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Background: The grade of hepatic steatosis is assessed semi-quantitatively and graded as a discrete value. 
However, the proton density fat fraction (PDFF) measured by magnetic resonance imaging (MRI) and FF 
measured by MR spectroscopy (FFMRS) are continuous values. Therefore, a quantitative histopathologic 
method may be needed. This study aimed to (I) provide a spectrum of values of MRI-PDFF, FFMRS, and 
FFs measured by two different histopathologic methods [artificial intelligence (AI) and pathologist], (II) to 
evaluate the correlation among them, and (III) to evaluate the diagnostic performance of MRI-PDFF and 
MRS for grading hepatic steatosis.
Methods: Forty-seven patients who underwent liver biopsy and MRI for nonalcoholic steatohepatitis 
(NASH) evaluation were included. The agreement between MRI-PDFF and MRS was evaluated through 
Bland-Altman analysis. Correlations among MRI-PDFF, MRS, and two different histopathologic methods 
were assessed using Pearson correlation coefficient (r). The diagnostic performance of MRI-PDFF and MRS 
was assessed using receiver operating characteristic curve analyses and the area under the curve (AUC) were 
obtained.
Results: The means±standard deviation of MRI-PDFF, FFMRS, FF measured by pathologist (FFpathologist), 
and FF measured by AI (FFAI) were 12.04±6.37, 14.01±6.16, 34.26±19.69, and 6.79±4.37 (%), respectively. 
Bland-Altman bias [mean of MRS – (MRI-PDFF) differences] was 2.06%. MRI-PDFF and MRS had a very 
strong correlation (r=0.983, P<0.001). The two different histopathologic methods also showed a very strong 
correlation (r=0.872, P<0.001). Both MRI-PDFF and MRS demonstrated a strong correlation with FFpathologist 
(r=0.701, P<0.001 and r=0.709, P<0.001, respectively) and with FFAI (r=0.700, P<0.001 and r=0.690, P<0.001, 
respectively). The AUCs of MRI-PDFF for grading ≥S2 and ≥S3 were 0.846 and 0.855, respectively. The 
AUCs of MRS for grading ≥S2 and ≥S3 were 0.860 and 0.878, respectively.
Conclusions: Since MRS and MRI-PDFF demonstrated a strong correlation with each other and with the 
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most 
common causes of chronic liver disease, and its prevalence 
has been increasing due to the increasing number of people 
with obesity and type 2 diabetes mellitus (1). NAFLD is 
defined as the presence of steatosis in >5% of hepatocytes 
without secondary causes of hepatic fat accumulation (e.g., 
significant alcohol consumption and steatogenic drugs) (2).  
In NAFLD, the steatosis is primarily macrovesicular steatosis, 
which is characterized by large fat droplets occupying the 
cytoplasm of hepatocytes and displacing the nucleus to 
the periphery (3). In contrast, in microvesicular steatosis, 
hepatocytes are filled with numerous smaller fat droplets 
(foamy appearance) with centrally located nucleus (3).  
NAFLD represents a spectrum of liver diseases, ranging 
from simple steatosis to nonalcoholic steatohepatitis (NASH), 
fibrosis, and cirrhosis (4). NASH is characterized by steatosis, 
lobular inflammation, and hepatocyte ballooning with or 
without fibrosis (4). The degrees of NASH components are 
graded according to the NASH Clinical Research Network 
(NASH-CRN) scoring system (5). The degree of steatosis 
is assessed semiquantitatively and visually by estimating the 
percentage of hepatocytes containing macrovesicular fat 
droplets (5).

Although assessments by pathologists using the NASH-
CRN scoring system are widely used in grading hepatic 
steatosis, it has some drawbacks (6,7). First, steatosis grades 
are expressed as discrete values, not continuous values. 
Second, there could be inter- and intra-observer variability 
in the pathologists’ grading. Therefore, several studies 
automatically measured the hepatic steatosis on liver biopsy 
specimens using machine learning and expressed it as a 
continuous value to reduce the variability (6-8). However, 
the deep learning method also requires a percutaneous 
biopsy to obtain hepatic tissues, and ultimately has the 

disadvantage of involving an invasive procedure.
Among various noninvasive imaging modalities used for 

the hepatic fat assessment, magnetic resonance imaging 
(MRI) and MR spectroscopy (MRS) are the most accurate 
methods, as they directly measure the proton signals in 
water and fat (9). MRS is considered as the method of 
choice to measure hepatic fat noninvasively (10-12). Several 
MRI-based methods (e.g., Dixon technique) have been 
introduced for the measurement of proton density fat 
fraction (PDFF) and are more widely available than MRS 
(13-17).

In some previous studies using MRS and MRI-PDFF, 
hepatic fat vacuoles on liver biopsy specimens were 
segmented in a semiquantitative method to measure fat 
fraction (FF) (18-20). The FFs measured by this method 
demonstrated a good correlation with MRS and MRI-
PDFF as well as the conventional method by pathologists 
in which the percentages of hepatocytes including fat were 
assessed (18-20). In daily clinical practice, we found that 
there was no perfect agreement between the FF measured 
by MRS (FFMRS) and MRI-PDFF for quantifying the 
hepatic steatosis. Therefore, in this study, we planned to 
measure FF using a fully automated deep learning method 
and systemically compare MRS, MRI-PDFF, and two 
difference histopathologic methods.

This study aimed (I) to provide a spectrum of values 
of MRI-PDFF, FF measured by MRS (FFMRS), and FFs 
measured by two different histopathologic methods 
[artificial intelligence (AI) and pathologist], (II) to evaluate 
the correlation among them, and (III) to evaluate the 
diagnostic performance of MRI-PDFF and MRS in grading 
hepatic steatosis. We present the following article in 
accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-22-393/rc).

two different histopathologic methods, they can be used as an alternative noninvasive reference standard in 
nonalcoholic fatty liver disease (NAFLD) patients. However, these preliminary results should be interpreted 
with caution until they are validated in further studies.
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Methods

Patients

The study was conducted in accordance with Declaration 
of Helsinki (as revised in 2013). This retrospective Health 
Insurance Portability and Accountability Act (HIPAA)-
compliant study was approved by the institutional review 
board (IRB) of the Korea University Guro Hospital 
(Approval No. KUGH16184), and the requirement for 
an informed consent was waived. This study included 47 
consecutively recruited patients diagnosed with NAFLD/
NASH by liver biopsy in our previous study (21). All 
patients did not have any other known causes of chronic 
liver disease such as chronic hepatitis B or C, autoimmune 
hepatitis, and primary sclerosing cholangitis. Patients with 
use of steatogenic medications within the past 6 months, 
significant alcohol consumption (more than 70 g/week for 
women and 140 g/week for men), history of hepatocellular 
carcinoma, pregnancy, and contraindications to perform MRI 
were not included. All patients underwent MRI including 
MRI-PDFF and MRS. Patients with an interval of more than 
30 days between liver biopsy and MRI were excluded.

Histopathological evaluation

Ultrasound (US)-guided percutaneous liver biopsy was 
performed at the right hepatic lobe (segment 5/6) using 
an 18-gauge semi-automatic needle (TSK Laboratory, 
Tochigi, Japan). At least two cores of hepatic tissue, 
each at least 2 cm in length, were obtained. The hepatic 
tissues were fixed in formalin, embedded in paraffin, and 
stained with hematoxylin and eosin. The biopsy specimens 
were reviewed by a pathologist (B.K., with >15 years of 
experience) who was blinded to the patients’ radiologic and 
clinical data. Steatosis was graded according to the NAFLD 
Activity Score (NAS) system (5). For steatosis grades, the 
percentage of hepatocytes with macrovesicular fat droplets 
was first determined by visual assessment (FFpathologist). Then, 
the steatosis grade was assigned as S0 (<5%), S1 (5–33%), 
S2 (33–66%), and S3 (>66%). In this study, the pathologist 
separately recorded the percentage of hepatocytes 
containing macrovesicular fat droplets as a continuous value 
in units of 5%.

Automatic fat vacuole segmentation on histopathologic 
slides of liver biopsy samples using a deep learning method

Entire microscope slides of liver biopsy specimens were 

scanned using an Aperio/Leica CS2 scanner (Leica 
Microsystems, Wetzlar, Germany). At ×200 magnification, 
five representative images were selected from each slide by 
an experienced pathologist who was blinded to the patient’s 
clinical data and MRI data. These images were used as input 
data to calculate the percentage of fat vacuoles in the whole 
area. The characteristics of fat vacuoles were determined 
using in-house developed processing method. The fat 
area determination model in pathology image dataset 
was designed with deep learning-based model with using 
conventional UNET architecture with minor variations, 
combined with traditional image processing method. 
Additional fully-connected layer was adopted in final layer 
for binarized probability and categorized determination, 
and custom-designed loss function was adopted for avoiding 
the false determination of the vessel area. While in the 
training process, the result of the model was filtered with 
hessian function to emphasize anisotropic objects such as 
vessels hessian filtering, and additional post-processing 
such as analysis using long-axis detection and convex hull 
algorithm was done. After then, the image results were used 
to calculate the accuracy and loss for next iteration of the 
training. The intersection of union (IoU) was used as base 
loss function.

For initial training of the proposed model, about 32,000 
fat area labeled partial pathology image dataset from the 
liver biopsy samples of NAFLD/NASH patients were 
used, which was the machine-learning dedicated dataset 
formerly acquired from the department of pathology, Korea 
University Guro Hospital. The dataset was retrospectively 
gathered from the hospital, and the vessels, contaminated 
tissues, fat area, and major disease category of the biopsy 
samples were labeled from experienced pathologists. Since 
the resolution of the pathology image was too high, the 
images were split into smaller sized tile images. The dataset 
was separated randomly into training and validation dataset 
with having a ratio of 8:2, and the augmentation of the 
dataset was done with random rotation, mirroring, elastic 
deformation, scaling, etc.

The deep learning models were designed with using 
Tensorflow library version 1.13.1 (Google, Mountain View, 
CA, USA), in decent hardware settings with NVIDIA 
RTX2080Ti GPU card. The training of the models was 
repeated with 200 epochs, with 0.3 dropout ratio. The 
accuracy and loss value of the training and validation of the 
model showed decent result, which were 0.932/0.176 and 
0.867/0.266, respectively.

Proposed model was developed for analyzing the 
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characteristics of fat area of the pathology image data, and 
determine from the input image whether the area includes 
the fat area or not, and the area includes unnecessary vessel 
area. During the training of the model, artifactual areas, 
such as sinusoids (blood vessels), were excluded based on 
the pathologist’s feedback from the draft result of the base 
model.

In the image processing phase, a binary image was 
generated with using gaussian mixture model from the 
grayscale pixel distribution of the image intensity. With 
generating a histogram of all grayscale pixel values of the 
input image, a binary image was obtained by analyzing the 
distribution of pixels and setting an appropriate threshold 
between white and black pixels. 

The fat vacuole areas of the pathology image were 
segmented using both methods, additional post-processing 
was performed through spherical shape analysis using long-

axis detection and convex hull algorithm (Figure 1A).
The mean FF values measured in five selected images per 

patient were used as representative values (Figure 1B). The 
FFs measured by this automatic fat vacuole segmentation 
(FFAI) were compared and correlated with FFMRS.

MR examination

All patients underwent MR imaging using a 3 T MR 
scanner (MAGNETOM Skyra, Siemens Healthineers, 
Erlangen, Germany). T2-weighted half-Fourier acquisition 
single-shot turbo spin-echo (HASTE) sequence, three-
dimensional T1-weighted gradient-recalled echo volumetric 
interpolated breath-hold examination (VIBE) sequence, 
multi-echo (six-echo) modified Dixon (mDixon) gradient 
echo sequence, MRS, MR elastography, and T1 mapping 
were performed.

Areo 1 (red + black boundary):
Areo 2 (red only):

total pixel: 1408867, white pixel: 343219, ratio: 24.36 (%)
total pixel: 1408867, white pixel: 294053, ratio: 20.87 (%)  (Result)

200 μm

Pathology 
images from 
liver biopsy

Conventional UNET model with 
custom-loss function

Traditional image processing 
(Gaussian mixture model)

Background/tissue
Fat

Threshold

Post-processing 
(Ovary detection)

Segmentation 
result

FFAI

A

B

Figure 1 Automatic segmentation using deep learning method. (A) Deep learning and image processing methods were used to automatically 
calculate the percentage of fat vacuoles in histopathologic slides of liver biopsy sample. (B) Automatic segmentation of fat vacuoles (red 
circular lines) on a histologic slide of a liver biopsy sample (hematoxylin & eosin stain, ×200) from a 52-year-old woman. FFAI, fat fraction 
measured by artificial intelligence. 
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MRS

Single-voxel MRS was performed using a prototypical high-
speed T2-corrected multi-echo (HISTO) MR spectroscopic 
technique, which is a modified stimulated echo acquisition 
mode (STEAM) sequence. MRS spectra were obtained 
using the same method described in a previous study (22). 
HISTO MR spectroscopic technique allows the rapid and 
simultaneous acquisition of multiple echoes to assess hepatic 
fat within a single breath hold. This technique uses signal 
integrals from water and lipid spectrum fits to estimate T2 
decay and assess the equilibrium signal at TE of 0 ms (23).  
A single voxel (20×20×20 mm) was placed in the right 
hepatic lobe (segment 5/6) by an experienced technologist 
(>10 years of experience in MRS) while avoiding large bile 
ducts, vessels, and focal hepatic lesions. The technologist 
tried to locate the voxel at the same position of the liver 
biopsy site (segment 5/6). The parameters included five 
echo times (TEs) (12, 24, 36, 48, and 72 ms); repetition 
time (TR), 3,000 ms; mixing time, 10 ms; and flip angle 
(FA), 90°. Each MRS acquisition was performed within 15 s  
during one breath hold. This process was repeated three 
times. MRS data post-processing was performed using an 
inline software of the MR vendor.

MRI-PDFF

An axial three-dimensional multi-echo (six-echo) mDixon 
gradient echo sequence was also acquired for hepatic PDFF 
measurement within 16 s during one breath hold. The 
parameters included six TEs (1.23, 2.46, 3.69, 4.92, 6.15, 

and 7.38 ms); TR, 9.0 ms; FA, 4°; field of view, 350 mm;  
matrix size, 95×160; slice thickness, 3.5 mm; parallel 
imaging factor of 2×2; and spatial resolution of 2×2×2 mm3. 
The short TR and small FA were used to minimize the 
T1 bias and T2* effect. A Levenberg Marquardt nonlinear 
fitting was used to fit the complex signal magnitudes of 
multiple echo data. Inline reconstruction was performed 
by addressing confounding factors, including field 
inhomogeneity, eddy currents, T1 bias, T2* decay, and 
spectral complexity. MRI-PDFF, water fraction, R2* map, 
T2* map, and goodness-of-fit images were automatically 
generated based on pixel-by-pixel fitting (24).

Image analysis

(I) FF measurement on MRS: liver FFs were calculated 
automatically and displayed as a percentage (%). Mean 
FF values were used as representative values (Figure 2A).

(II) PDFF measurement on mDixon gradient echo 
sequence: two radiologists (JWK and CHL, with 9 
and 28 years of experience in abdominal radiology, 
respectively) who were blinded to the pathologic 
results performed PDFF measurement. A circular 
region of interest (ROI) was drawn in the right hepatic 
lobe (segment 5/6) at the same location as that in 
MRS while avoiding large bile ducts, vessels, and focal 
hepatic lesions. The circular ROIs were colocalized to 
the MRS voxel locations on three consecutive MRI-
PDFF images. The two radiologists measured the 
ROI three times each, and the mean values were used 
as representative values (Figure 2B).

Area: 352.94 mm2

Min: 95
Max: 120
Avg: 106.11
SD: 6.53
Sum: 3820
Length: 66.68 mm

A B

Figure 2 Fat fraction measurement using ROIs. (A) A square-shaped voxel at the right hepatic lobe on MRS and (B) a circular ROI at the 
same position as MRS on MRI-PDFF. ROI, region of interest; MRS, magnetic resonance spectroscopy; MRI-PDFF, magnetic resonance 
imaging-proton density fact fraction.
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Statistical analysis

The interobserver agreement of the two radiologists for 
PDFF measurement was assessed using κ-statistics, with 
κ-values graded as excellent (0.81–1.0), good (0.61–0.80), 
moderate (0.41–0.60), fair (0.21–0.40), and poor (0–0.20).

The mean FF values are presented as mean ± standard 
deviation (SD). The mean values of FFMRS, MRI-PDFF, FFAI, 
and FFpathologist were compared using paired t-tests. Correlations 
between MRI-PDFF and MRS, between two different 
histopathologic methods, and between MRI-PDFF/MRS 
and each histopathologic method were assessed using Pearson 
correlation coefficient (r), which was graded as very weak (0.1–
0.19), weak (0.20–0.39), moderate (0.40–0.59), strong (0.60–
0.79), and very strong (0.80–1.00). The agreement between 
MRI-PDFF and MRS was assessed by Bland Altman analysis, 
and the 95% limit of agreement (LOA) was calculated.

To evaluate the diagnostic performance of MRI-PDFF 
and MRS for grading hepatic steatosis, receiver operating 

characteristic curve analyses were performed and the 
areas under the curve (AUCs) were obtained with their 
95% confidence intervals (CIs). The optimal cutoff values 
representing to the maximal sum of the sensitivity and 
specificity were also determined. The DeLong test was used 
to compare AUCs of MRI-PDFF and MRS.

A P value <0.05 was considered statistically significant. 
All statistical analyses were performed using commercially 
available software programs, SPSS version 27.0 (IBM Corp., 
Armonk, NY, USA) and MedCalc version 20.009 (MedCalc 
Software, Ostend, Belgium).

Results

Patients

Forty-seven patients (16 men and 31 women; mean age, 
51.0±12.7 years; range, 19–75 years) were included. Based on 
histopathological evaluation, steatosis was graded as S0 (n=0), 
S1 (n=25), S2 (n=18), or S3 (n=4). The clinical and laboratory 
data are summarized in Table 1 and the distribution of 
histopathologic grade is presented in Table 2. The mean 
interval between liver biopsy and MRI was 21.0±4.5 days 

Table 1 Baseline characteristics

Variables Total patients (n=47)

Age (years) 51.0±12.7

Male : female 16 (34.0) : 31 (66.0)

Body mass index (kg/m2) 28.3±6.2

ALT (IU/L) 80.2±43.1

AST (IU/L) 59.6±26.5

ALP (IU/L) 88.2±21.3

GGT (IU/L) 79.0±61.1

Total bilirubin (mg/dL) 0.60±0.29

Total cholesterol (mg/dL) 181.9±36.4

Triglycerides (mg/dL) 154.9±65.3

HDL-cholesterol (mg/dL) 43.5±11.1

LDL-cholesterol (mg/dL) 112.6±33.2

Fasting glucose (mg/dL) 117.0±32.4

Albumin (g/dL) 4.15±0.62 

Platelet count (×103/L) 207.8±54.1

Type 2 diabetes mellitus 28 (59.6)

Continuous variables are presented as mean ± standard deviation 
and categorical variables are presented as numbers (%). ALT, 
alanine aminotransferase; AST, aspartate aminotransferase; ALP, 
alkaline phosphatase; GGT, γ-glutamyltransferase; HDL, high 
density lipoprotein; LDL, low density lipoprotein.

Table 2 Distribution of histopathologic grade

Variables Grade Total patients (n=47)

Steatosis S0 0 (0)

S1 25 (53.2)

S2 18 (38.3)

S3 4 (8.5)

Fibrosis F0 13 (27.6)

F1 13 (27.6)

F2 13 (27.6)

F3 6 (12.8)

F4 2 (4.4)

Lobular inflammation L0 0 (0)

L1 17 (36.2)

L2 28 (59.5)

L3 2 (4.3)

Ballooning degeneration B0 26 (55.3)

B1 11 (23.4)

B2 10 (21.3)

Variables are presented as numbers (%).
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(range, 1–27 days).

Spectrum of values of MRI-PDFF, FFMRS, and FFs 
measured by two different histopathologic methods

Interobserver agreement for the measurement of PDFF was 

excellent (κ=0.998; 95% CI, 0.997–0.999, P<0.001). The 
means ± SD of MRI-PDFF, FFMRS, FFpathologist, and FFAI were 
12.04±6.37, 14.01±6.16, 34.26±19.69, and 6.79±4.37 (%),  
respectively (Figure 3). The values of MRI-PDFF and 
FFMRS were significantly higher than those of FFAI and 
significantly lower than those of FFpathologist. Except for two 
cases (95.7%, 45/47), FFMRS always showed a higher value 
than MRI-PDFF. The Bland Altman bias [mean of MRS – 
(MRI-PDFF) differences] was 2.06% (95% LOA, −0.213%, 
4.328%) (Figure 4).

Correlation

MRI-PDFF and MRS showed a very strong correlation 
(r=0.983, P<0.001). The two different histopathologic 
methods also showed a very strong correlation (r=0.872, 
P<0.001). For FFpathologist, both MRI-PDFF and MRS 
demonstrated a strong correlation (r=0.701, P<0.001 and 
r=0.709, P<0.001, respectively). For FFAI, both MRI-PDFF 
and MRS also demonstrated a strong correlation (r=0.700, 
P<0.001 and r=0.690, P<0.001, respectively) (Figure 5).

Diagnostic performance of MRS and MRI-PDFF in 
grading hepatic steatosis

The AUCs of MRS for grading ≥S2 and ≥S3 steatosis were 
0.860 and 0.878, respectively. The AUCs of MRI-PDFF 

27.46±16.03 (%), P<0.001

20.16±15.94 (%), P<0.001

22.22±15.89 (%), P<0.001

7.31±4.46 (%), P<0.001

2.06±1.16 (%), P=0.1155.25±4.55 (%), 
P<0.001

FFAI MRI-
PDFF

FFMRS FFPathologist

6.79±4.37 (%) 12.04±6.37 (%) 14.10±6.16 (%) 34.26±19.69 (%)

Figure 3 The spectrum of FFMRS, MRI-PDFF, FFAI, and FFpathologist. MRI-PDFF and FFMRS were located between FFAI and FFpathologist. FFMRS 
and MRI-PDFF were significantly higher than FFAI and significantly lower than FFpathologist (P<0.001). MRI-PDFF and FFMRS did not show 
a significant difference (P=0.115). FF, fat fraction; FFMRS, FF measured by magnetic resonance spectroscopy; FFAI, FF measured by artificial 
intelligence; FFpathologist, FF measured by pathologist; MRI-PDFF, magnetic resonance imaging-proton density fat fraction.
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for grading ≥S2 and ≥S3 steatosis were 0.846 and 0.855, 
respectively (Table 3). MRS showed significantly higher 
diagnostic performance than MRI-PDFF in grading ≥S3 
steatosis (P=0.038), while there was no significant difference 
in grading ≥S2 steatosis (P=0.236).

Discussion

Our study demonstrated the spectra of FFMRS, MRI-PDFF, 
FFAI, and FFpathologist. The FFs measured by MRI (FFMRS and 
MRI-PDFF) were located between the FFs measured by 
AI and pathologists (FFAI and FFpathologist). FFMRS and MRI-
PDFF were significantly higher than FFAI and significantly 
lower than FFpathologist. These results were thought to be 
due to different histopathological methods; FFpathologist 
corresponds to the proportion of hepatocytes including 
macrovesicular fat, while FFAI corresponds to the area of 
macrovesicular fat in the entire area. FFAI was significantly 
lower than FFMRS and MRI-PDFF. This significant 
difference may be due to the difficulty in measuring 

microvesicular fat in FFAI measurement (19). Except for two 
cases, FFMRS always showed a higher value than MRI-PDFF, 
with a 2.06% difference.

In this study, the FFs measured by MRS and MRI-
PDFF showed a very strong correlation with each other 
(r=0.983). In several previous studies, MRI-PDFF showed 
high accuracy compared with MRS and histology (13-
16,25,26) and excellent correlation with MRS (15,16,25,26). 
In a study by Vu et al. (16), MRI-PDFF showed an excellent 
correlation with MRS (r=0.916), and the mean difference 
between MRI-PDFF and MRS was −1.5%. In another 
study by Idilman et al. (15), MRI-PDFF and MRS had an 
excellent correlation for hepatic fat quantification (r=0.986), 
and the mean difference between MRI-PDFF and MRS 
was −2.4%. A study by Kang et al. (26) also demonstrated 
that MRI-PDFF and MRS had an excellent correlation 
(r=0.961). In the study, the difference between MRS and 
MRI-PDFF values tended to increase as the average of 
the two values increased. In contrast, in our study, the 
difference did not change significantly as the average of the 
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Figure 5 Scatterplots show a very strong correlation (A) between MRS and MRI-PDFF (r=0.983, P<0.001) and (B) between AI and 
pathologist (r=0.872, P<0.001) and a strong correlation (C) between MRS and AI (r=0.690, P<0.001), (D) between MRS and pathologist 
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MRS, magnetic resonance imaging; MRI-PDFF, magnetic resonance imaging-proton density fat fraction; AI, artificial intelligence.
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two values increased. In the previous study, although multi-
echo (six echo) mDixon technique was used as in our study, 
a different MRI device from a difference manufacturer 
(Ingenia; Philips Healthcare, Best, The Netherlands) was 
used, and various liver diseases other than NAFLD were 
also included.

MRS is considered as the most accurate modality for a 
noninvasive hepatic fat quantification (10,11). However, it 
has several disadvantages in clinical application, including 
its relatively high cost, requirement of skilled expertise for 
data collection and analysis, and small sampling volume (27). 
MRI-PDFF has the advantages of covering the entire volume 
and being available on any MRI devices (28). As mentioned 
earlier, MRI-PDFF demonstrated promising results for the 
accurate quantification of hepatic steatosis, so it is expected 
to be widely used for hepatic fat detection and monitoring.

In this study, the FFs measured by two different 
histopathologic methods (AI and pathologist) showed a 
very strong correlation (r=0.872). In previous studies (18-
20), the FF calculated as the area of fat using semiautomatic 
segmentation and the FF calculated as the percentage 
of hepatocytes containing fat had a good correlation. In 
a study by Noworolski et al. (18), the FF determined as 
a percentage of tissue area [using a high magnification 
(×200 and ×400)] was lower than the FF determined as a 
percentage of hepatocytes containing fat [using a standard 
magnification (×40 and ×100)], and roughly linearly 
correlated. In a previous study by d'Assignies et al. (19), the 
FF measured using semiautomatic fat vacuole segmentation 
and the FF measured by pathologist’s visual assessment had 
a good correlation (r=0.760). A study by Kukuk et al. (20)  
also reported an excellent correlation between the FF 
determined by semiautomatic quantification and the FF 
determined as the percentage of hepatocytes including fat 
determined by visual assessment (r=0.929).

Liver biopsy is the reference standard for the diagnosis 
and staging of NAFLD, and NASH-CRN has been widely 

used for staging its severity (5,29). However, it has shown 
poor inter- and intra-observer variability in evaluating 
the histologic components of NASH (29,30). Therefore, 
various efforts have been made to measure hepatic fat 
on histopatholgic slides more accurately (18-20). In the 
studies mentioned above, a semiautomatic method was 
used by pathologists to exclude artifacts (e.g., blood vessels) 
from magnified or digitalized histopathologic slides. With 
the recent advances in AI, several studies quantified fat 
using a deep learning algorithm (6-8). In this study, entire 
histopathologic slides of liver biopsy specimens were 
scanned as digitalized images; then, the area of fat in the 
five representative images was automatically measured using 
the deep learning algorithm. The FFs measured by MRS 
and MRI-PFF demonstrated a strong correlation with the 
FF measured by pathologists as well as the FF automatically 
measured using this deep learning algorithm.

Although, in general, there may be intra- and inter-
observer variability in histological grading of hepatic 
steatosis, the correlation between FFAI and FFpathologist in our 
study was better than expected. The FFAI and FFpathologist 
showed a very strong correlation, which is thought to be 
in due to AI and pathologist evaluating and measuring 
FFs using the same liver biopsy sample. For the same 
reason, there was a very strong correlation between FFMRS 
and MRI-PDFF, as they were measured at the same 
location as possible. However, both FFMRS and MRI-
PDFF demonstrated only a strong correlation with the two 
different histopathologic methods. This result may be due 
to the possibility of the biopsy site on US and the location 
of voxel/ROI on MRS/MRI-PDFF not matching perfectly, 
despite efforts to measure the FFs at the same location as 
possible.

This study has several limitations. First, since this was a 
retrospective study, liver biopsy and MRI were not always 
performed on the same day. However, patients who had 
liver biopsy and MRI with an interval of more than 30 days 

Table 3 Diagnostic performance of MRS and MRI-PDFF in grading hepatic steatosis

Variables Grade AUC Cut-off value (%) Sensitivity (%) Specificity (%)

MRS
≥S2 0.860 (0.728–0.944) 12.7 81.8 (59.7–94.8) 92.0 (74.0–99.0)

≥S3 0.878 (0.749–0.955) 18.9 100.0 (39.8–100.0) 81.4 (66.6–91.6)

MRI-PDFF
≥S2 0.846 (0.711–0.935) 10.9 77.3 (54.6–92.2) 88.0 (68.8–97.5)

≥S3 0.855 (0.721–0.940) 16.2 100.0 (39.8–100.0) 76.7 (61.4–88.2)

Data in brackets are 95% confidence intervals. MRS, magnetic resonance spectroscopy; MRI-PDFF, magnetic resonance imaging-proton 
density fat fraction; AUC, area under the curve.
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were excluded from this study, and the average interval of 
21 days was acceptable. Second, a relatively small number 
of patients were included, and there were no subjects with 
grade 0 steatosis. Since this was a retrospective study that 
included patients with NAFLD who underwent biopsy for 
NASH evaluation, it is impossible and unethical to perform 
liver biopsy in healthy people with grade 0 steatosis. Third, 
the MRS and MRI-PDFF measurements were performed 
only on one machine in a tertiary hospital. Because different 
machines from different manufacturers may show different 
spectra, a larger-scale prospective study that includes several 
different machines is needed. Fourth, 18-gauge needle may 
be inadequate compared to 16-gauge needle. A previous 
study demonstrated that larger gauge needles improved 
adequacy rate with longer, intact liver biopsy specimens and 
increased number of portal tracts (31). However, all biopsy 
specimens in our study were more than 2 cm in length 
and included more than 11 portal tracts, so they were all 
adequate for histopathologic diagnosis. Finally, since MRS 
has an intrinsic problem that FF cannot be measured in the 
entire liver, to evaluate the correlation between MRI-PDFF 
and MRS, FF was measured by placing the circular ROI at 
the same location as MRS in MRI-PDFF.

Conclusions

The spectrum of FF was in the order of FFAI, MRI-PDFF, 
FFMRS, and FFpathologist. MRS and MRI-PDFF demonstrated 
a strong correlation with each other and with the two 
different histopathologic methods. Although it is difficult 
to measure the amount of real hepatic fat, the results 
demonstrated that MRI-PDFF and MRS can be used as 
an alternative noninvasive reference standard in NAFLD 
patients. However, these preliminary results should be 
interpreted with caution until they are validated in further 
studies. Since MRS and MRI-PDFF showed a difference 
of approximately 2% on average, it is recommended to use 
one consistent method as a reference standard for treatment 
monitoring.
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