored pelvic floor muscle structure 

In the trichrome staining of the PFM, there was an 
increase in collagen fibers seen between the muscle fibers 
in both the VBDO and BAPN groups, however, MAP 
therapy significantly reduced the amount of collagen fibers 
seen (Figure 5). In addition, there were also disrupted 
muscles and muscular sarcolemma along with irregularly 
arranged muscle fibers in both VBDO and BAPN groups. 
In longitudinal sections, the muscle fibers became curly 
and segmented, and the spaces between the muscle 
fibers became larger and irregular. In cross sections, the 
muscle fibers appeared atrophied and thinner, and the 
spaces between the muscles fibers also became wider. 
Moreover, deficiency of endomysium and perimysium with 
disorganized muscle fibers were noted in both VBDO and 
BAPN group while MAP therapy partially restored the 
structural integrity (Figure 6). 

Discussion

The PFM are an important factor in maintaining the 
structural integrity and function of the pelvic floor (24).  
Many recent studies have found that pelvic f loor 
muscle dysfunction can lead to SUI (38), POP and fecal 
incontinence (39), as well as sexual dysfunction (40). 

In preclinical studies, we have applied MAP therapy to 
vaginal balloon dilation-induced and obesity-associated 
SUI with excellent results. We have shown that the 
tissue-resident stem cells within PFM can be activated 
to regenerate PFM and improve SUI (27,41). We have 
published methods to isolate CD45−/CD11b−/CD31−/Sca1−/
CD34+/integrin-α7+ striated muscle stem/progenitor cells 
from PFM and demonstrated the activation of those cells by 
MAP with FACS assay (42). 

Although we have demonstrated in two animal models 
that PFM can be regenerated using MAP treatment, the 
biomechanical function of the PFM after regeneration has 
not been studied in vitro (41,43). In this current study, we 
applied biomechanical measurement technology to examine 
stress-relaxation curves and conducted an in-depth study 
on the MRA and K coefficient. We found that the MRA of 

https://cdn.amegroups.cn/static/public/TAU-22-30-supplementary.pdf
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Figure 3 PC muscle stiffness affected by MAP in rats. (A) The stress-relaxation curve of each PC trips in 4 groups: sham, VBDO, BAPN 
and MAP. (B) Merged stress-relaxation curve of each PC trips from all four groups. (C) Average PC muscle stiffness coefficient in four 
groups (n=6; *, P<0.05, compared with the sham group). VBDO, vaginal balloon dilation and ovariectomy; BAPN, β-aminopropionitrile; 
MAP, microenergy acoustic pulse; PC, pubococcygeus. 
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Figure 4 IC muscle stiffness affected by MAP in rats. (A) The stress-relaxation curve of each PC trips in 4 groups: sham, VBDO, BAPN and 
MAP. (B) Merged stress-relaxation curve of each PC trips from all four groups. (C) Average PC muscle stiffness coefficient in four groups 
(n=6; *, P<0.05, compared with the sham group; **, P<0.01). VBDO, vaginal balloon dilation and ovariectomy; BAPN, β-aminopropionitrile; 
MAP, microenergy acoustic pulse; IC, iliococcygeus; PC, pubococcygeus. 

PC is higher than that of IC, while stiffness of IC muscle 
is significantly higher than that of PC. These results imply 
that PC may play a more prominent role in contraction and 
relaxation, while IC maintains static support of pelvic floor. 

Our current results also showed significantly improved 
rebound forces of both IC and PC muscles after MAP 
therapy, indicating that muscle fibers have been regenerated 
and function restored. In addition, MAP therapy also 
decreased muscle stiffness and improved muscle flexibility. 
These changes in IC are significantly higher than the 
changes in PC. 

Our current research also found that the damaged 
and degenerated pelvic floor muscle fibers were restored 
after MAP treatment. This has also been reported in our 
previous publications (27,41,43). In 2017, we isolated the 
urethral striated muscle-derived stem cells (uMDSCs) 
and differentiated those cells into myotubes in vitro (42). 
In our recent study, we demonstrated that MAP-treated 

muscle derived stem cells have increased expression of 
myosin heavy chain (MHC) and myogenin (Myo G) (44).  
We also studied the signaling pathways that propel the 
MAP-enhanced formation of myotubes from rat L6 
myoblast cells, and tentatively identified that both protein 
kinase RNA-like endoplasmic reticulum kinase/Activating 
Transcription Factor 4 (PERK/ATF4) and Wnt-β-catenin 
signaling pathways are involved in these processes (45).

Regarding the changes in the stiffness of the PFM, our 
results demonstrated increased amount of collagen fibers 
within the PFM in the animals treated with VBDO and 
BAPN, which leads to an increase in muscle stiffness, i.e., 
a decrease in muscle flexibility. MAP therapy significantly 
reduced the collagen fibers between muscles fibers, which 
may explain the decrease in stiffness of the PFM after MAP 
treatment. We have not studied the mechanisms involved 
in the reduction of interstitial collagen between muscle 
fibers after MAP therapy. Nevertheless, low-intensity 
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Figure 5 Effect of MAP on extracellular matrix within pelvic floor muscle. (A) Representative cross sections of PFM stained by Trichrome 
staining in four groups: sham, VBDO, BAPN and MAP. Magnification: ×100, ×200, ×400. (B) Representative longitude section of PFM 
stained by Trichrome staining in four groups. Magnification: ×100, ×200, ×400. There are more interstitial collagen fibers in both VBDO 
and BAPN groups. VBDO, vaginal balloon dilation and ovariectomy; BAPN, β-aminopropionitrile; MAP, microenergy acoustic pulse; PFM, 
pelvic floor muscles.
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Figure 6 MAP partially restored the integrity of PFM damaged by VBDO and BAPN. Female adult rats VBDO and BAPN injections (VBDO 
+ BAPN), with or without MAP therapy. Sham surgery was performed in the control group (sham) (n=6 in each group). The PC muscle 
was harvested for histology. Antibodies/chemicals used: Phalloidin for muscle (Pha, green), Laminin (Lam, red) for sarcolemma, DAPI for 
cell nuclei (blue). (A) Longitudinal sections of striated muscle fiber (×100). (B,C) Cross sections (×200). Deficiency of endomysium and 
perimysium with disorganized muscle fibers were noted in both VBDO and BAPN group while MAP partially restored the muscle integrity. 
DAPI, 4',6-diamidino-2-phenylindole; VBDO, vaginal balloon dilation and ovariectomy; BAPN, β-aminopropionitrile; MAP, microenergy 
acoustic pulse; PFM, pelvic floor muscles; PC, pubococcygeus. 

extracorporeal shock wave therapy (Li-ESWT)-induced 
reduction of collagen fibers in liver fibrosis and spine 
surgery has been attributed to modulation of the TGF- 
signaling pathway and matrix metalloproteinases (46,47). 

Our  current  s tudy i s  the  f i r s t  to  examine the 
biomechanical effects of MAP on the PFM after simulated 
birth injury. We have reported differential results in IC 
and PC muscles. However, the correlation between the 
contraction and relaxation function and the mechanical 
biomechanics of the pelvic floor muscle has not been 
determined. Further studies are warranted. 

Conclusions

MAP therapy appears to restore the structure and function 
of pelvic floor muscle in female rats by regenerating the 
muscular fibers and improving muscular biomechanical 

properties. Our results suggest that MAP therapy may be 
a non-invasive therapeutic approach for PFDs such as SUI 
and POP.
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Figure S1 Experimental design of the MAP therapy experiment. Experimental protocol from day 0 to week 12. VBDO, vaginal balloon 
dilation and ovariectomy; BAPN, β-aminopropionitrile; MAP, microenergy acoustic pulse.

Figure S2 The muscular force transducer head and controller of 400B series of high-level output force transducers system. The muscular 
strip was hanged between the force sensor hook and force/length controller. Consistent 330-gram force was applied by the length controller, 
and the rebound force and muscular stiffness were recorded by the force sensor connected to a Myobath Tissue Bath System II. 

Supplementary


