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Bioinformatics analysis of the potential regulatory mechanisms 
of renal fibrosis and the screening and identification of factors 
related to human renal fibrosis
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Background: This paper aimed to identify the key genes and potential mechanisms of renal fibrosis, and 
provide methods of evaluation and new ideas for the early diagnosis and treatment of renal fibrosis.
Methods: The GSE102515 dataset was searched from the Gene Expression Omnibus (GEO) database was 
searched, the differential genes were screened out, and the down-regulated and up-regulated genes were 
identified. Enrichment analysis of differential genes in the development of renal fibrosis was carried out 
using the DAVID database, differential genes were analyzed using the STRING database, and Cytoscape 
software was used for visual processing.
Results: Eighteen up-regulated genes and ten down-regulated genes were screened. Differential genes are 
mainly involved in the integrin-mediated signaling pathway and mitotic sister chromatid binding, etc. We 
found that the molecular functions (MFs) of the differential genes are phospholipid binding and regulatory 
region DNA binding, etc. Moreover, the cellular components (CCs) of the differential genes are mainly 
related to low-density lipoprotein (LDL) particles and nuclei. Screening revealed that ADM, ARRB1, 
AVPR2, CCR1, MTNR1A, PTH, and S1PR2 were core genes in the interaction network of renal fibrosis risk-
related proteins.
Conclusions: In this study, the differential genes in the occurrence of renal fibrosis were screened out 
via dataset analysis. It was found that ADM, ARRB1, AVPR2, CCR1, MTNR1A, PTH, and S1PR2 may 
be important participants in the development of renal fibrosis, which provides analytical support for the 
identification of valuable markers of renal fibrosis.
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Introduction

Renal fibrosis is a common pathway to end-stage renal 
disease (ESRD) during the progression of various chronic 
kidney diseases (CKDs) (1). Under clinical pathological 
conditions, due to the shortness of fibrosis increased 
cytokine expression and regulation, degrading the body 
occur in renal tubular cell apoptosis, renal tubular 
interstitial fibroblasts proliferation, leukocyte infiltration, 
extracellular matrix (ECM) excessively generation and 
sedimentary features of progressive pathological changes, 
resulting in a decline in kidney function sex (2-5). In ESRD, 
renal tissue may present with a loss of normal nephrons, 
fibroblast proliferation, accumulation of ECM (such as 
collagen fibers and fibronectin), renal tubulointerstitial 
fibrosis, and glomerulosclerosis (6).

Considering that kidney biopsy is harmful to the kidney, 
the application of bioinformatics analysis to identify 
suitable markers plays an important role in the treatment 
and prognosis of CKD (7-9). Renal fibrosis is the final 
pathological outcome of various CKDs and a key factor in 
the progression of CKD to ESRD. In recent years, multiple 
mechanisms have been studied during the occurrence of 
renal fibrosis, including those related to inflammation, 
macrophage transdifferentiation, and profibrotic pathways 
(e.g., the abnormal activation of TGF-1/Smad3); however, 
the exact mechanism remains unclear (10). At present, 
although blood purification can be used to alleviate the 
disease, the cost of hemodialysis is high, which results in 
a heavy economic burden on the families of patients, and 
hemodialysis can only temporarily delay the condition. 
Therefore, research into anti-renal fibrosis treatments has 
become an important issue that is related to national health 
as well as social and economic development (11-14).

Bioinformatics is an entirely new scientific field that 
applies computational and analytical tools to capture, 
analyze, and interpret large amounts of biological data (15).  
Recently, bioinformatics analysis has been widely used 
in the life sciences, and high-throughput sequencing can 
simultaneously provide the expression levels of thousands 
of genes in each experimental group and directly obtain 
information on the molecular levels of genes. Moreover, 
bioinformatics-based microarray and high-throughput 
sequencing have been widely used to predict potential 
therapeutic targets for various diseases (16-18). Renal fibrosis 
is a key pathological change in the formation of ESRD, 
and is the final pathological outcome of various chronic 
progressive nephropathy, which seriously endangers human 

health. In recent years, with the deepening of research, 
important progress has been made in our understanding 
of the pathogenesis and potential therapeutic targets of 
renal fibrosis, but renal fibrosis is still mainly prevented and 
treated clinically by controlling risk factors that aggravate 
renal function deterioration, and the prognosis of patients is 
not significantly improved. In this study, the risk assessment 
of renal fibrosis was carried out by constructing a prognostic 
model of renal fibrosis, which has important guiding 
significance for clinical diagnosis and treatment.

In this study, renal fibrosis chip data were downloaded 
from the Gene Expression Omnibus (GEO) database, which 
is an online database of the gene expressions of species, and 
important targets for regulating renal fibrosis were obtained 
through dataset analysis (19). We also conducted gene 
functional enrichment analysis as well as protein-protein 
interaction (PPI) network and module analysis to further 
explore the occurrence and development mechanisms 
of renal fibrosis. The results of this study can provide 
reliable target genes for basic experiments. We present the 
following article in accordance with the STREGA reporting 
checklist (available at https://tau.amegroups.com/article/
view/10.21037/tau-22-366/rc).

Methods

Chip analysis of genetic data

Gene expression data were downloaded from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/), which is the 
national biotechnology information of high-throughput 
gene expression data repository.  We selected the 
GSE102515 dataset, and the platform was GPL13912. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Screening for differential genes

We analyzed the data and observed the gene expression. 
We also used the GEO2R online analytical tools to analyze 
the gene expression differences and filter [filter conditions: 
P<0.05 and |log2fold change (FC)| >1]. A volcano map was 
constructed to observe the screened differential genes.

Functional enrichment and pathway enrichment analyses 
of differential genes

Gene Ontology (GO) analysis is used to annotate genes 
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and gene products and identify biological characteristics. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis is a systematic analysis of gene function that 
relates genomic information to higher-order functional 
information. The differential genes were annotated using 
the DAVID database (https://david.ncifcrf.gov/). Gene 
function enrichment includes molecular function (MF), 
biological process (BP), and cellular component (CC).

Construction and module analysis of the PPI network

The PPI information in molecular biology was predicted 
using the STRING database (https://cn.string-db.org/) 
to search for associations between known and predicted 
proteins. The differential genes were imported into 
the STRING database to obtain the interaction data of 
differential genes. Cytoscape 3.5.0 (Linux, USA) (https://
cytoscape.org/) was used to display the differential gene 
interaction results. The PPI network results were analyzed 
by module analysis, and the core genes were screened out 
by the Mcode clustering algorithm related to Cytoscape.

Statistical analysis

Statistical data were analyzed by SPSS 23.0 software (IBM, 
USA). Quantitative data were represented and independent 
sample t-tests were employed for comparisons between 
two groups. One-way analysis of variance (ANOVA) was 
applied for comparisons between multiple groups, and least 
significant difference (LSD)-t-test was used for pairwise 
comparisons between groups. Prism 7 (Graphpad, USA) 

statistical analysis was applied for target genes, a one-way 
ANOVA test was used for comparison between groups, 
and the test level was set at 0.05 (except where otherwise 
indicated).

Results

Screening for differentially-expressed genes

After quality control of the original data downloaded from 
the GEO database, a volcano map was drawn (Figure 1). 
It can be seen that the data quality of all samples is evenly 
distributed, with the median at about the same level. In 
addition, the data of each group are closely distributed and 
there is no overflow value, indicating that the quality of the 
original data is acceptable.

The gene expression of each sample was mapped into 
a heat map (Figure 2), indicating that the gene expression 
trend of each sample in the group was consistent, and 
the gene expression differences between groups were 
statistically significant (P<0.05).

Weighted analysis and construction of a central gene 
network map

The construction of a network system cluster tree using 
weighted gene co-expression network analysis (WGCNA) 
was conducted using the dynamic shear method, and gene 
modules with a height <0.25 were merged. WGCNA is a 
systems biological method used to describe gene association 
patterns between different samples, identify highly 
covarying gene sets, and identify candidate biomarker genes 
or therapeutic targets based on the interconnectedness 
of gene sets and the association between gene sets and 
phenotypes. A total of four gene co-expression modules 
were obtained after excluding the representatives that 
failed to be assigned to any known module. Among them, 
blue modules exhibited the highest correlation with renal 
fibrosis, and the top 10 genes with the highest connectivity 
were selected. An interaction network was also drawn 
was drawn, which indicated that these genes may play an 
important role in the disease process of fibrosis (Figure 3).

Pathway aggregation of the differentially-expressed genes

The phenotype distribution trend of genes in the 
correlation table was found by analyzing the signaling 
pathways of genes with differential expression that were 
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Figure 1 Volcanic map analysis. FDR, false discovery rate; FC, 
fold change.
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Figure 3 PPI analysis. PPI, protein-protein interaction.

initially screened out. GO is a database established by the 
Gene Ontology Consortium, which aims to define and 
describe the functions of genes and proteins applicable to 
various species. There are three categories in GO database, 
namely BP, CC, and MF. The possible MFs, CCs, and BPs 
of gene products are described respectively. These genes 
were mainly enriched in epithelial cell transdifferentiation 
and the inflammatory response signaling pathways, and the 
results were statistically significant (P<0.05). Only a few 
signaling pathways (Integrin-mediated signaling pathways) 
were found to be inhibited, suggesting that these genes are 
primarily involved in mediating inflammatory responses and 
fibrosis (Figure 4).

Analysis of immune function status

We used Timer, CIBERSORT, CIBERSORT ABS, and 
other software to predict the differences in various immune 
cells in the high- and low-risk groups. The results of most 
prediction software showed that B cells, CD4+ T cells, 
CD8+ T cells, myeloid dendrite cells, and other immune 
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cells were different between the high- and low-risk groups. 
The infiltration integral of immune cells and immune-
related functions in both the high- and low-risk groups was 
quantified by the single-sample gene set enrichment analysis 
(ssGSEA) algorithm. Correlation analysis showed that 
immune cell subset (including dendritic cells, B cells, mast 
cells, neutrophils, helper T cells, and tumor-infiltrating 
lymphocytes) scores varied between the high- and low-risk 
groups (P<0.001) (Figure 5).

Discussion

Renal fibrosis is the terminal pathological process of 
CKD. Clinically, many diseases (such as diabetes, ureteral 
obstruction, etc.) induce renal fibrosis (20), resulting in 
excessive deposition of interstitial ECM, scar formation, 

and fibrosis, which affects the normal function of the kidney 
and leads to serious impairment of kidney function (21). 
Therefore, understanding the molecular mechanisms and 
progression of renal fibrosis is crucial. Renal fibrosis is a 
common pathway in CKD leading to terminal renal failure. 
Studies (22-24) have shown that proximal convoluted 
tubules play an important role in the progression of renal 
fibrosis, but the molecular mechanism is not completely 
clear. This study is expected to reveal the molecular 
mechanism of renal fibrosis induced by proximal convoluted 
tubules and provide a new target for the prevention and 
treatment of renal fibrosis.

In this study, we downloaded data from the GEO 
database and used the GEO2R (https://www.ncbi.nlm.nih.
gov/geo/geo2r/) online data analysis tool to divide the data 
into control and experimental groups. We then searched 

Figure 4 Enrichment analysis of biological functions. (A) Bar charts. (B) Bubble chart. (C) Loop graph. BP, biological process; CC, cellular 
component; MF, molecular function.
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Figure 5 Boxplot analysis of immune function. N, normal group; T, test group; ns, not statistical.

for differences in gene screening according to P<0.05 and 
|log2FC| >1 (25). Differential genes were analyzed by GO 
enrichment. BPs we found to be associated with integrin-
mediated signaling pathways. Previous studies (26-28) have 
shown that integrin alpha V (AV) stimulates the proliferation 
and activation of renal fibroblasts through TGF signaling, 
thereby promoting fibrosis (29). The loss of integrin 
AV has been shown to protect against renal fibrosis in a 
unilateral ureteral obstruction (UUO), and thus, integrin 
AV intervention is a key factor in the treatment of CKD 
characterized by renal fibrosis (30). Also, MF was found to 
be related to phospholipid binding. Phospholipids include 
platelet-activating factor (PAF), phosphatidylcholine, and 
lysophosphatidic acid (LPA). Previous studies (31,32) have 
shown that PAF induces rat fibroblasts to secrete type 
I and IV collagen and fibronectin tubular cells, leading 
to renal fibrosis. Furthermore, LPA exerts therapeutic 
effects on myoblasts and induces significant expression 
of connective tissue growth factor. CCs were found to be 
associated with low-density lipoprotein (LDL) particles, 
which can aggravate the aggregation of ECM and promote 
the occurrence and development of glomerular fibrosis by 
inducing glomerular mesangial cells (MCs).

The selected core genes were ADM, ARRB1, AVPR2, 
CCR1, MTNR1A, PTH, and S1PR2. ADM significantly 
alleviates renal fibrosis by inhibiting oxidative stress, gene 
transfer blocking renal tubular cell inflammation, and 
inhibiting epithelial-mesenchymal transition (EMT) (33). 
ADM-induced HO-1 is a potential target for the prevention 
and treatment of renal fibrosis in patients with CKD. In the 

ARRB1 family, β-arrestins are involved in various fibrosis-
related signal transductions. Interference with Arrestin-1 
can significantly improve renal fibrosis and renal injury by 
inhibiting the Wnt/β-catenin pathway, thus providing a 
new target for the treatment of renal fibrosis in CKD (34).  
The AVPR2 arginine vasopressin V2 receptor is a key 
protein that is required to regulate water permeability in 
the collecting tube and is mainly involved in the occurrence 
and development of diabetes insipidus. The CCR1 gene 
encodes a member of the chemokine receptor family (35). 
Neutrophils play an important role in mediating fibroblast 
proliferation, myofibroblast differentiation, stroma 
formation, and renal tubule atrophy. CCR1, a chemokine 
receptor that plays a key role in neutrophil recruitment, may 
be a potential strategy for the treatment of renal fibrosis. 
Also, MTNR1A melatonin restores the expression level of 
PRPC in a high glucose state through Akt phosphorylation, 
thereby preventing the fibrosis induced by high glucose (36).  
These findings suggest that melatonin may be an 
effective drug in the treatment of hyperglycemia-induced 
renal fibrosis. The PTH gene encodes a member of the 
parathyroid protein family. Previous studies (37,38) have 
shown that PTH encourages renal fibrosis by promoting 
the production of TGF-β1 in HK-2 cells. The S1PR2 gene 
encodes a member of the G-protein-coupled receptor that 
stimulates additional ECM protein deposition via TGF-β.

Bioinformatics methods were used in this study to 
analyze the differentially-expressed genes involved in the 
occurrence of renal fibrosis, and core genes related to renal 
fibrosis were identified. The results of this study suggest 
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that differentially-expressed genes such as ADM, ARRB1, 
AVPR2, CCR1, MTNR1A, PTH, and S1PR2 can be used as 
potential targets for the treatment of renal fibrosis, which 
provides a direction for further analysis.
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