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Background: The aim of this study was to compare the ability of a standard magnetic resonance imaging 
(MRI)-based radiomics model and a semantic features logistic regression model in differentiating between 
predominantly osteolytic and osteoblastic spinal metastases.
Methods: We retrospectively analyzed standard MRIs and computed tomography (CT) images of  
78 lesions of spinal metastases, of which 52 and 26 were predominantly osteolytic and osteoblastic, 
respectively. CT images were used as references for determining the sensitivity and specificity of standard 
MRI. Five standard MRI semantic features of each lesion were evaluated and used for constructing a logistic 
regression model to differentiate between predominantly osteolytic and osteoblastic metastases. For each 
lesion, 107 radiomics features were extracted. Six features were selected using a support vector machine (SVM) 
and were used for constructing classification models. Model performance was measured by means of the 
area under the curve (AUC) approach and compared using receiver operating characteristics (ROC) curve 
analysis.
Results: The signal intensity on T1-weighted (T1W), T2-weighted (T2W), and fat-suppressed  
T2-weighted (FS-T2W) MRI sequences were significantly different between predominantly osteolytic 
and osteoblastic spinal metastases (P<0.001), as is the case with the existence of soft-tissue masses. The 
overall prediction accuracy of the models based on radiomics and semantic features was 78.2% and 75.6%, 
respectively, with corresponding AUCs of 0.82 and 0.79, respectively. 
Conclusions: The standard MRI-based radiomics model outperformed the semantic features logistic 
regression model with regard to differentiating predominantly osteolytic and osteoblastic spinal metastases.
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Introduction

The spine is the third most common site for distant 
metastases of malignant tumors, second only to the lungs 
and liver. A considerable percentage of patients with 
malignant tumors (40–70%) develop spinal metastases (1,2). 
Spinal metastases often cause pain, pathological fractures, 
hypercalcemia, nerve root compression, and spinal 
cord compression symptoms, thereby severely reducing 
patients’ quality of life (3). When spinal metastases occur, 
the dynamic balance between bone formation and bone 
destruction is destroyed through an interaction between 
tumor cells and the bone microenvironment (4). Spinal 
metastases usually lead to the development of 2 types 
of lesions: osteolytic and osteoblastic. Osteolytic bone 
metastases are usually noted in lung, kidney, thyroid, and 
breast cancer (5-8), while osteoblastic bone metastases 
are commonly seen in prostate and breast cancer (9). 
The differentiation between osteolytic and osteoblastic 
metastases is clinically significant for the diagnosis, efficacy 
evaluation, and prognosis prediction of spinal metastases. 
The clinical significance includes the following: (I) 
narrowing the search for primary tumor sites in patients 
with spinal metastases with unknown primary tumors (10); 
(II) planning the treatment, including surgery and molecular 
targeted drugs (9,11); (III) assessing the therapeutic 
response, as sclerotic transformation in formerly osteolytic 
lesions generally suggests a response to treatment (12); and 
(IV) factoring in the higher incidence of vertebral body 
pathologic fractures with osteolytic metastases compared 
to osteoblastic metastases, as osteolytic lesions have the 
highest impact on bone strength (13). 

The most frequent modalit ies  to visual ize and 
characterize spinal metastases are computed tomography 
(CT), magnetic resonance imaging (MRI), and nuclear 
examination. The current gold standard for differentiating 
osteolytic from osteoblastic lesions is CT-based changes in 
Hounsfield units (HUs). However, MRI provides detailed 
information on the bone marrow and offers excellent 
soft-tissue contrast. Therefore, it is one of the modalities 
of choice in the detection, diagnosis, and assessment 
of treatment response of spinal metastases. Moreover, 
standard pulse sequences, including T1-weighted (T1W), 
T2-weighted (T2W), and fat-suppressed T2-weighted 
(FS-T2W) sequences can achieve high detection and 
diagnostic accuracy (12,14,15). The signal intensity of 
spinal metastases is almost invariably of iso low signal 
intensity on T1W MRIs, but its variability on T2W MRIs 

is related to osteoblastic or osteolytic characteristics. 
Osteolytic lesions are more likely to be of high signal 
intensity, while osteoblastic lesions are more likely to be of 
iso low signal intensity on T2W MRIs (16,17). In addition, 
compared with osteoblastic lesions, osteolytic lesions are 
often accompanied by soft masses and pathological fractures 
(18,19). These qualitative semantic imaging features are 
often used to differentiate between predominantly osteolytic 
and osteoblastic spinal metastases.

However, due to the heterogeneity of osteolytic and 
osteoblastic lesions on T2W MRIs, there are limitations 
to standard MRI for differentiating between osteolytic 
and osteoblastic spinal metastases (10). As a new medical 
image analysis method, radiomics enables the extraction 
and selection of a large number of more sophisticated 
quantitative imaging features from medical images 
with high throughput, based on which descriptive and 
predictive models can be constructed (20). Some studies 
have shown that radiomics has potential for application 
in differentiation, diagnosis, genetic analysis, treatment 
response assessment, and prognosis in cases of spinal 
metastases (21-25). However, few previous studies have 
compared the performance of the semantic features and 
radiomics models in differentiating between osteolytic and 
osteoblastic spinal metastases based on standard MRI to 
evaluate the potential value of radiomics features.

Therefore, in this study, we developed a radiomics 
model and a semantic features logistic regression model 
for differentiation of osteolytic and osteoblastic spinal 
metastases and comparatively assessed the performance 
of these 2 models. We present the following article in 
accordance with the STARD (Standards for Reporting 
Diagnostic accuracy studies) reporting checklist (available at 
https://qims.amegroups.com/article/view/10.21037/qims-
22-267/rc).

Methods

Study population

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This study was approved 
by and registered with the Peking University Third 
Hospital Medical Science Research Ethics Committee, and 
individual consent for this retrospective analysis was waived. 
CT images and MRIs of patients with suspected spinal 
metastases after magnetic resonance (MR) examinations at 
Peking University Third Hospital between August 2006 

https://qims.amegroups.com/article/view/10.21037/qims-22-267/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-267/rc
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26 predominantly 
osteoblastic lesions

52 predominantly 
osteolytic lesions

506 patients suspected of spinal 
metastases after MR examinations 
from August 2006 to August 2019

Excluded (n=335)
•	Patients without pathologically confirmed 

spinal metastases (n=272)
•	Patients without CT images of the same 

site as the MRI of the spine or with any 
therapy administered between the CT 
and MR scans (n=63)

Excluded (n=93)
•	Surgery performed for lesions of the 

spinal metastases before MR and CT 
examinations (n=23)

•	Lesions on CT not being the 
manifestation of predominantly osteolytic 
or osteoblastic spinal metastases (n=61)

•	Missing sagittal T1, T2 or fat-suppressed 
T2-weigted sequences of the spine (n=9)

78 patients

171 patients

Figure 1 Flowchart demonstrating the inclusion and exclusion criteria for this study. MR, magnetic resonance; CT, computed tomography; 
MRI, magnetic resonance imaging.

and August 2019 (Figure 1) were retrospectively analyzed. 
The inclusion criteria were as follows: (I) patients with 
pathologically confirmed spinal metastases and (II) patients 
with CT images of the same site as the MRIs of the spine 
and without any therapy administered between the CT and 
MR scans. The exclusion criteria were as follows: (I) surgery 
performed for the lesion of the spinal metastases before 
MR and CT examinations; (II) lesions on CT not being the 
manifestation of predominantly osteolytic or osteoblastic 
spinal metastases; (III) and missing sagittal T1W, T2W, or 
FS-T2W sequences of the spine.

Imaging acquisition

Sagittal T1W, T2W, and FS-T2W sequences of all patients 
were acquired with a 1.5-T or 3.0-T MR scanner. Table S1 
shows the model information of the different MR scanners. 

Scanning parameters of the cervical, thoracic, lumbar, and 
sacral vertebrae are shown in Table S2. CT images of the 
same sites as those examined by MRI were acquired using 
different scanners with a tube voltage of 120 kV and a 
tube current of between 137 and 543 mAs. The collimator 
width was 0.625 or 0.60 mm; the pitch was 1.0; and the 
slice thickness of reconstruction was 3 mm. For further 
observation, the acquired images were reformatted to a 
sagittal view (3-mm thickness). Table S3 shows the model 
information of the different CT scanners. 

For all identified patients, we exported MR and 
CT scans in Digital Imaging and Communications in 
Medicine (DICOM) format from the picture archiving and 
communication system (PACS). If multiple CT or MR scans 
meeting the inclusion and exclusion criteria were performed 
at the site of the patient’s lesion, we selected the MRIs and 
CT images with the shortest interval.

https://cdn.amegroups.cn/static/public/QIMS-22-267-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-267-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-267-Supplementary.pdf
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Assessment of CT imaging

With CT as the gold standard, lesions with a higher mean 
CT HU than those of the adjacent normal vertebrae were 
considered predominantly osteoblastic, while lesions with 
a lower mean CT HU were considered predominantly 
osteolytic. The biggest lesion in the field of view (FOV) 
was then selected. A radiologist with 4 years (Q.W.) of 
experience in the diagnosis of musculoskeletal diseases 
determined whether each lesion was predominantly 
osteoblastic or osteolytic. The radiologist was blinded to 
histopathological diagnosis, MRIs, and radiological reports 
of the MR examinations.

Assessment of semantic features

A radiologist with 5 years (Y.C.) of experience evaluated 
5 semantic features (Table 1) of each lesion on sagittal 
T1W, T2W, and FS-T2W sequences of the spine. For 
lesions where Y.C. was not confident in his evaluation, a 
senior musculoskeletal radiologist with 18 years (N.L.) of 
experience reviewed the MRI scans together with Y.C. to 
arrive at a mutual consensus. Both radiologists were blinded 
to histopathological diagnosis, CT images, and radiological 
reports of the MR examinations.

Radiomic analysis

Using ImageJ software (version 1.53a, https://imagej.nih.
gov; National Institutes of Health, Bethesda, MD, USA), 
a radiologist with 3 years (S.Q.) of experience delineated 
the edge of the region of interest (ROI) of the lesion 
layer by layer on the spine sagittal T1W, T2W, and FS-
T2W sequences. Another radiologist with 18 years (N.L.) 

of experience in diagnosing musculoskeletal diseases 
checked each outline. All radiologists were blinded to 
histopathological diagnosis, CT images, and radiological 
reports of the MR examinations. 

A total of 107 features were extracted from the ROI 
on each modality. In this study, 4 textual parametric 
matrices were applied for feature extraction. In particular,  
24 features were extracted with a gray-level co-occurrence 
matrix (GLCM), 16 features with a gray-level size 
zone matrix (GLSZM), 16 features with a gray-level 
run length matrix (GLRLM), 14 features with a gray-
level dependence matrix (GLDM), and 5 features with 
a neighboring gray-tone difference matrix (NGTDM). 
Besides texture features, we also used 18 first-order 
features and 14 shape features. All features are summarized 
in Table S4. Tumor segmentation was performed on 
each 2-dimensional slice, and 2-dimensional slices were 
rendered into a 3-dimensional space with isotropic voxel 
resolution for extracting the 3-dimensional texture 
features. 

After the features for all cases were extracted, they 
were properly normalized to a mean of 0 and a standard 
deviation of 1. The feature selection was a sequential 
feature selection process, in which multiple support vector 
machine (SVM) classifiers were trained and validated. 
SVM is a supervised machine learning algorithm that 
occupies different kernel functions, which can map the data 
to kernel space to optimize the classification performance. 
During the feature selection process, SVM with a 
Gaussian kernel served as the cost function to evaluate the 
performance of models, which were trained from a subset 
of extracted features. At the start of the selection process, 
we used an empty candidate feature set. The selected 

Table 1 Description of 5 semantic features

Semantic features Descriptions

SI on T1WS Described as low, iso-, or high signal intensity

SI on T2WS Described as low, iso-, or high signal intensity

SI on FS-T2WS Described as low, iso-, or high signal intensity

Soft tissue masses Including intraspinal soft tissue masses and paravertebral soft tissue masses

Severe compression fractures Compression height exceeds 50% of the vertebral body

Low signal intensity, the signal intensity of the lesion is lower than that of the spinal cord at the same slice; high signal intensity, the 
signal intensity of the lesion is higher than that of the spinal cord at the same slice; iso-signal intensity, the signal intensity of the lesion is 
approximately equal to that of the spinal cord at the same slice. SI, signal intensity; T1WS, T1-weighted sequence; T2WS, T2-weighted 
sequence; FS-T2WS, fat-suppressed T2-weighted sequence.

https://imagej.nih.gov
https://imagej.nih.gov
https://cdn.amegroups.cn/static/public/QIMS-22-267-Supplementary.pdf
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Classification results

Figure 2 Radiomics analysis procedures used to build the classification model. The procedure starts with drawing a tumor ROI, which is 
followed by radiomics feature extraction. Lastly, the SVM selects important features and builds the final classification model to differentiate 
osteolytic and osteoblastic spinal metastases. GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, 
gray-level run length matrix; SVM, support vector machine; ROI, region of interest.

features were then sequentially added to this feature set. 
To evaluate the model performance, we used 10-fold 
cross-validation to continuously evaluate the importance 
of the selected features. To test the robustness of the 
features, training processes were repeated 1,000 times,  
and then the feature that provided the best performance 
was added to the candidate set. When the additional 
feature could no longer improve the model performance, 
the feature selection was terminated. In this study,  
10−6 worked as the termination tolerance for the cost 
function value.

 The analysis was performed using programs written 
in MATLAB 2019b (MathWorks, Natick, MA, USA) and 
Python 3.7 (Python Software Foundation, Wilmington, DE, 
USA). The radiomics analysis procedures are illustrated in 
Figure 2.

Correlation analysis of radiomics feature values and 
metastases-to-normal vertebral body CT HU ratio 

CT HU units can effectively differentiate predominantly 
osteolyt ic  and osteoblas t ic  metastases .  We used 
metastases-to-normal vertebral body CT HU ratio (MVR) 
to describe the extent of bone formation or destruction of 
the lesions. This was performed to correct the differences 
in the degree of vertebral bone mineralization between 

the different patients due to nonmetastatic factors such 
as osteoporosis. Our aim was to demonstrate that these 
radiomics features performed as well as CT HUs in 
differentiating between osteolytic and osteoblastic spinal 
metastases. Therefore, we further analyzed the correlation 
between MVRs and the values of radiomics features, 
which were selected to construct the radiomics model. CT 
HUs were measured using a built-in calculation tool in 
the hospital’s PACS (Centricity RIS CE v. 3.0; Chicago, 
IL, USA). The oval ROI of metastases and normal 
vertebral bodies were placed at the largest area of the 
lesion and adjacent normal vertebral bodies on the most 
representative sagittal slice to measure the CT HUs. The 
following MVR was calculated:

( )
( )

CT HU metastases
=MVR

CT HU normal vertebral body [1]

Pearson correlation coefficients were calculated between 
MVR and the value of each radiomics feature that was used 
to construct the radiomics model.

Model development and validation

The radiomics features and semantic features selected 
by the SVM were evaluated for their ability to predict 
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predominantly osteolytic and osteoblastic lesions using both 
an SVM model and a logistic regression mode. A detailed 
description of SVM and logistic regression is included in the 
Supplementary Materials (Appendix 1). The performance 
of the 2 models was assessed using 10-fold cross-validation. 
While 90% of the cases were used for training the model, 
the performance was evaluated using the remaining 10% 
cases.

Statistical analysis

Statistical analyses were performed using SPSS 26.0 (IBM 
Corp., Armonk, NY, USA). Chi-square tests were used for 
categorical and ranked data to evaluate semantic features. A 
receiver operating characteristic (ROC) curve was generated 
to show the predictive performance. Sensitivity, specificity, 
accuracy, positive predictive value (PPV), negative 
predictive value (NPV), and area under the ROC curve 
(AUC) were calculated. P values <0.05 were considered 
statistically significant. The difference in the AUC between 
the radiomics model and the semantic model was analyzed 
using the DeLong test.

Results

Demographics and clinical characteristics

Among 78 lesions of spinal metastases, 26 lesions were 
predominantly osteoblastic, while 52 lesions were 
predominantly osteolytic. The mean patient age (standard 
deviation) was 59.2±10.6 years (range, 39–84 years). The 
study population included 51 men with a mean age of 
60.3±11.2 years (range, 39–84 years) and 27 women with 
a mean age of 57.0±9.0 years (range, 44–70 years). The 
average scan interval between MRIs and CT images was 
6 days. The primary tumors and anatomic locations of all 
lesions are shown in Table 2. 

Evaluation results of semantic features

The evaluation results of the 5 semantic features by a 
radiology resident with 5 years (Y.C.) of experience are 
shown in Table 3. Except for severe compression fractures, 
the signal intensities of T1W, T2W, and FS-T2W 
sequences and the existence of soft tissue masses were 
significantly different between the predominantly osteolytic 

Table 2 Primary tumors and anatomic locations of all lesions (N=78)

Characteristics All lesions (n=78) Osteoblastic lesions (n=26) Osteolytic lesions (n=52)

Primary tumors

Lung cancer 24 8 16

Renal carcinoma 11 0 11

Breast carcinoma 8 5 3

Prostate carcinoma 7 5 2

Cancer of unknown primary 7 5 2

Thyroid carcinoma 7 1 6

Colorectal carcinoma 5 2 3

Hepatocellular carcinoma 5 0 5

Cholangiocellular carcinoma 2 0 2

Rhabdomyosarcoma 1 0 1

Leiomyosarcoma of uterus 1 0 1

Locations

Cervical spine 25 3 22

Thoracic spine 22 9 13

Lumbar spine 28 14 14

Sacral spine 3 0 3

https://cdn.amegroups.cn/static/public/QIMS-22-267-Supplementary.pdf
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Table 3 Comparisons of 5 semantic features between predominantly osteolytic and osteoblastic lesions (N=78)

Semantic features Osteoblastic (n=26), n (%) Osteolytic (n=52), n (%) χ2 value P value

SI on T1WS 15.169 0.001

Low 23 (88.5) 22 (42.3)a

Iso- 2 (7.7) 17 (32.7)a

High 1 (3.8) 13 (25)a

SI on T2WS 17.016 <0.001

Low 19 (73.1) 13 (25)a

Iso- 0 (0) 4 (7.7)

High 7 (16.7) 35 (67.3)a

SI on FS-T2WS 11.446 0.001

Low 8 (30.8) 1 (1.9)a

High 18 (69.2) 51 (98.1)a

Soft tissue mass 12 (46.2) 47 (90.4)a 18.404 <0.001

Severe compression fracture  9 (34.6) 22 (42.3) 0.428 0.513
a, comparison with osteoblastic lesions, P<0.05. SI, signal intensity; T2WS, T2-weighted sequence; T1WS, T1-weighted sequence; FS-
T2WS, fat-suppressed T2-weighted sequence.

and osteoblastic groups (P≤0.001).

Features to construct the radiomics model

For radiomics analysis, 6 features were considered to 
show the high importance in the feature selection process, 
including 2 features from T1W sequences and 4 features 
from T2W sequences. T1W features included skewness and 
GLCM max probability. T2W features included GLCM 
difference entropy, NGTDM busyness, surface area/volume 
ratio, and GLRLM long run low gray-level emphasis 
(LRLGLE). The final classification results were generated 
using the selected features using SVM.

The Pearson correlation between MVR and T1W 
GLCM maximum probability was 0.88 (Figure 3). For other 
features, the Pearson correlation values based on MVR 
were lower than 0.74 (T1W skewness, 0.62; T2W GLCM 
difference entropy, 0.74; T2W NGTDM busyness, 0.41; 
T2W GLRLM LRLGLE, 0.41; and T2W surface area/
volume ratio, 0.23; Figure 3).

Comparison of semantic features model and radiomics 
model

For the semantic features logistic regression model and 

radiomics model, after 10-fold cross-validation, the overall 
prediction accuracy was 75.6% and 78.2%, respectively. 
Based on the ROC curve, the corresponding AUCs 
obtained for the prediction of osteolytic and osteoblastic 
metastases were 0.79 (95% CI: 0.68–0.91) and 0.82 (95% 
CI: 0.71–0.93). Based on the DeLong test, the P value was 
0.15, and the z value was 0.77. Other diagnostic results are 
listed in Table 4, and the generated ROC curves are shown 
in Figure 4. Figure 5 shows 2 examples in which osteolytic 
and osteoblastic spinal metastases were correctly predicted 
by the radiomics model and semantic features logistic 
model. Figure 6 shows 2 examples in which osteolytic and 
osteoblastic spinal metastases were correctly predicted by 
the radiomics model only.

Discussion 

Standard MRI has exceptionally high accuracy in the 
detection of spinal metastases. However, due to the 
heterogeneity of osteolytic and osteoblastic lesions of T2W 
MRIs, there are limitations to the application of standard 
MRI for differentiating between osteolytic and osteoblastic 
spinal metastases. Emerging radiomics technology can 
further mine MRI data. This study proved that some 
semantic features of standard MRI (the signal intensities of 
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Figure 3 Correlation of MVR and the values of 6 radiomics features used to construct the radiomics model. (A) Correlation graph of MVR 
and the values of T1W GLCM maximum probability. (B) Correlation graph of MVR and the values of T2W GLCM difference entropy. (C) 
Correlation graph of MVR and the values of T1W skewness. (D) Correlation graph of MVR and the values of T2W NGTDM busyness. (E) 
Correlation graph of MVR and the values of T2W GLRLM LRLGLE. (F) Correlation graph of MVR and the values of T2W surface area/
volume ratio. MVR, metastases-to-normal vertebral body CT Hounsfield units ratio; T1W, T1-weighted; T2W, T2-weighted; GLCM, 
gray-level co-occurrence matrix; NGTDM, neighboring gray-tone difference matrix; GLRLM, gray-level run length matrix; LRLGLE, 
long-run low-gray level emphasis.

Table 4 Predictive performance of the radiomics model and semantic features logistic regression model

Models Sensitivity Specificity PPV NPV Accuracy AUC (95% CI)

Radiomics 73.1% (19/26) 80.8% (42/52) 65.5% (19/29) 85.7% (42/49) 78.2% 0.82 (0.71–0.93)

Logistic regression with 
semantic features

80.8% (21/26) 73.1% (38/52) 60.0% (21/35) 88.4% (38/43) 75.6% 0.79 (0.68–0.91)

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve; CI, confidence 
interval.
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Figure 4 ROC curves of the radiomics model and semantic 
features logistic regression model. RM, radiomics model; AUC, 
area under the receiver operating characteristic curve; SFLRM, 
semantic features logistic regression model; ROC, receiver 
operating characteristic.

Figure 5 Two examples correctly predicted as predominantly osteolytic and osteoblastic spinal metastases by the radiomics model and semantic 
features logistic model. (A,E) CT images; (B,F) T2WS images; (C,G) T1WS images; and (D,H) FS-T2WS images. Predominantly osteolytic 
spinal metastases in a 44-year-old woman with hepatocellular carcinoma (arrows in A-D). The lesion indicated by the arrows has a high signal 
intensity on T2WS, low signal intensity on T1WS, and high signal intensity on FS-T2WS, with a soft tissue mass and no severe compression 
fractures. Predominantly osteoblastic spinal metastases in a 50-year-old woman with hepatocellular carcinoma (arrows in E,F). The lesion 
indicated by the arrows has a low signal intensity on all 3 sequences, with no soft tissue mass and no severe compression fractures. CT, 
computed tomography; T2WS, T2-weighted sequence; T1WS, T1-weighted sequence; FS-T2WS, fat-suppressed T2-weighted sequence.

T1W, T2W, FS-T2W sequences, and the presence of soft-
tissue masses) were significantly different between osteolytic 
and osteoblastic spinal metastases (P<0.001). CT was used 
as the reference standard. Constructed using standard MRI 
semantic features, the logistic regression model used for 
differentiating osteolytic spinal metastases from osteoblastic 
metastases had an accuracy of 75.6% and an AUC of 0.79. 
The accuracy of the radiomics model based on standard 
MRI was 78.2%, and the AUC was 0.82. T1W GLCM 
max probability, which was used to construct the radiomics 
model, was strongly correlated with MVR measurements 
obtained with CT (r=0.88). Overall, the standard MRI-
based radiomics model outperformed the semantic features 
logistic regression model in differentiating between 
predominantly osteolytic and osteoblastic spinal metastases.

MRI, CT, whole-body bone scanning (BS), positron 
emission tomography (PET), and single-photon emission 
computed tomography (SPECT) are commonly used 



Quantitative Imaging in Medicine and Surgery, Vol 12, No 11 November 2022 5013

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(11):5004-5017 | https://dx.doi.org/10.21037/qims-22-267

F G H

B

E

C DA

Figure 6 Two examples correctly predicted as predominantly osteolytic and osteoblastic spinal metastases by only the radiomics model. 
(A,E) CT images; (B,F) T2WS images; (C,G) T1WS images; and (D,H) FS-T2WS images. Predominantly osteolytic spinal metastases 
in a 54-year-old woman with thyroid carcinoma (arrows in A-D). The lesion indicated by the arrows is low signal intensity on T2WS, 
iso-signal intensity on T1WS, and uneven high signal intensity on FS-T2WS, with soft tissue mass and no severe compression fractures. 
Predominantly osteoblastic spinal metastases in a 62-year-old man with hepatocellular carcinoma (arrows in E,F). The lesion indicated by 
the arrows is low signal intensity on all 3 sequences, with soft tissue masses and no severe compression fractures. CT, computed tomography; 
T2WS, T2-weighted sequence; T1WS, T1-weighted sequence; FS-T2WS, fat-suppressed T2-weighted sequence.

in the diagnosis of spinal metastases. One meta-analysis 
suggests that MRI is the best modality and better than 
other techniques for diagnosing spinal metastases on 
both a per-patient and a per-lesion basis (26). However, 
additional CT examinations with extra costs and associated 
ionizing radiation may be required because osteolytic 
and osteoblastic metastases cannot always be reliably 
differentiated with standard MRI sequences. Radiomics is 
a quantitative approach to medical imaging whose purpose 
is to enhance the existing data available to clinicians 
by advanced and sometimes nonintuitive mathematical 
analysis (27). According to the AUC, the performance of 
the radiomics model was better than that of the semantic 
model based on standard MRI; however, as the P value 
was higher than 0.05, this difference was not significant. 
However, considering the larger number of osteolytic cases, 
the radiomics model had a lower number of false positives 

and improved the specificity. Therefore, the radiomics 
model can be more robust and generalized when validating 
other data sets. In addition, some studies have shown that 
software can automatically identify, segment, and extract 
radiomics features of tumors (28-30). However, advances 
in data-sharing technology will help collect data on large 
cohorts of patients and, thus, improve the performance of 
radiomics (31). We believe that radiomics can assist with 
generating more valuable patient information in a single 
MR exam, thus minimizing the number of required exams 
and costs in the future.

Böker et al. (10) showed that susceptibility-weighted 
MR has high sensitivity and specificity for osteolytic and 
osteoblastic spinal metastases. However, susceptibility 
is dependent on the magnetic field strength and echo 
time; thus, the results from this study cannot be directly 
extrapolated to MR scans, which have magnetic field 
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strengths other than 1.5-T or different echo times. 
Moreover, MRI scan times are prolonged with an increase 
in the scan sequence, and patients with spinal metastases 
often cannot tolerate extended examinations. Therefore, 
susceptibility-weighted MRI has certain limitations. 
Nonetheless, adjusting the sequence for individual scanners 
is not difficult. Multitask radiomics training was recently 
used in medical imaging for several tasks and modalities  
(32-34). Therefore, radiomics has a broader range of 
potential applications than does susceptibility-weighted MR.

Linear regression and logistic regression are widely 
used due to their simplicity (35). With very few inputs, a 
relatively general model can be established. SVM is the 
most popular classification algorithm and typically exhibits 
the highest performance ranks for many classification 
problems in radiomics studies, given its advantages of 
regularization and convex optimization (36-39). Therefore, 
we selected the above 2 methods to construct models 
according to the characteristics of semantic features 
and radiomics features. In our study, the classification 
performance of the semantic features logistic regression 
models was lower than that of the radiomics model. One 
possible explanation was that the texture features (GLCM, 
GLRLM, NGTDM) to construct the radiomics model 
contained more information about the distribution of 
voxel intensities and the intervoxel relationships of lesions 
compared with MRI signal intensity (40).

The high-dimensionality features used to construct a 
radiomics model are abstract and difficult to interpret. This 
reduces the generalizability of the model and also leads to 
lower trust and acceptance of the model by end users (41). 
Therefore, we analyzed the correlation between the values 
of the features used to construct the radiomics model and 
the MVR. The strong correlation between MVR and T1W 
GLCM maximum probability (r=0.88) and its relatively 
strong correlation with T2W GLCM difference entropy 
(r=0.74) and T1W skewness (r=0.62) enabled reliable 
differentiation of predominantly osteolytic and osteoblastic 
spinal metastases. In addition, a novel MR technique using 
deep learning for synthetic CT (sCT) transformed T1W 
radiofrequency spoiled multiple gradient-echo-derived MRI 
properties of tissues to HUs (42,43). This indicates that 
T1W MR images can estimate HUs to demonstrate bone 
anatomy. However, further studies are needed to validate 
the feasibility of generating sCT images using standard 
MRI radiomics features and comparing them with previous 
synthesis methods.

Previous studies have shown that it is difficult to 

differentiate between osteolytic and osteoblastic metastases 
using MRI due to the heterogeneity of osteolytic and 
osteoblastic lesions of T2W MRIs (10,16). We found that 
among the 3 feature values showing a strong correlation 
with MVR, 2 were from T1W MRIs, while only 1 was from 
T2W MRIs. These results are consistent with previous 
studies. However, in image semantic analysis, the signal 
intensity on T2W MRIs also showed significant differences 
between osteolytic and osteoblastic metastases (P<0.001), 
and 4 of the 6 features selected for constructing the 
radiomics model were from T2W MRIs. Thus, T2W MRIs 
also play an essential role in differentiating osteolytic from 
osteoblastic spinal metastases.

This study had several limitations. First, as a retrospective 
study, selection bias was inevitable. Second, compared with 
osteolytic cases, osteoblastic cases are relatively fewer, thus 
prolonging the time required to collect cases. Third, ROI 
segmentation was performed manually, hence increasing 
the possibility of segmentation errors. Image segmentation 
methods based on deep learning have attracted attention 
due to their self-learning and generalization capabilities 
for big data, and these methods have been applied to image 
segmentation in radiomics (44). Finally, we did not include 
an independent test data set since this was a preliminary 
study. When new data sets become available, the model 
developed in this work can be tested to determine its 
external validity.

Conclusions

In this study, we compared the ability of a standard MRI-
based radiomics model and semantic features logistic 
regression model in differentiating osteolytic from 
osteoblastic spinal metastases. The results showed that the 
performance of the standard MRI-based radiomics model is 
better than that of the semantic features logistic regression 
model. Compared with existing methods for differentiating 
osteolytic from osteoblastic metastases, the performance of 
the radiomics model may be improved dynamically with the 
expansion of the training set. In addition, radiomics may 
prove to have a broader scope of application with single MR 
exams in future multitask radiomics studies.
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Appendix 1 

SVM and logistic Regression

Support vector machine (SVM) usually proved the best 
performance when comparing with other popular classification 
problem in the real-world applications. The outstanding 
performance of SVM is due to its advantages of regularization 
and convex optimization (45-48). The kernel function of 
the support vector machine can find a hyperplane with an 
N-dimensional space (N is the number of features). In this 
feature space, the datapoint can be optimally distinct. In SVM, 
different kernel functions are applied to transform the original 
data into specific feature space to select support vectors. 
The generated hyperplanes provided the decision boundaries 
which can optimize the classification of the data points which 
can be distinguished into different classes when they fall on 
the side of the hyperplane. The data points which closer 
to the hyperplanes work as the support vectors which can 
influence the position and orientation of the hyperplane. Based 

on these support vectors, the margin of the classifier can be 
maximized to get the best classification performance. Due to 
the utilization of the hyperplane, the classification performance 
is relatively better than other methods (48). Also, this strategy 
can overcome the overfitting issue during training. But due to 
the complicated settings, the required training dataset needs to 
be larger compared to using other methods. 
Unlike SVM, Linear and logistic regression are popular 
due to the simple implementation (35). We can estimate a 
linear model by searching the parameters to fit a model of 
the straight line in the original data space. Then applying 
the logistic function to the linear mode, logistic regression 
model can be used to differentiate binomial distributions. 
The strategy of logistic function is very simple. The output 
of the linear model is applied to sigmoid function. All values 
are nonlinear rescaled to the range between 0 and 1. Logistic 
regression is one of the simplest methods in ML. With very 
few inputs, a relatively general model can be established. 

Table S1 The model information of MR scanners

Model Manufacturer Address Field strength

Magnetom Sonata Siemens Healthcare Erlangen, Germany 1.5T

Optima MR360 GE Medical Systems Wisconsin, USA 1.5T

Magnetom Trio Siemens Healthcare Erlangen, Germany 3.0T

Signa HDx GE Medical Systems Wisconsin, USA 3.0T

Discovery MR750 GE Medical Systems Wisconsin, USA 3.0T

Discovery MR750w GE Healthcare Japan Corporation Tokyo, Japan 3.0T

uMR 770 United Imaging Healthcare Shanghai, China 3.0T

Supplementary
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Table S2 MRI-Sequence Parameters of the Imaging Protocol

FOV (cm2) Slice thickness (mm) Slice gap (mm) TR/TE (ms)

Cervical vertebra

SAG T2 FRFSE 28×28 3.0 0.5 2700/120

SAG T1 FSE 28×28 3.0 0.5 710/8.0

SAG T2 IDEAL 28×28 3.0 0.5 2500/85

Thoracic vertebra

SAG T2 FSE 36×36 3.0 0.5 2700/120

SAG T1 FSE 36×36 3.0 0.5 700/9.0

SAG T2 IDEAL 36×36 3.0 0.5 2500/85

Lumbar and sacral vertebra

SAG T2 FSE 30×30 4.0 0.5 3100/120

SAG T1 FSE 30×30 4.0 0.5 700/10

SAG T2 FS 30×30 4.0 0.5 3300/85

MRI, magnetic resonance imaging; FOV, field of view; TR, rime to repeat; TE, time to echo; SAG, sagittal; FRFSE, fast relaxation fast spin 
echo; FSE, fast spin echo; IDEAL, iterative decomposition of water and fat with echo asymmetry and least-squares estimation; FS, fat 
suppression.

Table S3 The model information of CT scanners

Model Manufacturer Address

LightSpeed VCT GE Medical System Chalfont St Giles, UK

Discovery CT750 GE Medical System Wisconsin, USA

Sensation Siemens Healthcare Erlangen, Germany

SOMATOM Definition Flash Siemens Healthcare Erlangen, Germany

uCT790 United Imaging Healthcare Shanghai, China
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Table S4 List of 107 radiomics features

1st Order Shape GLCM GLSZM GLRLM GLDM NGTDM

(N=18) (N=14) (N=24) (N=16) (N=16) (N=14) (N=5)

10th percentile Elongation Autocorrelation GLN GLN DE busyness

90th percentile Flatness Cluster Prominence GLNN GLNN DN coarseness

Energy Least Axis Length Cluster Shade GLV GLV DNN complexity

Entropy Major Axis Length Cluster Tendency HGLZE HGLRE DV contrast

Interquartile Range Max 2D diameter (Column) Contrast LAE LGLRE GLN strength

Kurtosis Max 2D diameter (Row) Correlation LAHGLE LRE GLV

MAD Max 2D diameter (Slice) Difference Average LALGLE LRHGLE HGLE

Maximum Max 3D diameter Difference Entropy LGLZE LRLGLE LDE

Mean Mesh Volume Difference Variance SAE RE LDHGLE

Median Minor Axis Length ID SAHGLE RLN LDLGLE

Minimum Sphericity IDM SALGLE RLNN LGLE

Range Surface Area IDMN SZN RP SDE

rMAD Surface Area/Volume ratio IDN SZNN RV SDHGLE

RMS Voxel Volume IMC1 ZE SRE SDLGLE

Skewness IMC2 ZP SRHGLE

Std Inverse Variance ZV SRLGLE

Uniformity Joint Average

Variance Joint Energy

Joint Entropy

Max Probability

MCC

Sum Average

Sum Entropy

Sum of Squares

GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; GLRLM, gray-level run length matrix; GLDM, gray level 
dependence matrix; NGTDM, neighboring gray tone difference matrix.
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