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Background and Objective: Conventional semen analysis (SA) remains an essential tool in the initial 
male fertility evaluation and subsequent follow-up. However, it neither provides information about the 
functional status of spermatozoa nor addresses disorders such as idiopathic or unexplained infertility (UI). 
Recently, assessment of sperm DNA fragmentation (SDF) has been proposed as an extended sperm test 
that may help overcome these inherent limitations of basic SA. In this review, we aim to: (I) discuss the 
pathophysiological aspects of SDF, including natural repair mechanisms, causes, and impact on reproductive 
outcomes; (II) explain different assessment tools of SDF, and describe potential therapeutic options to 
manage infertile men with high SDF; and (III) analyse the strengths, weaknesses, opportunities and threats 
(SWOT) of current research on the topic.
Methods: This review was constructed from original studies, systematic reviews and meta-analyses that 
were published over the years up until August 2021, related to the various aspects of SDF. 
Key Content and Findings: Different mechanisms lead to high SDF, including defective chromatin 
packaging, apoptosis, and seminal oxidative stress. The relevance of sperm DNA integrity to male fertility/
infertility has been supported by the frequent observation of high levels of SDF in infertile men, and in 
association with risk factors for infertility. Additionally, high SDF levels have been inversely correlated with 
the outcomes of natural pregnancy and assisted reproduction. Terminal deoxynucleotidyl transferase dUTP 
nick end labelling, sperm chromatin structure assay, sperm chromatin dispersion, and Comet assay are 
four commonly used assays for measurement of SDF. Addressing lifestyle risks and underlying conditions, 
antioxidants, hormonal therapy, and advanced sperm selection techniques have all been proposed as potential 
therapeutic options to lower SDF. 
Conclusions: The sum of literature provides evidence of detrimental effects of high SDF on both 
natural and assisted fertility outcomes. Standardization of the techniques used for assessment of SDF and 
their incorporation into the work up of infertile couples may have significant implications on the future 
management of a selected category of infertile men with high SDF. 
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Introduction 

Infertility is a highly prevalent condition worldwide, but the 
exact extent of the phenomenon is difficult to assess, since it 
has various definitions (1). Current inconsistencies in medical 
approaches, in addition to individual reproductive choices, 
allow some cases to go undetected. An epidemiologic study, in 
which live birth over a 5-year period was measured, reported 
that the prevalence of couples suffering from infertility was 
estimated at 48.5 million all over the world (2). According to 
the definition by the World Health Organization (WHO) 
(i.e., absence of conception after 12 months of regular, 
unprotected intercourse), infertility is a condition in which 
male factors, female factors, or both may contribute, with 
males being responsible for 50% of the cases overall. A 
significant percentage of these cases can be attributed to 
unexplained infertility (UI), where no currently applied 
knowledge or tools are able to establish a direct diagnosis (3). 

Semen analysis (SA) is the backbone of male infertility 
assessment, however it does not provide any insight into the 
functional status of spermatozoa and cannot justify adverse 
reproductive outcomes or UI when the baseline evaluation 
of both partners is unremarkable (4). The recently 
published 6th edition of the WHO laboratory manual 
for the examination and processing of human semen has 
acknowledged such limitations, and in an attempt to identify 
and underline the importance of sperm function testing, 
it has introduced sperm DNA fragmentation (SDF) as an 
extended examination and recommends this assessment in 
certain clinical settings, which has been quoted as a major 
strength of the new manual (5).

SDF occurs in male germ cells when nuclear DNA 
damage is induced by different factors and is not properly 
repaired due to dysfunctional repair systems (6). Recent 
evidence has pointed to the relevance of sperm DNA 
integrity in reproductive outcomes, since high levels of SDF 
have been found in infertile men (7) and in association with 
risk factors for infertility (e.g., drugs, pollutants, lifestyle 
habits and diseases), which can damage male gametes 
through testicular apoptosis, altered chromatin maturation 
and, increased reactive oxygen species (ROS) production (8). 

The aim of the present narrative review is to discuss the 
pathophysiological aspects of SDF including physiological 

mechanisms that oppose SDF, its causes and significance in 
terms of reproduction. Additionally, we discuss the different 
methods of assessment of SDF and provide guidance for 
potential therapeutic interventions for the management 
of infertile men with high levels of SDF. Furthermore, we 
highlight the strengths, weaknesses, opportunities, and 
threats (SWOT) of current research in SDF and provide 
insights for future research that may help optimize the 
diagnostic and predictive potentials of this test in clinical 
practice. We present the following article in accordance with 
the Narrative Review reporting checklist (available at https://
tau.amegroups.com/article/view/10.21037/tau-22-149/rc).

Methods

To construct this narrative review, a comprehensive 
literature search was conducted using PubMed from 
inception with a final endpoint in August, 2021. The search 
was conducted independently by three authors (AF, GS, 
and SK) and involved articles pertaining to all aspects of 
SDF. AF conducted the search for articles on the clinical 
impact of SDF on male fertility outcomes as well as the 
treatment options for SDF. Search terms included: “Sperm 
DNA fragmentation/damage/integrity”, “male infertility”, 
“assisted reproduction technologies”, “treatment/therapy/
management”, and “sperm selection”. GS conducted the 
search for articles on the molecular aspects of sperm DNA 
including normal repair and molecular mechanisms of 
SDF. Search terms included: “Sperm DNA fragmentation/
damage/integrity”, “male infertility”, “sperm condensation”, 
and “sperm DNA repair”. SK conducted the search for 
articles on the causes and risk factors of SDF as well as 
the diagnostic tests and guidelines for SDF testing. Search 
terms included: “Sperm DNA fragmentation/damage/
integrity”, “causes/risk factors”, “measurement/diagnosis”, 
and “guidelines”. All constructed formulas, using the 
various keywords, were applied to PubMed for a conclusive 
literature search and included well-designed observational 
studies and clinical trials, reviews and meta-analyses. 
Commentaries, editorials, case reports, and non-English 
articles were excluded. Any uncertainties were resolved by 
the senior authors AA, RS, and PV. The search strategy is 
summarized in Table 1. 
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Natural sperm DNA repair 

Germ cells can actively react to DNA damage in two 
ways: apoptosis or DNA repair. Five different mechanisms 
of sperm DNA repair have been described, which are: 
nucleotide excision repair (NER), base excision repair 
(BER), DNA mismatch repair (MMR), post-replication 
repair (PRR), and double-strand breaks (DSBs) repair. 
NER acts in the presence of extensive DNA damage (e.g., 
pyrimidine dimers, bulky adducts, and DNA intra-strand 
cross-links) and consists of DNA damage detection by 
XPC/RAD23B proteins, helix unfolding, and cleavage 
of lesions by XPG and XPF/ERCC1. Conversely, BER 
operates to remove more limited damage such as non-helix 
distorting base lesions, which involves recognition and 
excision of the damaged base through the cleavage of the 
N-glycosidic bond to deoxyribose by DNA glycosylases. In 
both pathways, after removal of a single base or surrounding 
DNA, the gap is then filled by DNA polymerase. MMR, 
instead, is a security system that verifies the correct 
replication of DNA by DNA polymerase, playing a key role 
in maintaining genomic stability (9). On the opposite, PRR 
mechanisms allow spermatozoa to tolerate single stranded 
breaks (SSBs), by avoiding fork collapse and accumulation 
of DSBs, with persistence of DNA damage, but at the cost 
of reduced DNA replication fidelity (10). Finally, DSB 
repair mainly occurs via three different pathways: non-
homologous end joining, homologous recombination 
and alternative non-homologous end joining. These 
mechanisms are significantly different, because homologous 
recombination uses Rad51 protein and an undamaged 

homologous template to replace the damaged one, ensuring 
high fidelity, whereas non-homologous end joining 
mechanisms act to create compatible ends in DSBs through 
the removal of non-ligatable termini by the MRE11 
complex (9).

Interestingly, in mammals, DSBs repair kinetics in sperm 
cells differ from any other differentiated cell due to the 
extremely high grade of chromatin compaction of mature 
sperm cells that require specific DNA repair proteins. In 
addition, in cases of DNA damage, the different chromatin 
compositions between the various spermatogenic cell 
types influence the recruitment of different sets of repair 
proteins (11). This partly explains the decline in the 
ability to repair DNA damage observed in the later stages 
of spermatogenesis, during which genomic damage can 
accumulate and be transmitted to the embryo (12). It is 
worth mentioning as an example, that mature sperm cells 
are able to initiate the previously described process of 
BER by 8-oxoguanine DNA glycosylase 1, but they lack 
the downstream components of this pathway, whereby 
subsequent DNA repair is strictly oocyte-dependent (13).

An embryo that forms following fusion of a sperm 
nucleus carrying damaged DNA with an oocyte may exhibit 
poor developmental prospects, may fail to implant in the 
uterine lining or may even be aborted at later stages of 
the first trimester of a clinical pregnancy (14). Normally, 
the oocyte has its own DNA repair mechanism that are 
activated following fertilization, which can compensate for 
the damage in sperm DNA, especially for SSBs involving less 
than 8% of the sperm genome (15). Therefore, oocyte quality 

Table 1 Search strategy summary

Items Specification

Date of search August, 2021

Databases PubMed

Search terms used “Sperm DNA fragmentation/damage/integrity”, “male infertility”, “assisted reproduction 
technologies”, “treatment/therapy/management”, “sperm selection”, “sperm condensation”, 
“sperm DNA repair”, “causes/risk factors”, “measurement/diagnosis”, and “guidelines”

Timeframe Year 2006 to 2021

Inclusion and exclusion criteria Included: observational studies, clinical trials, reviews and meta-analyses

Excluded:  commentaries, editorials, case reports, and non-English articles

Selection process Independent search was conducted by the authors, selecting well-designed observational 
studies, clinical trials reviews and meta-analyses related to SDF pathogenesis, clinical 
implication, testing methods, and management

SDF, sperm DNA fragmentation.
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could play an important role in the success of DNA repair. In 
the process of initial embryo development, the zygote may 
induce DNA repair for spermatozoon containing SSBs as the 
complementary DNA strand is present (16-18). However, if 
the damage is only partially repaired, abnormal development 
of the embryo may occur (11). 

What causes SDF? 

Types of SDF

In general, DNA fragmentation is classified into SSBs 
and DSBs (19,20). In case of SSBs, replication is usually 
still possible using the other unaffected strand. DSBs are 
considered to be more harmful than SSBs as they could 
result in genetic rearrangements. Ribas-Maynou et al. have 
presented evidence that DSBs are associated with recurrent 
miscarriage in a couple without a female factor (21).  
On the other hand, SSBs were reported not to have a 
significant impact on embryo development or implantation 
rates (22). Although SSBs and DSBs may have different 
implications on reproductive outcomes as well as different 
underlying molecular mechanisms, it is important to point 
out that most studies investigating the effect of SDF on 
male infertility and poor reproductive outcomes do not 
distinguish between the different types of breaks. This may 
be attributed, at least in part, to the fact that most assays 
that measure SDF do not distinguish between SSBs and 
DSBs, as will be discussed later in this review.

Molecular mechanisms of SDF

The active replication of germ cells in the first phase of 
spermatogenesis can result in transcription errors that 
could damage the integrity of the inherited genome of the 
organism. Indeed, DSBs are physiologically induced in 
spermatocytes during prophase I of meiosis to allow DNA 
recombination between homologous chromosomes (14). 
DSBs occurring in meiosis may be potentially dangerous 
as they can cause chromosomal fragmentation, loss of 
chromosomal domains, translocations, and other genetic 
abnormalities (11). 

In addition, during the last phases of spermatogenesis, 
i.e., spermiogenesis, sperm chromatin undergoes DNA 
condensation, where nearly all the original histones 
are replaced by protamines, ensuring a high level of 
compactness in the sperm nucleus (23). Defective chromatin 
condensation during spermiogenesis which results in an 

inappropriate protamination and insufficient chromatin 
packaging, could generate sperm DNA damage (24).

SSBs are caused by DNA ligase activity adjacent to the 
lesion or by abortive topoisomerase. Topoisomerase is an 
enzyme which overwinds or unwinds DNA strands. During 
the process of chromatin compaction in spermiogenesis, 
topoisomerase II facilitates the creation of breaks in DNA 
to reduce torsional stress for histone disassembly and 
chromatin packaging. If these breaks are not modified, 
consequent impairment of the chromatin packing results in 
increasing SDF (25,26). DNA ligase is another enzyme that 
plays a role in joining DNA strands together by catalysing 
the formation of a phosphodiester bond. Incomplete 
unwinding or fixation of DNA by abortive function of these 
enzymes could lead to SSBs. 

Furthermore, excessive ROS, such as free radicals and 
hydrogen peroxide are considered as one of the main causes 
of SSBs (27,28). They cause DNA base modifications leading 
to the formation of 8-hydroxy-2’-deoxyguanosine (8-OHdG) 
and lipid peroxidation. The DNA structure is destabilized 
by those oxidized base adducts, which results in DNA breaks 
(29,30). Other bases, including adenosine, cytosine, and 
thymidine are also sensitive to oxidative damage, although to 
a lesser extent compared to guanosine (31).

In addition, exogenous sources such as genotoxic drugs and 
ionizing radiation can directly lead to DNA strand breaks, 
including DSBs (32). DSBs are also caused as a consequence 
of SSBs in the process of DNA replication, increased levels of 
ROS (33), or collapsed replication forks (34).

Risk factors of SDF

Oxidative stress (OS) is caused by an imbalance in 
homeostasis between ROS production and total antioxidant 
capacity in semen (35). OS may originate from exogenous 
sources such as toxicants, smoking, alcohol, diet, and radiation 
(36-38) or endogenous sources such as varicocele (39).  
Studies have shown that men with varicocele have 
significantly higher SDF levels compared to men without 
varicocele (40,41). A meta-analysis by Wang et al. showed 
significantly higher levels of SDF in infertile men with 
varicocele as compared to controls, with an average 
difference of 9.84% (P<0.00001) (42). Increased scrotal 
temperature is also known to increase SDF partially through 
apoptosis induced by OS and elevated expression of specific 
proteins (43,44). In animal studies, SDF is observed with 
2–4 ℃ increase in physiologic scrotal temperature (45,46). 
Obesity and physical abnormalities such as varicocele or 
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cryptorchidism cause an increase in scrotal temperature and 
moreover introduce OS. Aging is another factor associated 
with SDF increase (47,48). This may be attributed to the 
cumulative exposure to OS and disordered apoptosis that 
occurs with aging, as well as a decline in antioxidant capacity 
and a cumulative higher number of spermatogenic cycles 
in a context where DNA repair activities may decrease 
and more mutations can be acquired. Genitourinary 
infections and male genital tract inflammation can also 
increase ROS production via activation of white blood cells, 

contributing to SDF (35). Finally, ROS exposure during 
transfer of spermatozoa from testis to the epididymis after 
spermatogenesis may also lead to SDF. Longer abstinence 
could increase SDF as sperm DNA can be damaged by a 
biological environment of OS while spermatozoa are stored 
in the epididymis (35). Studies have reported that a shorter 
abstinence period in ejaculation contributed to decreased 
ROS levels in semen and sperm DNA fragmentation index 
(DFI) (49,50). Figure 1 summarizes different etiologies, risk 
factors, and pathogenesis of SDF.

Exogenous Endogenous

Chemicals Diet Radiation

Heat Smoking Alcohol

Risk factors Obesity Varicocele Cryptorchidism

Long abstinence period Aging

Sperm DNA fragmentation

Single strand DNA break Double strand DNA break

Abortive 
topoisomerase

Single-strand 
cleavage

Free radicals

Superoxide anion 
Peroxide 
Hydroxyl ion

DNA ligase activity 
adjacent to lesion

Collapsed 
replication forks

Radiations, 
genotoxic chemicals 
radiomimetic drugs

Free radicals

Superoxide anion 
Peroxide 
Hydroxyl ion

Attempted replication 
of single-strand breaks 
or base damage

Clinical implications

Infertility Unexplained 
male infertility

Impaired  
reproductive outcomes

• Fertilization (NC & IVF)
• Embryo quality (IVF & ICSI)
• Implantation (IVF)
• Clinical pregnancy (NC, IUI, IVF)
• Live birth (NC, IUI, IVF)
• Miscarriage and RPL (NC,IUI,IVF, ICSI)

Increased risk 
of birth defects

Figure 1 Summary of risk factors, molecular mechanisms of sperm DNA fragmentation, and its clinical implications. Due to exogenous 
and endogenous factors, SSBs are induced through several molecular mechanisms such as abortive topoisomerase, DNA ligase activity 
adjacent to lesion, and free radicals, while DSBs are induced by collapsed replication forks, replication in DNA strand with SSBs, and free 
radicals. Although both SSBs and DSBs could lead to male infertility and impaired reproductive outcomes, DSBs have been clearly linked 
with significant adverse effects (as demonstrated by the wider arrow). Reprinted with permission, Cleveland Clinic Foundation ©2022. All 
Rights Reserved. SSB, single strand DNA break; DSB, double strand DNA break; NC, natural conception; IVF, in vitro fertilization; RPL, 
recurrent pregnancy loss; IUI, intrauterine insemination; ICSI, intracytoplasmic sperm injection.
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Effect of SDF on fertility outcomes 

The growing importance of SDF in the diagnosis and 
management of male infertility lies in the fact that SDF 
can have tremendous implications on male fertility and 
reproductive outcomes. Unexplained male infertility (UMI) 
refers to infertile men who have no identifiable cause for 
their infertility and a completely normal SA (51). Sperm 
from men with UMI has been found to contain significantly 
higher SDF levels when compared to fertile controls 
(52,53). In one report, 1 in 4 men with UMI have SDF 
levels above 20% (53). Idiopathic male infertility (IMI), 
on the other hand, refers to infertile men who have no 
identifiable cause for their infertility but do present with 
abnormalities in their conventional SA (51). Men with 
idiopathic oligoasthenoteratozoospermia (OAT) have been 
found to have significantly higher levels of SDF compared 
to men with normal semen parameters (54). A meta-analysis 
by Santi et al. has determined that SDF levels of 20% or 
higher are predictive of male infertility with 79% sensitivity 
and 86% specificity (7).

Given the large number of studies that have investigated 
the adverse impact of SDF on reproductive outcomes after 
natural conception and assisted reproductive technologies 
(ART), many meta-analyses have been conducted, some of 
which are summarized in Table 2 (55-68) and are highlighted 
in the following points: 
 SDF can reduce the ability of a couple to conceive 

naturally.
 SDF can reduce pregnancy rates and delivery rates 

after intrauterine insemination (IUI).
 SDF can reduce fertilization rates, implantation 

rates, pregnancy rates, and impair embryo quality 
after in vitro fertilization (IVF), as well as lead to 
higher rates of miscarriage and lower live birth 
rates.

 SDF has no effect on fertilization rates or 
pregnancy rates after intracytoplasmic sperm 
injection (ICSI), but it does impair embryo quality 
and is associated with a higher risk of miscarriage 
and may lead to lower live birth rates.

 Elevated SDF can lead to recurrent pregnancy loss 
(RPL).

When looking at pregnancy rates with different methods 
of conception, it is clear that elevated SDF impairs 
pregnancy after natural conception, IUI, and IVF. Regarding 
ICSI, although the meta-analysis by Simon et al. have shown 
reduced pregnancy with high SDF (62), most other analyses 

have demonstrated no associations or small non-significant 
associations between the level of SDF and pregnancy 
rates after ICSI (56-58,61). Regarding fertilization rates, 
Li et al. showed lower fertilization rates after IVF with 
high SDF, but no difference in rates of fertilization with 
ICSI (55). A retrospective study demonstrated a significant 
negative correlation between DFI and fertilization rate after 
IVF (69). The most recent meta-analysis by Ribas-Maynou 
et al. reported data on implantation rates being affected with 
elevated SDF after IVF but not significantly after ICSI (57). 
Conversely, it is important to point out that not all studies 
have reported an association between SDF and reproductive 
outcomes after IVF or ICSI (70).

Differences in the IVF and ICSI procedures can explain 
the differential effect of SDF on fertilization and pregnancy 
rates between the two procedures. In IVF, spermatozoa are 
co-incubated with the oocytes and fertilization is allowed to 
proceed randomly as one spermatozoon penetrates the zona 
of the oocyte. This also allows spermatozoa to be exposed 
to OS from the surrounding environment as well as the 
supporting cumulus and corona cells of the oocyte during 
culture, adding to the SDF and impairing fertilization 
and ability to achieve pregnancy (71,72). Furthermore, 
SDF level was inversely correlated to normal motility and 
morphology of sperm cells when used in IVF (73). In ICSI, 
on the other hand, the sperm cell is manually selected 
through micromanipulation and based on morphological 
and kinetic criteria and directly injected into the oocyte 
after all surrounding cells are removed, bypassing the 
random fertilization process that occurs with IVF and 
minimizing exposure to OS. 

During the early divisions of embryonic development, 
fragmented male genome is unequally distributed between 
daughter cells, leading to a phenomenon called chaotic 
mosaicism; meaning cells of the developing embryo do 
not contain an identical and balanced genotype. This has 
been attributed as a major cause of miscarriage resulting 
in a reduced live birth rate following ART, as well as 
repeated miscarriage incidents with RPL (74). If the 
pregnancy progresses to live birth, damaged sperm leading 
to chromosomal abnormalities may lead to congenital 
anomalies in the offspring (74). 

Data on the effect of SDF on live birth rate is more 
heterogeneous. The recent meta-analysis by Ribas-
Maynou et al. reported non-significant association between 
sperm DNA damage and live birth rate after IVF and no 
associations between the two after ICSI (57). This is in 
line with the meta-analysis by Deng et al. that reported no 
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Table 2 Summary of selected meta-analyses on reproductive outcomes and SDF

Outcome 
studied

Method of 
conception

Number of studies, 
sample size

Study group vs. 
comparison

Results First author, year

Fertilization 
rate

IVF 4 studies, 770 IVF 
cycles

High vs. low sperm 
DNA damage

Lower fertilization rate with high sperm DNA 
damage (55.4% vs. 71.8%) with (RR =0.79, 
P=0.23)

Li, 2006 (55)

ICSI 3 studies, 201  
ICSI cycles

High vs. low sperm 
DNA damage

Fairly similar fertilization rates for both groups 
(79.8% vs. 78.2%) with (RR =1.03)

Li, 2006 (55)

Embryo 
quality

IVF or ICSI 8 studies, 17,879 
embryos

High vs. low DFI Lower rates of good quality embryos with high  
DFI (42.8% vs. 69.7%) with (RR =0.65, P<0.01)

Deng, 2019 (56)

Implantation 
rate

IVF 8 studies, 4,055  
IVF cycles

High vs. low sperm 
DNA damage

Lower implantation rates after IVF with high  
sperm DNA damage (RR =0.68, P<0.01)

Ribas-Maynou, 2021 (57)

ICSI 11 studies, 3,405 
ICSI cycles

High vs. low sperm 
DNA damage

No difference in implantation rates after ICSI 
between both groups (RR =0.79, P=0.09)

Ribas-Maynou, 2021 (57)

Pregnancy 
rate

Natural 3 studies, 616 
couples

High vs. low sperm 
DNA damage

Failure to achieve natural pregnancy with high 
sperm DNA damage (OR =7.01, P<0.001)

Zini, 2011 (58)

IUI 10 studies, 2,839 
IUI cycles

High vs. low SDF Lower pregnancy rates after IUI with high SDF  
(RR =0.34, P<0.001)

Chen, 2019 (59)

3 studies, 917 IUI 
cycles

High vs. low SDF Higher pregnancy rates after IUI with lower SDF 
(RR =3.30, P<0.05)

Sugihara, 2019 (60)

IVF 11 studies, 1,805 
IVF cycles

High vs. low sperm 
DNA damage

Lower pregnancy rates after IVF with high sperm 
DNA damage (OR =1.7, P<0.05)

Zini, 2011 (58)

5 studies, 816 IVF 
cycles

High vs. low sperm 
DNA damage

Lower pregnancy rates with high sperm DNA 
damage (27.6% vs. 43.1%) with (RR =0.68, 
P=0.0006)

Li, 2006 (55)

9 studies, 1,268  
IVF cycles

High vs. low sperm 
DNA damage

Lower pregnancy rates after IVF with high sperm 
DNA damage (OR =0.66, P=0.008)

Zhao, 2014 (61)

16 studies, 3,734 
IVF cycles

High vs. low sperm 
DNA damage

Higher pregnancy rates after IVF with low sperm 
DNA damage (OR =1.92, P=0.0005)

Simon, 2017 (62)

7 studies, 2,130  
IVF cycles

High vs. low DFI Lower pregnancy rates after IVF with high DFI  
(RR =0.77, P=0.05)

Deng, 2019 (56)

15 studies, 3,711 
IVF cycles

High vs. low sperm 
DNA damage

Lower pregnancy rates after IVF with high sperm 
DNA damage (RR =0.72, P=0.02)

Ribas-Maynou, 2021 (57) 

ICSI 14 studies, 1,171 
ICSI cycles

High vs. low sperm 
DNA damage

Pregnancy rates after ICSI are not related to level 
of sperm DNA damage (OR =1.15, P=0.65)

Zini, 2011 (58)

3 studies, 201  
ICSI cycles

High vs. low sperm 
DNA damage

Lower pregnancy rates with high sperm DNA 
damage (37.7% vs. 49.4%) with (RR =0.76, 
P=0.09)

Li, 2006 (55)

10 studies, 1,047 
ICSI cycles

High vs. low sperm 
DNA damage

No difference in pregnancy rates after ICSI 
between both groups (OR =0.94, P=0.65)

Zhao, 2014 (61)

24 studies, 2,282 
ICSI cycles

High vs. low sperm 
DNA damage

Higher pregnancy rates after ICSI with low sperm 
DNA damage (OR =1.31, P=0.0068)

Simon, 2017 (62)

4 studies, 278  
ICSI cycles

High vs. low DFI No significant difference in pregnancy rates after 
ICSI between the two groups (RR =0.75, P=0.29)

Deng, 2019 (56)

25 studies, 5,467 
ICSI cycles

High vs. low sperm 
DNA damage

No difference in pregnancy rates after ICSI 
between both groups (RR =0.89, P=0.09)

Ribas-Maynou, 2021 (57)

Table 2 (continued)
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Table 2 (continued)

Outcome 
studied

Method of 
conception

Number of studies, 
sample size

Study group vs. 
comparison

Results First author, year

Miscarriage 
rate

IVF 5 studies, 808 
IVF cycles, 345 
pregnancies

High vs. low sperm 
DNA damage

Higher rates of miscarriage with high sperm DNA 
damage (OR =2.17, P<0.05)

Zini, 2008 (63)

8 studies, 339 
pregnancies

High vs. low sperm 
DNA damage

Rates of miscarriage after IVF between both 
groups were not significantly different (OR =1.84, 
P=0.06)

Zhao, 2014 (61)

7 studies, 1,339 
couples

High vs. low DFI Higher miscarriage rates after IVF with high DFI  
(RR =1.68, P=0.003)

Deng, 2019 (56)

ICSI 6 studies, 741 
ICSI cycles, 295 
pregnancies

High vs. low sperm 
DNA damage

Higher rates of miscarriage with high sperm DNA 
damage (OR =2.73, P<0.01)

Zini, 2008 (63)

7 studies, 301 
pregnancies

High vs. low sperm 
DNA damage

Higher rates of miscarriage with high sperm DNA 
damage (OR =2.68, P=0.003)

Zhao, 2014 (61)

4 studies, 96 
couples

High vs. low DFI Higher miscarriage rates after ICSI with high DFI 
(RR =3.38, P=0.005)

Deng, 2019 (56)

Variable 16 studies, 1,252 
pregnancies

High vs. low sperm 
DNA damage

Significantly higher rates of miscarriage with high 
sperm DNA damage (RR =2.16, P<0.00001)

Robinson, 2012 (64)

Delivery  
rate/live  
birth rate

IUI 2 studies, 518  
IUI cycles

High vs. low DFI Lower delivery rates after IUI with high SDF  
(RR =0.14, P<0.001)

Chen, 2019 (59)

IVF 4 studies, 553 
couples

High vs. low SDF Higher live birth rates after IVF with low SDF  
(RR =1.27, P=0.01)

Osman, 2015 (65) 

6 studies, 1,634  
IVF cycles

High vs. low sperm 
DNA damage

Lower live birth rates after IVF with high sperm 
DNA damage but non-significant (RR =0.48, 
P=0.06)

Ribas-Maynou, 2021 (57)

ICSI 5 studies, 445 
couples

High vs. low SDF Higher live birth rates after ICSI with low SDF  
(RR =1.11, P=0.04)

Osman, 2015 (65) 

9 studies, 3,017 
ICSI cycles

High vs. low sperm 
DNA damage

No relationship between sperm DNA damage  
and live birth rate after ICSI (RR =0.92, P=0.62)

Ribas-Maynou, 2021 (57)

IVF or ICSI 10 studies, 1,785 
IVF or ICSI cycles

High vs. low DFI No difference in live birth rate between both 
groups (61.9% vs. 62.3%) with (RR =0.89, P>0.05)

Deng, 2019 (56)

Recurrent 
pregnancy 
loss

Not 
specified

13 studies, 517 
cases and 384 
controls

Couples with RPL  
vs. Fertile couples

Higher rates of SDF among couples with RPL  
with a mean difference of 10.7%, P<0.0001

McQueen, 2019 (66)

Natural 13 studies Couples with RPL  
vs. Fertile couples

Higher rates of SDF among couples with RPL  
with a mean difference of 11.98%, P<0.001

Tan, 2018 (67) yet the 
relationship between DNA 
fragmentation in the male 
gamete and idiopathic 
recurrent pregnancy loss (RPL

Not 
specified

18 studies, 1,181 
cases and 925 
controls

Couples with RPL  
vs. Fertile couples

Higher DFI among couples with RPL with a 
standard mean difference of 1.6, P<0.00001

Li, 2021 (68)

SDF, sperm DNA fragmentation; DFI, DNA fragmentation index; IUI, intrauterine insemination; IVF, in vitro fertilization; ICSI, 
intracytoplasmic sperm injection; RPL, recurrent pregnancy loss; RR, relative risk; OR, odds ratio.
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association (56), but in conflict to the results of a previous 
analysis by Osman et al. that reported significantly reduced 
live birth rates with high SDF after both IVF and ICSI (65).

The majority of the meta-analyses presented in this 
review and in Table 2, have indicated as a limitation, 
the variability of the different observational studies, 
investigating the effects of elevated SDF on reproductive 
outcomes, that were included and analysed. This weakens 
the conclusions set forth by these meta-analyses. Therefore, 
well-designed studies that account for different patient 
factors and control for heterogeneity are needed to reach 
more solid conclusions on the effect of SDF on the various 
reproductive outcomes.

How to select a test for sperm DNA 
fragmentation? 

Implementing SDF into clinical practice: Guidelines of 
Professional Societies and the WHO 6th Edition

Currently, the American Society for Reproductive Medicine 
(ASRM) guidelines do not recommend routine SDF test in 
evaluation of male infertility due to lack of information (75-77).  
On the other hand, the European Society of Human 
Reproduction and Embryology (ESHRE) guidelines states 
that SDF testing could be considered for explanatory 
purposes in couples with RPL (78). Similarly, the European 
Association of Urology (EAU) guidelines in 2020 also 
recommend SDF test in couples with RPL following natural 
pregnancy and male partners with UI (79).

In the latest WHO Manual, SDF is recognized as an 
important indication in the practice of male infertility, 
becoming one of the most discussed and promising 
biomarkers in andrology (80). The WHO also picked 
up supportive evidence between SDF and embryo 
development, implantation, spontaneous pregnancies and 
pregnancies in assisted reproduction (62,64,67,81). In the 
section of extended testing, the WHO manual provides 
the detailed procedures of the four commonly used assays 
for determining the percentage of SDF in any given semen 
sample; Terminal deoxynucleotidyl transferase deoxyuridine 
triphosphate (dUTP) nick end labelling (TUNEL), 
acridine orange flow cytometry (AO-FCM) also known as 
sperm chromatin structure assay (SCSA), sperm chromatin 
dispersion test (SCD), and single cell gel electrophoresis 
assay (Comet assay) (82). The manual also states that the 
diagnostic thresholds of these assays should be determined 
and validated by the performing laboratory and according 

to the procedure utilized. 

Summary of common tests for assessment of SDF

Currently there is no globally accepted guideline regarding 
the choice of assays for SDF testing. The choice of assay in 
clinical practice depends on trained personnel, availability 
for instrumentation including cost, and running-time in 
each clinic. Major practical points for each test are reviewed 
in Table 3. 

TUNEL
TUNEL is currently the most commonly used SDF 
assay worldwide. It is based on technique to label free 
3’-OH nicks with dUTP at the DNA break (83). The 
3’-OH-termini of the DNA strand breaks work as 
primers and become labelled in this procedure with 
bromodeoxyuridine (Brd-U) in a reaction catalysed by 
Terminal deoxynucleotidyl Transferase (TDT), which is a 
template-independent DNA polymerase (84). The method 
can directly assess both SSBs and DSBs. d-UTP is the 
substrate that is added by the TDT enzyme to the free 
3’-OH-termini. The added d-UTP can be labelled directly 
and plays a role as a direct marker of breaks in DNA, or 
its signal can be amplified by using a modified d-UTP to 
which labelled anti-d-UTP antibody can be adsorbed (85). 
Although this method needs flow cytometry, TUNEL is 
able to analyse up to 2.5×106 spermatozoa, which is a higher 
number of cells compared to other methods (86). A DFI 
threshold for infertile men as measured by TUNEL was 
found to be 17% in one report, with a specificity of 91.6% 
and a sensitivity of 32.6% (87). As a limitation, TUNEL 
cannot detect DNA fragmentation produced by nucleases 
generating 3’-PO4/5’-OH breaks, because the TdT enzyme 
used in TUNEL does not react with 3’-PO4 ends and the 
T4 DNA ligase in the ligation assay is unable to attach the 
probe to 5’-OH ends in DNA (88).

SCSA
The method of SCSA is based on the action of AO. It emits 
green fluorescence when it is introduced between double-
stranded DNA, and it also emits red fluorescence if it is 
related to single-stranded DNA (82). This method can be 
used to assess fresh or frozen samples and comprises only 
two main methodological steps. In the first step, spermatozoa 
are treated with a low pH (1.2) detergent solution to 
denature their chromatin and allow its subsequent staining. 
In the second step, the sperm suspension is neutralized, 
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and the cells are stained with a second solution containing 
AO. Data for red and green fluorescence obtained from 
analyzing 5,000–10,000 spermatozoa per sample are 
collected by flow cytometry and transformed. The degree 
of red fluorescence in the sperm population corresponds to 
DFI, which represents the percentage of cells with broken 
DNA. The analysis of the collected data can be done in any 
flow cytometric software. SCSA also needs flow cytometry, 
similar to TUNEL assay, and is also able to analyse many 
(5,000–10,000) spermatozoa within few seconds and thus 
provides a less subjective result (89). Moreover, this method 
also reports % high DNA stainability (HDS) which indicates 
the extent of stainability of the sperm nucleus, representing 
immature spermatozoa (90). The DFI threshold for male 
infertility diagnosis using SCSA is reported as 20–25% (7). In 
a prospective study on 1,316 infertile couples who underwent 
IVF and 266 who underwent ICSI, a DFI threshold using 

SCSA of <11.3% was predictive of pregnancy success after 
IVF with 56.1% sensitivity and 60% specificity, and a 
threshold of <30.3% was predictive of pregnancy success after 
ICSI with 50.6% sensitivity and 68.8% specificity (91). In 
this study, thresholds were determined using ROC analysis. 

SCD
SCD test is a method to evaluate the sensitivity of sperm 
DNA to acid denaturation. The principle of SCD is 
based on the fact that intact DNA loops expand following 
denaturation and extraction of proteins in the nucleus, 
whereas when DNA is fragmented, dispersion does not 
develop or is minimal. This method relies on the capacity 
of the intact sperm chromatin to create dispersion halos 
after exposure to acid and a lysing solution; the halos 
correspond to loosened DNA loops attached to the residual 
structure of nuclear, which are released after the removal of 

Table 3 Summary of the principle, advantages and disadvantages of the four commonly used SDF assays

Assay
Direct or 

indirect
Principle

Type of DNA 

fragmentation
Advantages Disadvantages

TUNEL Direct Labelling of free 3’-

OH nicks with dUTP 

at the DNA break

SSBs & DSBs 

simultaneously

• Highly standardized protocol • More technically demanding–

equipment training

• Minimal inter-observer variability • No clear cut-off values

• Testing can be done on both fresh and 

frozen specimens

SCSA Indirect Evaluation of DNA 

integrity with acid 

denaturation followed 

by Acridine Orange 

staining

SSBs & DSBs 

simultaneously

• Simultaneous examination of a large 

number of cells

• More technically demanding–

equipment training

• Highly standardized protocol • Commercial kits are not 

available

• Testing can be done on both fresh and 

frozen specimens

SCD Indirect Evaluation of the 

dispersed chromatin 

(“halo”) after lysis of 

sperm membranes

SSBs & DSBs 

simultaneously

• Highly standardized protocol • Inter-observer variability

• No special equipment training required

• Both fresh and frozen-thawed samples 

can be used

Comet Direct Single-cell gel 

electrophoretic 

separation

SSBs and/or DSBs • Possibility to detect SSBs and DSBs 

separately at the same time

• Poor repeatability

• Both fresh and frozen-thawed samples 

can be used

• High inter-observer variability

• Non standardized protocols 

and thresholds

SDF, sperm DNA fragmentation; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling; SCSA, sperm chromatin structure 
assay; SCD, sperm chromatin dispersion; SSBs, single-stranded breaks; DSBs, double-stranded breaks.
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nuclear proteins. The DNA breaks prevent this dispersion 
as they are susceptible to denaturation (92). Different 
from TUNEL and SCSA, this method does not need any 
advanced equipment and can be performed in a private 
clinic or office setting using commercially available assay 
kits. However, SCD analyses only 300–500 spermatozoa 
manually under the microscope, which can create inter-
observer variability (20). DFI thresholds to diagnose male 
infertility using SCD range from 16–30%, but 20% is 
considered to be the best (7). In one report, a threshold of 
22.5% SDF using SCD, with 76.8% sensitivity and 92.9% 
specificity was predictive of achieving pregnancy after 
natural conception (21).

Comet assay
The name of the test is related to the ‘comet’ appearance 
under fluorescence microscope of the stained unwound 
DNA fragments that are detached from the sperm head 
after electrophoretic movement. It is a method to evaluate 
SDF in individual sperm based on the differential migration 
of broken DNA strands influenced by an electric field 
depending on the size and charge of the strands (19). In 
Comet, the spermatozoa are migrated in an agarose matrix, 
wherein a detergent-induced lysis is promoted under high 
salt conditions. During an electrophoresis step, the broken 
DNA strands migrate towards the anode, generating the 
characteristic dispersion pattern that resembles a comet 
tail. The intact DNA constitutes the comet’s head, while 
the fragmented strains of DNA constitute the comet’s tail. 
The relative fluorescence of this last element compared 
to the head serves as a measure of the amount of DNA 
damage. The average amount of DNA fragmentation across 
is shown as the average Comet score, which is a calculated 
by the analysis of 100 individual comets (spermatozoa) (93). 
Neutral Comet assay uses only controlled protein depletion 
to detect DSBs selectively while the 2-dimensional Comet 
assay applies two electrophoretic runs to map SSBs and 
DSBs simultaneously (94). Alkaline Comet Assay, where a 
buffer of pH >13 is used, can detect SSB more sensitively 
compared to neutral (95), and it is now more commonly 
used in andrology labs than the neutral assay. In one report, 
a threshold of 26% by alkaline comet (average comet score) 
is reported to discriminate fertile from infertile men with 
an AUC of 0.925 (sensitivity: 73%; specificity: 100%) (96). 
Similar to SCD, Comet assay does not need advanced 
equipment but only commercially available assay kits. As 
descried above, among the four currently available methods, 

Comet has the ability to distinguish between SSBs and 
DSBs. However, only a small number [100] of spermatozoa 
can be analysed manually, the same as SCD, which creates a 
chance for inter-observer variability (20).

SDF testing thresholds

SDF thresholds to enable precise diagnosis and management 
are lacking. The cut-off values reported in the literature 
demonstrate an increased variability, ranging between the 
extremes of 4% to 56% and this uncertainty persisted over 
the last 20 years despite significant data contribution from 
several research groups (20). This situation has been proven 
difficult to resolve due to multiple factors surrounding SDF 
testing such as; the variability of the techniques, the study 
population, the infertility factor, the reproductive outcomes 
tested and the laboratory specialization and experience. 
Additionally, potential intrinsic and extrinsic factors that may 
impact the interpretation of SDF test results such as; female 
factor infertility, patient’s age, basic and advanced semen 
variables, genetic repair mechanisms, semen processing 
and conditions, ART method are not fully addressed. 
Furthermore, the standardization of SDF assessment 
was not resolved in the latest 6th Edition of the WHO 
manual for human SA (5). Although the manual highlights 
the indications of SDF testing and provides an updated 
guide on laboratory protocols of the few techniques, it 
lacks threshold definition for each test and recommends 
adopting individual reference ranges according to each 
laboratory operational procedures and clinical experience 
on representative values, echoing fertility dynamics. 

In light of this heterogeneity in SDF testing methods and 
thresholds, a recent meta-analysis by Santi et al., suggested 
a universal cut-off value of 20% for the discrimination 
between fertile and infertile males (7). A recent study by 
Agarwal et al. also suggested a unanimous 20% cut-off for 
all laboratory assessment methods (20). Similarly, Esteves 
et al. suggested a 20% threshold for SCSA, TUNEL, and 
SCD, but differed in the assessment through Comet method 
by suggesting a cut-off value of 26% (97). In terms of 
reproductive outcome prediction, Esteves et al., concluded 
that SDF values of 20–30% appear to correlate with adverse 
pregnancy outcomes through either natural conception or 
assisted reproduction (97). Nevertheless, formal guidelines 
are warranted to alleviate the existing discrepancies and 
that can be clinically implemented to utilize the crucial 
information offered through this diagnostic utility (98). 



Farkouh et al. SDF and male reproduction1034

© Translational Andrology and Urology. All rights reserved.   Transl Androl Urol 2022;11(7):1023-1044 | https://dx.doi.org/10.21037/tau-22-149

Management of elevated SDF 

Several strategies can be employed to reduce SDF among 
infertile men before natural or assisted reproduction 
to improve reproductive outcomes. Known underlying 
causes and risk factors of high SDF such as smoking and 
environmental exposures should be addressed (98). Also, 
suitable antibiotic therapy should be considered for male 
genital tract infections which are associated with elevated 
SDF (99). The different strategies that can be used to 
improve sperm DNA integrity are summarized in Figure 2 
and are discussed in the subsequent sections.

Weight loss

SDF was found to be significantly higher among obese men 

[body mass index (BMI) ≥30 kg/m2] and men with metabolic 
syndrome (100-102). Therefore, weight loss as a means to 
reduce SDF, has been studied. In a prospective study, 105 
infertile men with above than normal BMI were given a 
diet and exercise weight loss program for 12 weeks, and 
reported significant reductions in their mean SDF after 
they completed the program (103). The impact of surgical 
weight loss on SDF has also been studied with promising 
results (104,105).

Varicocele repair

Men with cl inical  varicocele were found to have 
significantly elevated SDF levels compared to healthy 
controls (106). Varicocelectomy can reduce SDF levels and 
improve fertility outcomes in this population of infertile 
men. A prospective study that included 60 infertile men 
with clinical varicocele reported significant reductions 
in their mean SDF from 29.5% to 18.8% (P<0.001), 
3–6 months after varicocelectomy (107). A recent meta-
analysis including 394 infertile men with clinical varicocele 
indicated significant reduction of SDF following varicocele 
repair (108). Furthermore, significantly improved clinical 
pregnancy and live birth rates after ICSI were reported 
in the group of infertile men with clinical varicocele that 
underwent repair (109).

Antioxidants

Given the important role of seminal OS in the pathogenesis 
of SDF (8), many researchers have investigated the use of 
different antioxidants to improve sperm DNA integrity and 
fertility outcomes. For example, Jannatifar et al. supplied 
50 infertile men with n-acetyl cysteine for 3 months and 
reported a significant decline in their mean SDF from 
19.3% to 15.1% (P=0.01) (110). Alahmar et al. studied the 
impact of co-enzyme Q10 supplementation to 65 infertile 
men with idiopathic oligoasthenozoospermia, and also 
reported significant reductions in SDF from 35.6% to 
30.9% (P<0.001) after treatment, as well as improvement in 
conventional semen parameters and markers of OS (111). In 
2005, Greco et al. treated infertile men who have failed an 
initial cycle of ICSI and had ≥15% SDF with a combination 
of daily vitamin C and vitamin E, and reported significantly 
improved pregnancy and implantation rates with the second 
ICSI attempt after two months of treatment (112). 

On the other hand, some studies have published 
contradicting results. The MOXI trial was a multi-center 

Lower SDF 
and improved 
reproductive 

outcomes

Address 
underlying causes 
and risks

Antioxidants

Hormone 
replacement 
therapy

Assisted reproduction 
and sperm selection

Shorter 
abstinence time

Figure 2 Many therapeutic approaches exist to help men with 
elevated SDF improve their reproductive outcomes. Underlying 
causes and etiologies, such as varicocele, male genital tract 
infections, obesity, and lifestyle risk factors should be addressed. 
Antioxidants can be supplied to counteract the oxidative stress 
implicated in the pathogenesis of SDF. Reduced ejaculatory 
abstinence has also been shown to reduce SDF. Hormonal 
therapy may be given, and finally men can be directed towards 
assisted methods of reproduction as well as advanced sperm 
selection techniques. Reprinted with permission, Cleveland 
Clinic Foundation ©2022. All Rights Reserved. SDF, sperm DNA 
fragmentation. 
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randomized clinical trial that included 171 infertile men 
with at least one abnormal conventional semen parameter or 
SDF ≥25%, who received either a combination antioxidant 
regimen for 3–6 months or a placebo. After 3 months of 
treatment, there was no significant difference in percentage 
DNA fragmentation between the antioxidant and the 
placebo group. Furthermore, reproductive outcomes 
including clinical pregnancy rates, first trimester miscarriage 
rates and live birth rates were fairly similar between both 
groups (113). Another randomized clinical trial supplied 
infertile men with a combination of zinc and folic acid or 
a placebo for 6 months, and reported significantly higher 
DFI among the group that received antioxidants with a 
statistically significant mean difference of 2.4% (114). To 
explain this adverse outcome of antioxidants on SDF, it is 
important to keep in mind that not all SDF is caused by 
OS, with other pathophysiologic mechanisms playing a role 
as discussed earlier in this review. In fact, any disruption of 
the redox balance within the male reproductive system may 
lead to infertility, and supplying excessive or unwarranted 
antioxidants may tilt the scale towards reductive stress 
which, similar to OS, can also cause infertility by affecting 
the physiologic functions of endogenous ROS such as sperm 
capacitation and sperm DNA integrity (115). Supplying 
antioxidants may impair adequate maturation of the sperm 
nucleus, as excessive antioxidants prevent the creation of 
disulfide bridges between protamines, making sperm DNA 
less condensed and more susceptible to exogenous insults 
and damage, therefore increasing SDF (31).

Overall, several studies that explore the effects of 
antioxidants therapy on SDF have been published (116,117). 
Various antioxidant regimens, whether single agents or 
combination therapy, were supplied to the populations 
of infertile men by the different studies and for different 
treatment durations, mostly ranging from two to six 
months. The population of infertile men included also 
differed among the different studies, for example some 
included infertile men with abnormal conventional semen 
parameters, others have also looked into seminal OS, 
while others have included infertile men of couples who 
have failed ART or infertile men with known underlying 
conditions such as subclinical varicocele, leukocytospermia, 
and environmental exposure and studied the impact of 
antioxidant supplementation in them. The heterogeneity of 
the various studies in terms of patient selection, antioxidant 
regimen and dose, duration of treatment, and different 

conditions that may be associated with SDF, together with 
the scarcity of well-designed randomized clinical trials 
and the contradicting evidence published, as well as the 
potential harms have precluded the ability to make specific 
recommendations on the appropriate antioxidant treatment 
regimen to infertile men in general, and in those with 
elevated SDF in particular. 

Shorter abstinence 

A shorter ejaculatory abstinence is associated with lower levels 
of SDF, with semen collected after 1–2 days of abstinence 
containing significantly less SDF (9–10%) as measured 
by TUNEL assay, and semen collected after 9–11 days  
of abstinence containing significantly higher SDF (15–21%) 
(P<0.001) (118). This has also been demonstrated on clinical 
grounds with improved reproductive outcomes after IUI 
with an improved clinical pregnancy rate when an ejaculatory 
abstinence of two or less days was used compared to three or 
more days (11.3% vs. 6–7.3%; P<0.05) (119) and significantly 
improved pregnancy rates after ICSI, when recurrent 
ejaculation was performed in the last four days before the 
procedure and a final abstinence period of 12 hours was 
used (120). Therefore, reduced ejaculatory abstinence and 
recurrent ejaculation can be recommended to men with 
elevated SDF in an attempt to improve ART outcomes (98).

Hormonal therapy

Follicle stimulating hormone (FSH) is a commonly 
prescribed medical therapy for men with IMI and has been 
associated with improved semen parameters and fertility 
outcomes (121). FSH has also been shown to improve DNA 
integrity, as demonstrated by a meta-analysis that included 
6 studies and reported a small but significant improvement 
in SDF after FSH therapy (7). However, the evidence 
presented by this analysis is not reliable, as the included 
studies are very heterogeneous in terms of the patients 
included, the regimen of hormonal therapy, and the methods 
of measuring SDF (122). Furthermore, a pharmacogenetic 
study found that FSH treatment significantly improves SDF 
only in men with IMI that show NN genotype of the FSH 
receptor, but not the SS genotype (123). Given the poor 
quality of evidence and the possible genetic contribution 
to response, FSH therapy was not included in the 
recently published guidelines regarding the approach and 
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management of SDF (20,97). 

Advanced sperm selection 

Given the less impact of SDF on pregnancy rates after ICSI, 
couples with persistently elevated SDF may be directed to 
this ART procedure (20). However, elevated SDF may still be 
associated with miscarriage, even after ICSI. Several methods 
of advanced sperm selection can be used to reduce SDF 
before sperm is used for any ART procedure. These include:
 Magnetic activated cell sorting (MACS): uses 

Annexin V beads to bind phosphatidylserine on 
the surface of apoptotic sperm and removes them, 
thereby lowering SDF (124). In a retrospective 
study, the outcomes of ICSI performed for infertile 
men with SDF >20% as measured with TUNEL, 
were compared between 366 men for whom MASC 
was performed after density-gradient centrifugation 
(DGC) and 358 men who underwent ICSI after 
DCG without MACS (125). Although fertilization 
rates were similar for both groups, the MASC 
group had significantly higher clinical pregnancy 
(60.7% vs. 51.5%; P=0.014), and live birth rates 
(47.4% vs. 31.2%; P=0.001), and lower miscarriage 
rate (14.7% vs. 20.6%; P=0.034) compared to the 
DCG only group.

 Intracytoplasmic morphologically selected sperm 
injection (IMSI): uses microscopy to choose motile 
sperm devoid of vacuoles in their head, which have 
been found to contain less SDF (126). In a trial 
that included 80 infertile men, SDF measured by 
TUNEL was significantly lower in the IMSI group 
compared to the ICSI group (P<0.0001) (127). A 
meta-analysis that included studies comparing IMSI 
and ICSI outcomes for infertile men, reported 
significantly improved implantation rates (OR 
=1.56; P=0.01) and pregnancy rates (OR =1.61; 
P=0.004) for IMSI compared to ICSI, but no 
difference in miscarriage rates (128).

 Physiologic ICSI (P-ICSI): uses hyaluronic acid 
binding to choose mature sperm which were found to 
contain significantly lower SDF compared to initial 
unprocessed sperm (5.3% vs. 16.5%; P<0.001) (129). 
When compared to MACS, no significant differences 
were found for implantation, clinical pregnancy, and 
ongoing pregnancy rates overall, but when stratified 
for female age, outcomes were better when P-ICSI 

was used for women older than 30 versus MACS, 
although not statistically significant (130).

 Microf lu id ic  sperm sorters :  passes  sperm 
through microchannels using fluid dynamics to 
choose motile sperm, which have been found 
to have significantly lower DFI compared to 
sperm processed by conventional techniques of 
centrifugation and swim-up (0.8% vs. 10.1%; 
P=0.0014) (131).

 Testicular-derived sperm: a meta-analysis that 
included studies comparing SDF and reproductive 
outcomes between testicular sperm and ejaculated 
sperm concluded that SDF is significantly lower in 
testicular sperm (8.9% vs. 33.4%, P<0.0001) and 
when used for ICSI, is associated with significantly 
improved reproductive outcomes including clinical 
pregnancy (OR =2.42, P<0.001) and live birth rates 
(OR =2.58, P<0.001) and lower miscarriage rates 
(OR =0.28, P=0.005) (132). 

When discussing sperm selection, it is important to 
point out that little evidence is available regarding the 
benefit in improving SDF and reproductive outcomes. 
Furthermore, conflicting evidence exists, for example in 
a retrospective study on IMSI, sperm head vacuoles were 
not associated with SDF or live birth rates (133). Well-
designed clinical trials that investigate the effect of the 
various sperm selection methods for infertile men and the 
impact on ART outcomes are needed in order to make 
strong recommendations. As for testicular sperm, although 
it has been recommended for use as a last resort in cases of 
elevated SDF by the recent guidelines, the evidence behind 
the use of this invasive method is of poor quality and with 
no valid SDF testing for testicular sperm (98). Furthermore, 
a prospective study investigating the outcomes of ICSI with 
testicular sperm compared to ejaculated sperm, in infertile 
men with elevated SDF and previous ICSI failure, reported 
no benefit of testicular sperm in improving reproductive 
outcomes (134).

Future of SDF research: a SWOT analysis 

Recently, two different guidelines on SDF, based on high-
quality evidence, have been published by two research groups 
(20,97). In order to evaluate the current state of research 
on SDF, we analysed these sources by applying the SWOT 
(strengths, weaknesses, opportunities, and threats) analysis 
framework, a model derived from the business world that 
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has already been used in the field of reproductive medicine 
research (135). The results are presented in Figure 3.

Strengths 

Several studies reported that SDF negatively impacts male 
fertility. In particular, SDF levels inversely correlate with 
probability of natural pregnancy and high SDF levels are 
associated with a 7-fold increased risk of failure to achieve 
natural pregnancy (20). Moreover, high SDF can be found 
in up to 20% (97) or 30% (20) of idiopathic infertile couples 
and in subjects with varicocele (20). Higher levels of SDF 
were also observed in couples with RPL than in fertile 
couples (20,97). Interventions aimed to correct infertility 
factors such as varicocelectomy and changes in lifestyle 
habits have a positive effect on OS and SDF (20,97).

Weaknesses 

Unfortunately, despite the validity of SDF as an infertility 
marker, there are uncertainties about its actual clinical 
application. In particular, two important questions remain 
unanswered: which couples would benefit most from SDF 
testing and how should the test be conducted? To answer 
the first question, Agarwal et al. suggested SDF testing in 
men with UMI, IMI, recurrent miscarriage, lifestyle risk 
factors, varicocele and recurrent ART failure (Grade C 
recommendation—low quality of evidence). Esteves et al. 
offer similar indications (recommendation grade based 
on levels of evidence B-D—moderate-very low quality of 
evidence) and suggest SDF testing also for men undergoing 
sperm cryopreservation (Grade D recommendation). 
Regarding the best investigation technique and optimal 
cut-offs, Agarwal et al. conclude that the TUNEL assay is 

Figure 3 A SWOT analysis into the use of SDF testing in clinical practice. Reprinted with permission, Cleveland Clinic Foundation ©2022. 
All Rights Reserved. SWOT, strengths, weaknesses, opportunities and threats; SDF, sperm DNA fragmentation; ART, assisted reproductive 
technologies.

Strengths
Several studies reported a significant association 
between SDF and male infertility.  
High SDF levels are associated with:

• Sevenfold increased risk of failure to 
achieve natural pregnancy

• Idiopathic male infertility
• Unexplained male infertility
• Recurrent pregnancy loss
• Adverse impact on  

ART outcomes

Interventions aimed to correct 
infertility factors have a positive 
effect on SDF.

Weaknesses

No universally accepted recommendations exist 
regarding two important questions: 
Which couple would benefit most from SDF testing?

• Unexplained/idiopathic male infertility
• Recurrent miscarriage/ART failure
• Lifestyle risk factors and varicocele
• Fertility preservation/ 

sperm cryopreservation

What are the challenges in selecting 
a method for SDF testing?

• Many methods available but 
there is no gold standard

• No clear cut-off values and 
interpretation

• No robust evidence on the 
efficiency of each method

Opportunities

Future research could:
• Strengthen the clinical value of SDF
• Identify the subgroup of male patients 

that may benefit from SDF testing
• Provide methodological standardization 

and reliable thresholds
• Further support the role of SDF in 

natural pregnancy and ART
• Encourage a personalized approach in 

the management of male infertility

Threats

• The incorporation of SDF in the 2021 WHO 
manual could lead to misuse of this test 
without proper indications

• Some methods require expensive 
equipment and highly trained professionals 
that could add to the financial burden 
towards establishing a diagnosis

• Misuse of SDF testing and indiscriminate 
or long-term use of antioxidants may result 
in reductive stress
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the most commonly used and it is reliable and accurate, 
but high heterogeneity of published data exists to establish 
clear cut-off values. Esteves et al. provide a review of all the 
limitations and advantages of the different methods, but do 
not express a preference for any of them (20,97). 

Opportunities

Given that the association between SDF and male infertility 
is strong, future efforts should focus on investigating the 
possible practical uses of this parameter. In particular, it is 
necessary to establish which subgroup of infertile couples 
can benefit most from the identification of high levels of 
SDF. Also, standardisation of the testing methods and 
providing reliable references values are warranted. Since 
reducing SDF levels could be a valid objective in the 
treatment of infertility, it could be an excellent opportunity 
for high-quality interventional research. 

Threats

Despite the introduction of SDF assay in the 6th edition of 
WHO laboratory manual as an important extended test of 
semen (136), there are still many uncertainties about this 
type of investigation. Its indiscriminate use may not bring 
benefits outside specific contexts that should be identified. 
Furthermore, some tests such as the TUNEL assay require 
expensive equipment and need highly trained laboratory 
personnel. 

Conclusions: summary of key points 

 Currently, SDF is recognized as an important 
parameter in the practice of male infertility. There is 
growing evidence that high SDF negatively impacts 
reproductive outcomes under natural and ART 
conditions.

 Defects in sperm chromatin packaging, apoptosis, 
a n d  e x c e s s i v e  s e m i n a l  O S  a r e  u n d e r l y i n g 
pathophysiological mechanisms that lead to SDF, 
which is associated with many conditions and 
risk factors including: aging, varicocele, genital 
tract infections, poor lifestyle habits, and noxious 
environmental or occupational exposure.

 The procedures that are commonly used for SDF 
assessment include the TUNEL, SCSA, SCD, and 
Comet. The choice of assay depends on trained 

personnel and availability of instrumentation, and 
the diagnostic thresholds should be determined and 
validated by the performing laboratory. 

 The ASRM guidelines do not recommend routine 
SDF test in the evaluation of male infertility due to 
lack of information. On the other hand, the ESHRE 
and EAU guidelines consider SDF in couples with 
RPL. The WHO 2021 manual describes SDF testing 
as a potentially important addition in the work-up of 
infertile men.

 Several strategies are suggested to reduce SDF among 
infertile men before natural or assisted conception 
including: (I) control of body weight; (II) reduce 
smoking and environmental exposures; (III) treatment 
of genital tract infection; (IV) varicocele repair; and 
(V) antioxidant therapy. In addition, several methods 
of sperm selection can be used in ART procedure 
including MACS, IMSI, P-ICSI or testicular sperm.

 Strong evidence is available on the negative impact 
of SDF on male fertility potential. However, the 
quality of evidence and the heterogeneity of the 
available studies prevent the ability to make strong 
recommendations regarding indications of SDF 
testing, assays for SDF testing and their cut-off values, 
and treatment of infertile men with elevated SDF. 
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