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Background: The accuracy of preoperative staging is crucial for cT4 stage gastric cancer patients. The 
aim of this study was to develop the radiomics model and evaluate its predictive potential for differentiating 
preoperative cT4 stage gastric cancer patients into pT4b and no-pT4b patients.
Methods: A multicenter retrospective analysis of 704 gastric cancer patients with preoperative contrast-
enhanced computed tomography (CE-CT) staging cT4 between January 2008 and December 2021. These 
patients were divided into the training cohort (478 patients, the Affiliated Hospital of Qingdao University) 
and validation cohort (226 patients, the Weihai Wendeng District People’s Hospital). According to the 
pathological stage of the tumors, the patients were divided into pT4b or no-pT4b stage. In the training 
cohort, the clinical and radiomics features were analyzed to construct the clinical model, tri-phase radiomics 
signatures and nomogram. Two kinds of methods were employed to achieve dimensionality reduction: (I) 
the least absolute shrinkage and selection operator (LASSO); and (II) the minimum redundancy maximum 
relevance (mRMR) algorithms. We utilized Logistic regression, support vector machine (SVM), Decision 
tree and Adaptive boosted tree (AdaBoost) algorithms as the machine learning classifiers. The nomogram was 
constructed on the clinical characteristics and the Rad-score. The performance of the models was evaluated 
by receiver operating characteristic (ROC) area under the curve (AUC), Decision Curve Analysis (DCA) 
curve and calibration curve.
Results: The 345 pT4b and 359 no-pT4b stage patients were included in this study. In the validation 
cohort, the AUC of the clinical model was 0.793 (95% CI: 0.732–0.855). The tri-phase radiomics features 
combined with the SVM algorithm was the best radiomics signature with an AUC of 0.862 (95% CI: 0.812–
0.912). The nomogram was the best predictive model of all with an AUC of 0.893 (95% CI: 0.834–0.927). 
In the training and validation cohorts, the calibration curves and DCA curves of the nomogram showed 
satisfactory result.
Conclusions: CE-CT-based radiomics nomogram offers good accuracy and stability in differentiating 
preoperative cT4 stage gastric cancer patients into pT4b and non-pT4b stages, which has a great clinical 
relevance for selecting the course of treatment for cT4 stage gastric cancer patients.
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Introduction

The eighth edition of tumor node metastasis (TNM) 
classification is currently the most authoritative and 
generalized staging system for gastric cancer (1,2). According 
to this staging system, T4b stage gastric cancer is defined as the 
tumor infiltrating the serosa and invading adjacent structures 
and organs; accounting for 6–27% of all gastric cancers. 
Such patients are known to have an unsatisfactory response 
to therapeutics and a poor prognosis (1,3). Pathological T4b 
(pT4b) stage gastric cancer patients often require extended 
radical gastrectomy or multi-organ resection to achieve R0 
resection (1,4). Despite undergoing radical resection, the 5-year 
overall survival rate for these patients is only 10–32% (4).  
The eighth edition of American Joint Committee on Cancer 
(AJCC) and Chinese Society of Clinical Oncology (CSCO) 
gastric cancer guidelines (1,2) recommend the choice of 
surgery or adjuvant therapy based on tumor invasion and 
difficulty of surgery, among which neoadjuvant therapy can 
effectively achieve tumor downstaging and improve the chance 
of radical surgery. In clinical practice, some patients with 
preoperative cT4 stage received surgery due to the tumor 
didn’t invade important blood vessels, distant metastasis and 
other unresectable factors (2,5). Because of the overestimation 
of tumor staging or the inability to precisely identify the 
intraoperative pathological properties of adhesions present 
at multiple locations to perform extended resection directly, 
only 42–66% of cT4b patients have the same pathological 
stage (6,7). This suggests that better diagnostic methods are 
needed for the accurate identification of T4b stage. Therefore, 
in order to enable an accurate and personalized diagnosis and 
treatment, the precise staging of cT4 gastric cancer is very 
critical (5,8).

Contrast-enhanced computed tomography (CE-CT) 
imaging is widely used in the diagnosis and treatment of 
gastric cancer and evaluates the depth of tumor invasion 
(9,10). The eighth edition of the TNM staging system for 
gastric cancer also recommends CE-CT as one of the first-
line imaging examination (1). At present, the application 
of imaging examinations relies on the subjective visual 
assessment by radiologists, which is mostly limited to the 
morphological characteristics of the tumors. Emerging 
radiomics has improved the predictive accuracy of 

oncological diagnosis and treatment by converting images 
into massive data and using non-invasive analysis and data 
mining (11-13). The radiomics research in the T staging 
of gastric cancer mainly focuses on the application of CT 
and other imaging technologies to extract conventional or 
deep learning radiomics features and combine this with 
different algorithms to model and distinguish between T1, 
T2, T3 and T4a stages (11,12,14-17). Currently, there 
are no studies reporting on radiomics methods for the 
identification of pT4b stage gastric cancer. The purpose 
of this multicenter study was to evaluate the predictive 
potential of radiomics models based on CE-CT images 
to identify pT4b stage patients among cT4 stage gastric 
cancer patients. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-22-286/rc).

Methods

Patients

This study retrospectively analyzed the clinical and imaging 
data from 704 gastric cancer patients of dual center that 
underwent gastrectomy or submitted specimens to obtain 
the precise pathological stage and were staged as cT4 by 
preoperative CE-CT imaging, between January 2008 to 
December 2022. These patients were divided into the 
training cohort (478 patients, the Affiliated Hospital of 
Qingdao University), and validation cohort (226 patients, 
the Weihai Wendeng District People’s Hospital). Following 
were the patient inclusion criteria: (I) diagnosed with gastric 
cancer by preoperative endoscopic biopsy; (II) the CE-
CT examination was completed within 15 days before the 
surgery, and the staging was cT4NxM0; (III) the clinical, 
pathological and imaging data of the patient were complete; 
(IV) there was no concurrent tumor in the gastric cancer 
lesion. Following were the patient exclusion criteria: (I) 
the quality of CE-CT images was poor; (II) there was an 
obvious distant metastasis or peritoneal spread; (III) anti-
tumor therapy was performed before surgery, history of 
gastric surgery; (IV) the tumor area could not be identified 
and segmented by CE-CT imaging. The flowchart 
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displaying the details regarding patient enrollment in this 
study is shown in Figure 1A. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). This study was approved by the Institution’s Ethics 
Committee of the Affiliated Hospital of Qingdao University 
and the Weihai Wendeng District People’s Hospital, and 
individual consent for this retrospective analysis was waived. 

Clinical characteristics and pathological diagnosis

We collected the clinical and pathological data, including 
gender, age, Borrmann type, histological differentiated 
type, tumor location, carbohydrate Antigen 724 (CA724) 
status,  carbohydrate Antigen 199 (CA199) status, 
carcinoembryonic antigen (CEA) status, pT stage, cT stage, 
and clinical N stage (cN stage). 

The diagnosis of pT staging and cT staging was 
performed according to the AJCC TNM staging criteria (1).  
The pathological sections of the specimens were analyzed, 
and for the pathological specimens marked as biopsy of the 
invasion site, the operation records were verified. Patients 
were divided into pT4b stage and no-pT4b stage using 
pathological results as the gold standard. CE-CT images were 
analyzed in a double-blind manner by two senior radiologists 
A and B, with 10 and 17 years of experience, respectively. 
The patients were then divided into cT4a stage and cT4b 
stage, and consensus was reached through negotiation when 
there was any disagreement. The analysis was performed in a 
double-blind fashion, wherein the radiologists only knew of 
the suspicious gastric cancer patients.

Image acquisition and lesion segmentation

The 64-slice CT machine (IQon Spectral, Philips or 
Discovery CT750, GE Medical Systems or other CT 
scanners in the dual center) was utilized for scanning. All the 
patients were placed in the supine position. The scanning 
range was from the top of the diaphragm to the plane of the 
anterior superior iliac spine. The following conditions were 
used for CT scanning: (I) tube current: 200 to 260 mA; (II) 
tube voltage: 120 kV; and (III) matrix: 512×512. 1.5 mL/kg  
of iopromide was injected into the patient’s antecubital vein 
at a flow rate of 3.0 mL/s, and arterial phase (A-phase), 
venous phase (V-phase) and delayed phase (D-phase) images 
were obtained at the delays of 30, 70, and 110 s.

The ITK-SNAP (http://www.itksnap.org) software 
was used to segment the whole tumor regions in all the 
slices to generate three-dimensional volume of interest 

(3D VOI). Tri-phase (A-phase, V-phase and D-phase) 
CE-CT images were used to segment the whole tumors. 
Large vessels, air cavities, and adjacent fluid were excluded. 
Two senior radiologists C and D, with 8 and 13 years of 
experience, respectively, performed VOI segmentation and 
radiomics features extraction for each of the phases. The 
radiologists only knew that the patient was diagnosed with 
gastric cancer. The radiologist C delineated the lesions 
to generate tri-phase of VOI and extracted radiomics 
features. One week later, 30 cases were randomly selected, 
and radiologist C performed the delineation and features 
extraction for these 30 cases again. Radiologist D also 
performed delineation and features extraction for these 
30 cases. Intra-observer correlation coefficient (ICC) was 
calculated using features extracted from the two VOIs 
delineated by the radiologist C, inter-ICC was calculated 
using features extracted from the VOIs delineated by the 
radiologists C and D. Radiomics features with inter- and 
intra-observer ICCs >0.75 were used for further analysis. 
Lesion segmentation and the radiomics study workflow are 
shown in Figure 1B.

Data preprocessing and feature extraction

Image preprocessing is required before feature extraction. 
Firstly, the VOI was normalized by μ±3σ to highlight 
the differences between the categories (18). Secondly, in 
order to save computation time and improve the signal-to-
noise ratio for texture analysis, gray-level quantization of 
the images was performed (19). The VOI was resampled 
isotopically to in-plane resolution (0.5 mm * 0.5 mm) using 
cubic interpolation to ensure that the acquired 3D feature 
scale and orientation remained the same (20). A commercial 
software (AnalysisKit v.: 1.0.3; GE Healthcare, China) 
was utilized to extract the radiomics features. Finally,  
4 types and 396 radiomics features were extracted (21-23):  
including, 335 GLRLM features, 10 morphological 
features, 42 histogram, and 10 Haralick features. The 
Combat compensation method was used to reduce the 
influence of different CT scanners and protocols, and the 
uniqueness of texture features was preserved (24). Next, the 
radiomics features pre-processing was performed, and the 
missing values were replaced by the median and normalized 
by z-score. By extracting the VOIs of the three-phase CE-
CT, the radiomics feature sets of A-phase, V-phase and 
D-phase were generated respectively, and the above three 
sets of radiomics features were combined to form a total tri-
phase radiomics features set, consisting of a total of 4 sets of 

http://www.itksnap.org
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The patients with CE-CT-based cT4 
stage from center 1 (n=957)

The training cohort (n=478)

The patients with CE-CT-based cT4 
stage from center 2 (n=534)

The validation cohort (n=226)

49 patients excluded
• Poor CE-CT quality
• Tumor region cannot be segmented

430 patients excluded
• CE-CT not completed within 15 days before surgery
• Incomplete patient data
• Preoperative therapy is performed
• Concurrent tumor
• Obvious distant metastasis

246 patients excluded
• CE-CT not completed within 15 days before surgery
• Incomplete patient data
• Preoperative therapy is performed
• Concurrent tumor
• Obvious distant metastasis

62 patients excluded
• Poor CE-CT quality
• Tumor region cannot be segmented
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radiomics features.

Model construction

R 4.0.0 (https://www.Rproject.org) was used to select 
radiomics features and utilized machine learning classifiers 

to build models. The top 20 features with the best 
performance were selected by the minimum redundancy 
maximum relevance (mRMR) algorithm for the above 4 sets 
of radiomics features, and then the least absolute shrinkage 
and selection operator (LASSO) algorithm was used to 
reduce the dimension again. We obtained 4 radiomics 

https://www.Rproject.org
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Figure 1 Data sources and research process. (A) Patient enrollment in this study, these patients were divided into the training cohort (center 
1, the Affiliated Hospital of Qingdao University) and validation cohort (center 2, the Weihai Wendeng District People’s Hospital). (B) The 
framework for this research includes lesion segmentation, feature extraction, model construction and model evaluation. CE-CT, contrast-

enhanced computed tomography; AUC, area under the curve.
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feature subsets of A-phase, V-phase, D-phase and tri-phase, 
and drew the heat map of the subset features, and obtained 
the radiomics score (Rad-score) for each of the subsets, 
according to the linear combination of the corresponding 
LASSO weight coefficients. The distribution of Rad-score 
in pT4b and no-pT4b patients is represented by a box plot. 
In this study, the following four machine learning classifier 
algorithms were used to construct the radiomics signatures: 
Logistic Regression algorithm; Support Vector Machine 
(SVM) algorithm; AdaBoost algorithm; and Decision Tree 
algorithm. Each of the classifier combined various radiomics 
feature subsets to form various radiomics signatures. Each 
radiomics signature generated evaluation indicators such 
as area under the ROC curve (AUC) in the training and 
validation cohorts. In the validation cohort, the machine 
learning classifier with the highest predictive performance 
was considered as the most suitable classifier algorithm.

We used univariate and multivariate logistic regression 
to analyze the clinical characteristics associated with 
pT4b, and generate a clinical model. The nomogram was 
constructed from the clinical characteristics and the Rad-
score of the best-performing radiomics features subset by 

the multivariate logistic regression analysis.

Model evaluation 

The AUC, precision, specificity, sensitivity, negative 
predictive value (NPV) and positive predictive value (PPV) 
of each model in the training and validation cohort were 
used to evaluate the performance of the models. Decision 
Curve Analysis (DCA) was used to evaluate the clinical 
net benefit of the model. Calibration curves and Hosmer-
Lemeshow tests were used to evaluate the agreement 
between the actual and the predicted results. DeLong’s 
test was used to compare the differences in AUC between 
the models. P value <0.05 was considered as statistically 
significant.

Statistical analysis

R software (https://www.Rproject.org, version: 4.0.0) was 
used for all the statistical analyses. Fisher’s test and χ2 test 
were applied to compare the categorical variables between 
different groups.
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Results

Clinical characteristics 

A total of 704 patients were included in this dual center 
study. According to preoperative CE-CT evaluation, 314 
patients were cT4a stage and 390 patients were cT4b stage. 
According to the pathological results, 345 patients were 
classified as pT4b stage and 359 patients were classified as 
no-pT4b stage. The clinic-pathological characteristics of 
the patients are shown in Table 1. There were no statistical 
differences in the clinical characteristics between the 
training and validation cohorts (P values >0.05). According 
to univariate and multivariate logistic regression analysis, 
cT stage and Borrmann type were predictors of pT4b stage 
patients with statistical difference (P<0.05), as shown in 
Table 2.

Radiomics feature selection

Table 3 shows the data for the training cohort, including 
the radiomics feature subset of A-phase, V-phase, D-phase 
and tri-phase and their associated LASSO coefficients. The 
correlation between radiomics features and pathological 
staging is presented in the heatmaps, as shown in Figure 2. It 
can be seen that there were many sophisticated correlations 
between radiomics features and the pathological staging.

The predictive performance of the models

The machine learning classifier algorithms were crossed 
with each subset of radiomics features to construct 
radiomics signatures, as shown in Table 4. In the validation 
cohort, SVM algorithm combined with tri-phase radiomics 
features achieved the highest AUC. Therefore, the SVM 
algorithm was selected as the most suitable machine 
learning classifier. The tri-phase radiomics feature subset 
was considered as the best predictive feature. The predictive 
performance of the SVM algorithm, tri-phase radiomics 
features and the cross-constructed models is shown in  
Table 5. The SVM algorithm combined with tri-phase 
radiomics features constituted the best radiomics signature 
(referred to as the tri-phase signature), with AUCs of 
0.889 (95% CI: 0.858–0.920) and 0.862 (95% CI: 0.812–
0.912) in the training and validation cohorts, respectively.  
Figure 3 shows the differences in the Rad-score distribution 
of patients with pT4b and no-pT4b stages. Patients with 
pT4b stage had a higher Rad-score than those with no-
pT4b stage, and the difference was statistically significant  

(P values <0.05).
Based on multivariate logistic regression analysis, the 

Borrmann type and cT stage were used to construct a 
clinical model, and then the Borrmann type, cT stage and 
tri-phase Rad-score were used to construct a nomogram, 
as shown in Figure 4A. The predictive performance of the 
clinical model and nomogram is shown in Table 6. The AUC 
of the clinical model was 0.890 (95% CI: 0.860–0.921) and 
0.793 (95% CI: 0.732–0.855) in the training and validation 
cohorts, respectively. The AUC of the nomogram were 
0.938 (95% CI: 0.916–0.961) and 0.893 (95% CI: 0.834–
0.927) in the training and validation cohorts, respectively. 

The AUC values of the nomogram, clinical model, 
and tri-phase signature were compared by Delong test in 
pairs, and the results are shown in Table 7. The nomogram 
achieved the highest AUC in both the training and 
validation cohorts, which was statistically different from the 
other models (P value <0.05). As for the clinical model and 
the tri-phase signature, there was no statistical difference 
in AUC between the two models in the training cohort (P 
value =0.164). In the validation cohort, the AUC of the tri-
phase signature was higher than the clinical model, which 
was statistically different (P value =0.038). In summary, 
the performance of the predictive models were as follows: 
nomogram > tri-phase signature > clinical model. The ROC 
curves of the three models are shown in Figure 4B,4C.

As shown in Figure 5A,5B, the calibration curve of the 
nomogram showed a good calibration (Hosmer-Lemeshow 
test, P value =0.291 and 0.165 in the training and validation 
cohorts, respectively). The DCA curves for evaluating 
the clinical application value of the models are shown in  
Figure 5C,5D. All the three models achieved satisfactory 
clinical utility. In the validation cohort, when the risk 
thresholds were between 0–0.70, 0–0.90 and 0–0.90, using 
the clinical model, tri-phase signature, and nomogram to 
predict pT4b stage patients rendered greater net positive 
clinical benefit than treating all or no patients. Following 
was the net positive clinical benefit when the different 
models were compared over a wide range of risk thresholds: 
nomogram > tri-phase signature > clinical model, indicating 
that the nomogram had the best clinical utility.

Discussion

With continuous advances in the personalized diagnosis 
and treatment of gastric cancer, the need for accurate 
image-based tumor staging has significantly increased 
over the recent years (2). In this multicenter research, a 
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Table 1 Clinical characteristics of the training and validation cohorts

Clinical characteristics Training cohort (n=478) Validation cohort (n=226) χ2 value P value 

Age, n (%)

<60 years 228 (47.70) 89 (39.38) 4.289 0.058 

≥60 years 250 (52.30) 137 (60.62)

Sex, n (%)

Female 146 (30.50) 78 (34.51) 1.114 0.291 

Male 332 (69.50) 148 (65.49)

Tumor location, n (%)

Fundus 80 (16.70) 32 (14.16) 3.040 0.645 

Body 177 (37.00) 99 (43.81)

Antrum 221 (46.20) 95 (42.04)

Borrmann type, n (%)

Type I 42 (8.80) 30 (13.27) 6.220 0.101 

Type II 174 (36.40) 87 (38.50)

Type III 171 (35.80) 63 (27.88)

Type IV 91 (19.00) 46 (20.35)

Histological differentiated type, n (%)

Well differentiated 284 (59.40) 125 (55.30) 1.062 0.303 

Undifferentiated 194 (40.60) 101 (44.70)

CEA, n (%)

≤5.00 ng/mL 393 (82.20) 180 (79.65) 0.670 0.413 

>5.00 ng/mL 85 (17.80) 46 (20.35)

CA199, n (%)

≤37.00 U/mL 440 (92.10) 194 (85.90) 0.556 0.995 

>37.00 U/mL 38 (7.90) 32 (14.10)

CA724, n (%)

≤5.00 U/mL 358 (74.90) 169 (74.78) 0.522 0.973 

>5.00 U/mL 120 (25.10) 57 (25.22)

cT stage, n (%)

cT4a 213 (44.60) 101 (44.69) 0.022 0.974 

cT4b 265 (55.40) 125 (55.31)

cN stage, n (%)

cN0 108 (22.60) 58 (25.66) 0.833 0.842 

cN1 175 (36.60) 80 (35.40)

cN2 148 (31.00) 66 (29.20)

cN3 47 (9.80) 22 (9.73)

pT stage, n (%)

No-pT4b 244 (51.00) 115 (50.88) 0.002 0.968 

pT4b 234 (49.00) 111 (49.12)

CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; CA724, carbohydrate antigen 724; cT stage, clinical T stage; cN stage, 
clinical T stage; pT stage, pathological T stage.
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Table 2 Univariate and multivariate logistic regression analysis of clinical characteristics in the training cohort

Clinical characteristics
Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value 

Age

<60 years*

≥60 years 0.78 (0.545–1.118) 0.176

Sex

Female*

Male 0.905 (0.613–1.336) 0.616

Tumor location

Fundus* 0.007 0.579

Body 0.563 (0.330–0.959) 0.035 0.938 (0.398–2.210) 0.883

Antrum 1.041 (0.623–1.739) 0.878 1.442 (0.630–3.299) 0.386

Borrmann type

Type I* 0.001 0.016

Type II 0.815 (0.411–1.614) 0.557 0.298 (0.097–0.915) 0.034

Type III 1.628 (0.824–3.217) 0.161 0.646 (0.204–2.041) 0.457

Type IV 2.133(1.015–4.484) 0.046 1.116 (0.339–3.670) 0.857

Histological differentiated type

Well differentiated*

Undifferentiated 0.732 (0.507–1.056) 0.095

CEA, ng/mL

≤5.00*

>5.00 0.861 (0.538–1.378) 0.532

CA199, U/mL

≤37.00*

>37.00 0.515 (0.257–1.033) 0.062

CA724, U/mL

≤5.00*

>5.00 0.925 (0.612–1.400) 0.713

cT stage

cT4a*

cT4b 47.755 (26.903–84.769) 0.000 60.226 (31.961–113.486) 0.000 

cN stage

cN0* 0.294

cN1 1.554 (0.959–2.519) 0.073

cN2 1.511 (0.918–2.489) 0.105

cN3 1.304 (0.657–2.591) 0.448

*, as a reference item. OR, odds ratio; 95% CI, 95% confidence interval; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 
199; CA724, carbohydrate antigen 724; cT stage, clinical T stage; cN stage, clinical N stage.
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Table 3 Radiomics features and related LASSO weight coefficients 
associated with pT4b stage for LASSO dimensionality reduction

Radiomics features
Weight 

coefficients

A-phase radiomics features

(Intercept) 6.942 

A.Percentile10 0.195 

A.RelativeDeviation 0.006 

A.skewness 0.076 

A.GLCMEntropy_AllDirection_offset1_SD −0.066 

A.GLCMEntropy_angle90_offset4 −4.224 

A.HaralickCorrelation_angle0_offset1 −0.041 

A.sumVariance −0.079 

A.GreyLevelNonuniformity_angle90_offset1 −0.071 

A.LongRunEmphasis_angle0_offset1 0.168 

A.LongRunEmphasis_angle135_offset1 −0.016 

A.LongRunEmphasis_angle135_offset4 −0.064 

A.LongRunEmphasis_angle90_offset4 −0.078 

A.ShortRunEmphasis_AllDirection_offset7_SD −0.116 

A.Compactness2 −0.647 

A.SurfaceVolumeRatio −2.997 

A.LowIntensityEmphasis 0.045 

V-phase radiomics features

(Intercept) −7.848 

V.histogramEntropy −1.136 

V.GLCMEntropy_AllDirection_offset4 −2.970 

V.HaralickCorrelation_angle0_offset1 −0.112 

V.ShortRunEmphasis_AllDirection_offset4_SD −0.022 

V.ShortRunEmphasis_angle0_offset1 12.485 

V.SurfaceVolumeRatio −2.350 

V.LargeAreaEmphasis 1.149 

V.LowIntensityLargeAreaEmphasis 0.099 

Tri-phase radiomics features

(Intercept) 5.150 

A.Percentile10 0.147 

A.GLCMEntropy_AllDirection_offset1_SD −0.017 

A.GLCMEntropy_angle90_offset4 −0.866 

A.LongRunEmphasis_angle0_offset1 0.038 

Table 3 (continued)

Table 3 (continued)

Radiomics features
Weight 

coefficients

A.ShortRunEmphasis_AllDirection_offset7_SD −0.064 

A.Compactness2 −0.063 

V.histogramEntropy −0.794 

V.GLCMEntropy_AllDirection_offset4 −1.527 

V.GLCMEntropy_angle45_offset4 −0.532 

V.HaralickCorrelation_angle0_offset1 −0.072 

V.Inertia_angle45_offset7 −0.006 

V.SurfaceVolumeRatio −0.596 

V.LargeAreaEmphasis 0.872 

D.GLCMEntropy_AllDirection_offset7_SD −0.166 

D.GLCMEntropy_angle45_offset1 −0.712 

D.SurfaceVolumeRatio −1.780 

D.LowIntensitySmallAreaEmphasis 0.208 

D-phase radiomics features 

(Intercept) 4.942 

D.RMS −0.097 

D.GLCMEntropy_AllDirection_offset7_SD −0.149 

D.GLCMEntropy_angle0_offset4 −1.438 

D.GLCMEntropy_angle45_offset1 −1.801 

D.HaralickCorrelation_angle0_offset1 −0.023 

D.ShortRunEmphasis_AllDirection_offset4_SD −0.019 

D.ShortRunEmphasis_AllDirection_offset7_SD −0.031 

D.SurfaceVolumeRatio −2.481 

D.LowIntensitySmallAreaEmphasis 0.202 

A-phase, arterial phase; V-phase, venous phase; D-phase, 
delayed phase; Tri-phase, arterial phase and venous phase 
and delayed phase combinative; LASSO, the least absolute 
shrinkage and selection operator.

nomogram combining the clinical features and Rad-score 
was constructed to identify pT4b stage patients among 
preoperative cT4b stage gastric cancer patients. The model 
was expected to have a high performance and clinical 
application potential.

Radiomics is a post-processing technology based on 
big data (25). It can objectively evaluate the heterogeneity 
in tumors by mining the massive information behind the 
images that cannot be detected by the naked eye. Currently, 
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Table 4 The AUC of radiomics signatures constructed by crossing machine learning classifier algorithms with radiomics features

Radiomics signatures’ AUC Logistic regression Decision tree SVM AdaBoost

A-phase radiomics features

Training cohort 0.867 0.851 0.947 0.898 

Validation cohort 0.766 0.772 0.758 0.740 

V-phase radiomics features

Training cohort 0.755 0.806 0.866 0.811 

Validation cohort 0.700 0.708 0.754 0.754 

D-phase radiomics features

Training cohort 0.862 0.851 0.898 0.882 

Validation cohort 0.756 0.725 0.767 0.729 

Tri-phase radiomics features

Training cohort 0.859 0.849 0.889 0.883 

Validation cohort 0.771 0.733 0.862 0.733 

AUC, area under the curve; SVM, Support Vector Machine.

Table 5 Predictive performance of the radiomics signatures constructed by crossing the SVM classifier algorithm and the tri-phase radiomics 
features

Model’s performance AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Logistic regression (tri-phase features)

Training cohort 0.859 0.825–0.893 0.797 0.859 0.738 0.758 0.845 

Validation cohort 0.771 0.706–0.836 0.720 0.634 0.802 0.753 0.697 

Decision tree (tri-phase features)

Training cohort 0.849 0.815–0.884 0.814 0.791 0.836 0.822 0.806 

Validation cohort 0.733 0.666–0.800 0.725 0.703 0.745 0.724 0.725 

SVM (tri-phase features)

Training cohort 0.889 0.858–0.920 0.860 0.923 0.799 0.815 0.915 

Validation cohort 0.862 0.812–0.912 0.816 0.871 0.764 0.779 0.862 

AdaBoost (tri-phase features)

Training cohort 0.883 0.853–0.913 0.805 0.821 0.791 0.790 0.821 

Validation cohort 0.733 0.668–0.798 0.681 0.663 0.698 0.677 0.685 

A-phase features (SVM)

Training cohort 0.947 0.925–0.970 0.897 0.936 0.861 0.866 0.933 

Validation cohort 0.758 0.692–0.825 0.705 0.723 0.689 0.689 0.723 

V-phase features (SVM)

Training cohort 0.866 0.797–0.870 0.764 0.910 0.623 0.698 0.879 

Validation cohort 0.754 0.663–0.786 0.650 0.802 0.487 0.592 0.689 

D-phase features (SVM)

Training cohort 0.898 0.869–0.927 0.831 0.949 0.717 0.763 0.936 

Validation cohort 0.767 0.702–0.833 0.691 0.772 0.613 0.655 0.739 

Tri-phase features (SVM)

Training cohort 0.889 0.858–0.920 0.860 0.923 0.799 0.815 0.915 

Validation cohort 0.862 0.812–0.912 0.816 0.871 0.764 0.779 0.862 

SVM, Support Vector Machine; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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Figure 3 Rad-score construction. (A) Boxplots showing the distribution of tri-phase Rad-score over no-pT4b and pT4b in the training 
cohort. (B) Boxplots showing the distribution of tri-phase Rad-score over no-pT4b and pT4b in the validation cohort. No-pT4b and pT4b 
stage are well differentiated by tri-phase Rad-score with statistically significant (P<0.05). Rad-score, radiomics score.

Figure 4 Model construction. (A) Nomogram constructed from the tri-phase Rad-score and clinical characteristics (Borrmann type and cT 
stage). (B) ROC curves of nomogram, clinical model, and tri-phase model for predicting pT4b stage in the training cohort. (C) ROC curves 
of nomogram, clinical model, and tri-phase model for predicting pT4b stage in the validation cohort. AUC, area under the curve; ROC, 
receiver operating characteristic.
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radiomics has been reported to play an important role in the 
diagnosis and treatment of cancer, as well as in predicting the 
prognosis of cancer patients (11,13). The current radiomics 
studies on gastric cancer T staging have been focused on the 
application of different imaging techniques, such as: CT (15),  
dual-energy CT (16) and CE-CT (26), etc. It involves the 
extraction of different types of image features such as deep 
Learning Features (27); texture features (16); and spleen 
radiomic features (15), using different computer algorithms 
for modeling, such as: SVM algorithm (14); Random 
Forest algorithm (26); and Convolutional Neural Network 

algorithm (27), etc. These studies have been able to predict 
the patients with T1, T2, T3, and T4a stage, however, 
currently there are no studies reporting the use of radiomics 
methods to identify pT4b stage of gastric cancer.

Gastric cancer growth and invasion are mainly 
dependent on the extent of tumor angiogenesis (10), 
CE-CT imaging enables the comprehensively display 
of tumor blood vessels and perfusion, reflecting tumor 
heterogeneity (28). The arterial phase reflects tumor 
blood supply and functional capillary density, while the 
venous phase reflects dysfunctional neovascularization 
and differences in the contrast agent distribution (28). In 
this study, four subsets of radiomics features were selected 
based on tri-phase CE-CT, and the tri-phase radiomics 
feature subset with the most features demonstrated better 
predictive performance than the rest. In addition, in this 
study, we segmented the whole tumors to generate 3D 
VOI. Previous studies have shown that 3D VOI could 
extract better radiomics features than 2D VOI and avoid 
data bias due to tumor heterogeneity (29,30). In terms of 
the algorithms, this study used mRMR combined with the 
Lasso algorithm to reduce dimensionality. Among them, 
the mRMR algorithm played a major role in solving the 
problem due to the redundancy between features: the 
best performance m features obtained in terms of the 
correlations between features and target events may not 
necessarily yield the best performing model. Therefore, 
the mRMR algorithm was utilized to ensure the maximum 
correlation between features, as well as minimum 
redundancy between them (31). Lasso algorithm reduced 
the number of features based on model complexity to 
reduce overfitting (32). Due to the longtime-span of 
the current study, there were some variations in the 
protocols and parameters between the different CT 
scanners. In order to correct for the differences in the 

Table 6 Predictive performance of the clinical model and nomogram

Model’s performance AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Clinical model

Training cohort 0.890 0.860–0.921 0.818 0.902 0.738 0.767 0.887 

Validation cohort 0.793 0.732–0.855 0.739 0.822 0.660 0.697 0.795 

Nomogram

Training cohort 0.938 0.916–0.961 0.891 0.902 0.881 0.879 0.903 

Validation cohort 0.893 0.834–0.927 0.812 0.782 0.840 0.823 0.802 

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.

Table 7 Delong test for AUC of the clinical model, tri-phase 
signature and nomogram

Model comparison AUC P value

Training cohort

Nomogram 0.938 0.000 

Clinical model 0.890 

Nomogram 0.938 0.000 

Tri-phase signature 0.889 

Clinical model 0.890 0.164 

Tri-phase signature 0.889 

Validation cohort

Nomogram 0.893 0.009 

Clinical model 0.793 

Nomogram 0.893 0.000 

Tri-phase signature 0.862 

Clinical model 0.793 0.038 

Tri-phase signature 0.862 

AUC, area under the curve.
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Figure 5 Model evaluation. Calibration curves of the nomogram in the training cohort (A) and validation cohort (B). The calibration 
curves described the calibration in agreement between predicted and observed outcome. The 45-degree reference line means a perfect 
calibration with the outcome by ideal model. The solid line is the performance of the nomogram. The dotted line is the bootstrap-corrected 
performance of the nomogram, with a scatter estimate for future accuracy. (C) Decision curve analysis of the nomogram, clinical model and 
tri-phase model in the training cohort. (D) Decision curve analysis of the nomogram, clinical model and tri-phase model in the validation 
cohort. The nomogram had the best net benefit when the threshold probability is in a large range, compared with the simple strategies of no 
patients (horizontal black line) or all patients (grey line) and other methods.

image quality, the radiomics features were pre-processed 
using the combat compensation method, which could 
realign radiomic features derived from different CT 
imaging protocols and machines without changing the 
meaning of the features, so that we could generate stable 
and reproducible data in our study (33). SVM is a stable 
supervised machine learning classifier that combines 
dimensionality enhancement with linearization. Because 
adding dimensions can lead to a “dimension disaster”, the 
SVM algorithm was used to solve the problem associated 
with increasing the dimension, which might increase the 
computational complexity through the kernel function 
expansion theorem (34).

Logistic regression analysis of the clinical characteristics 
showed that gastric cancer patients with cT4b stage and 
Borrmann type IV were more likely to be pT4b stage 
patients. Borrmann type is the classic gross type of gastric 

cancer. Among them, type IV gastric cancer is most 
common to invade the serosa and the surrounding organs. 
Previously, when Borrmann type IV patients were treated, 
more than 70% of the patients belonged to the pT4a 
stage, and nearly 20% of the patients belonged to the 
pT4b stage (35). With the recent advances in CT imaging 
technology, the ability of CE-CT imaging to distinguish 
between the 5-layer structure of the gastric wall has 
significantly improved (36). If gastric cancer has invaded 
into the surrounding or distant organs, specific imaging 
patterns can be seen, including, low-density mass shadow 
in the hepatoduodenal ligament, disappearance of fat 
space, finger-like insertion or direct infiltration, etc. (2,37). 
Previous study (38) has shown that the diagnostic accuracy 
of T4b stage gastric cancer by CT is 75%, which is similar 
to the accuracy of the clinical model (73.91%) in our study.

As for the comparison of model’s performance, the tri-
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phase signature outperformed the clinical model in the 
validation cohort. Interestingly, there was no statistical 
difference between the two models in the training cohort. 
We speculate on possible reason explaining the similar 
performance between the models: most of the tumors in 
this study had already penetrated into the serosa and was 
often accompanied by edema and inflammatory changes 
around the tumor (38), which might cause inaccurate 
delineation of the target area and add bias to the extracted 
radiomic features, further affect the performance of 
radiomics model. The nomogram combining Rad-score and 
clinical characteristics obtained the best predictive ability. 
It showed that the combination of clinical and radiomics 
methods could enhance the predictive ability. With the 
advances in automatic delineation and artificial intelligence 
technologies, it is now possible to obtain more radiomics 
features by automatically identifying and expanding the 
delineation area, in order to improve the predictive ability. 
For example, Li et al. (39) extracted more than 7,000 
radiomics features for modeling by semi-automatically 
delineating lesions and the whole stomach and integrating 
large-scale imaging factors. This achieved good predictive 
performance in gastric cancer prognosis-related studies. 
Therefore, more in-depth research is needed in the 
future to explore the application potential of radiomics in 
predicting T4b stage in gastric cancer.

The nomogram in this study provides a personalized 
reference potential for preoperative prediction of the 
pathological status of the tumor. The AJCC gastric cancer 
guidelines (1) recommend that cT4b stage patients should 
discuss the treatment options with the multi-disciplinary 
treatment (MDT), which achieved a personalized diagnosis 
and treatment plan, fill in the shortcomings of the 
disciplines. Therefore, when faced with decision-making 
difficulties such as deciding whether the tumor can be 
completely resected, the results from this study may provide 
some useful reference for decision-making.

However, this study has several limitations. Firstly, this 
is a retrospective study, causing bias in case selection, and 
the model generalization still needs to be tested. Secondly, 
this study only uses machine learning algorithms to build 
models and lacks advanced dimensionality reduction 
techniques. Thirdly, the segmentation of tumors with ill-
defined boundaries has been controversial, although good 
ICCs were achieved with the radiomics features employed 
in this study. Also, differences in the measurement of 
segmented areas were not compared. Combining these two 
methods could further improve the reproducibility of the 

delineated regions (12).

Conclusions

In this multicenter study, the CE-CT-based models were 
constructed to non-invasively identify pT4b stage patients 
among preoperative cT4 stage gastric cancer patients. 
Preoperative CE-CT-based cT stage and Borrmann type 
were independent predictors of gastric cancer pT4b stage 
patients. The nomogram combined with tri-phase radiomics 
Rad-score and clinical characteristics achieved the best 
predictive performance, which could provide personalized 
clinical decision support for cT4 gastric cancer patients.
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