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Background: Accurate grading of gliomas is a challenge in imaging diagnosis. This study aimed to evaluate 
the performance of a machine learning (ML) approach based on multiparametric diffusion-weighted imaging 
(DWI) in differentiating low- and high-grade adult gliomas.
Methods: A model was developed from an initial cohort containing 74 patients with pathology-confirmed 
gliomas, who underwent 3 tesla (3T) diffusion magnetic resonance imaging (MRI) with 21 b values. 
In all, 112 histogram features were extracted from 16 parameters derived from seven diffusion models 
[monoexponential, intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), fractional order 
calculus (FROC), continuous-time random walk (CTRW), stretched-exponential, and statistical]. Feature 
selection and model training were performed using five randomly permuted five-fold cross-validations. An 
internal test set (15 cases of the primary dataset) and an external cohort (n=55) imaged on a different scanner 
were used to validate the model. The diagnostic performance of the model was compared with that of a 
single DWI model and DWI radiomics using accuracy, sensitivity, specificity, and the area under the curve 
(AUC).
Results: Seven significant multiparametric DWI features (two from the stretched-exponential and FROC 
models, and three from the CTRW model) were selected to construct the model. The multiparametric DWI 
model achieved the highest AUC (0.84, versus 0.71 for the single DWI model, P<0.05), an accuracy of 0.80 
in the internal test, and both AUC and accuracy of 0.76 in the external test.
Conclusions: Our multiparametric DWI model differentiated low- (LGG) from high-grade glioma (HGG) 
with better generalization performance than the established single DWI model. This result suggests that the 
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Introduction

Glioma is the most common neuroepithelial tumor of the 
cerebral nervous system and is classified into four grades 
by the World Health Organization (1,2). Low- (LGG) 
(grade II) and high-grade gliomas (HGG) (grades III and 
IV) differ in pathology and prognosis. In patients for whom 
an invasive procedure is considered feasible, the glioma 
grade is determined using stereotactic biopsy followed 
by histopathological analysis. However, the limitations of 
invasive procedures can lead to sampling errors, which can 
compromise the accuracy of diagnosis and the significant 
risks may be associated with the invasive procedure in some 
cases (3). Therefore, glioma grading through noninvasive 
medical imaging methods is needed to overcome these 
limitations.

Several previous studies have proposed grading gliomas 
based on quantitative parameters of magnetic resonance 
imaging (MRI) techniques, such as magnetic resonance 
(MR) spectroscopy, perfusion imaging, T2 mapping, and 
diffusion-weighted imaging (DWI). Of these methods, 
DWI is the most sensitive and has great potential for 
grading tasks (4-8). Many DWI models have been proposed 
over the past few years. One diffusion parameter, the 
apparent diffusion coefficient (ADC), is used to describe 
free diffusion with a monoexponential function, where the 
distribution of molecular displacements obeys a Gaussian 
law (9,10). However, different diffusion compartments may 
arise from the complex structure of tumor tissues (11-14).  
As a result, the diffusion displacement probability 
distribution can deviate substantially from Gaussian law (11). 
To overcome this dilemma, models incorporating multiple 
water diffusion components have been developed (11,15-18). 
For example, Le Bihan et al. (17) proposed the intravoxel 
incoherent motion (IVIM) model, which separates simple 
diffusion and microvascular perfusion in tissues. Bennett  
et al. (15) proposed the stretched-exponential model 
(SEM) and showed that signal attenuation is consistent 
with a multicompartmental theory of water diffusion in the 

brain. A statistical model (SM) to describe a considerable 
amount of diffusion-attenuated MR signals in biological 
systems has also been published (19). Diffusion kurtosis 
imaging (DKI) has previously been used to evaluate non-
Gaussian water diffusion in bodily tissues (11,20), and in 
recent years, two advanced DWI models to measure tissue 
heterogeneity have also been proposed. Using a fractional 
order calculus (FROC) diffusion model has been shown 
to improve the accuracy of MR imaging in differentiating 
benign and malignant pediatric brain tumors and grading 
adult gliomas (9,21). Significant differences between 
malignant and benign pediatric tumors have also been 
observed using the continuous-time random walk (CTRW) 
model (22). However, these models have not been tested 
for reproducibility with other test sets, nor has the value of 
combining multiple DWI models in glioma grading been 
discussed (23). Therefore, it would be helpful to investigate 
whether combining multiple DWI models can improve 
their performance in grading gliomas.

Previous studies have utilized multimodality MRI 
radiomics with machine learning (ML) approaches to 
classify gliomas, demonstrating that DWI features might 
improve diagnostic accuracy (24,25). The results of one 
study showed that incorporating diffusion-weighted 
MRI into an ML-based radiomics model could improve 
the diagnosis of pseudoprogression in patients with 
glioblastoma (5). Another study also highlighted the 
potential of diffusion MR with radiomics analysis in 
the evaluation of glioma malignancy (26). Based on this 
prior work, we hypothesized that combining multiple 
DWI models with ML algorithms might improve the 
performance of DWIs in differentiating glioma grades.

In this study, information extracted from multiple 
diffusion models was combined and subjected to ML-
based analysis to improve the performance of diffusion 
imaging in glioma grading. Further, the robustness of the 
proposed method was compared with that of the traditional 
single DWI model and DWI radiomics, and the results of 

application of an ML approach with multiple DWI models is feasible for the preoperative grading of gliomas.
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these comparisons are presented herein. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-145/rc).

Methods

The current study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The 
institutional review boards of Hua Shan Hospital affiliated 
with Fudan University and Ren Ji Hospital affiliated with 
Shanghai Jiao Tong University approved this retrospective 
study and waived the requirement to obtain informed 
consent. 

Core codes are available at https://github.com/Arroway-
JQ/combined-DWI-modeling-and-tumor-classification.

Patients

This study recruited 147 adult patients with gliomas 
from Hua Shan Hospital affiliated with Fudan University 
between 2014 and 2015. A further 69 patients were 
recruited from Ren Ji Hospital affiliated with Shanghai Jiao 
Tong University between 2016 and 2019 as an external test 
cohort.

The inclusion criteria for the study were as follows: 
(I) three types of MRI images [T1-weighted images with 
enhancement (T1WI+C), T2-weighted fluid-attenuated 
inversion recovery (T2W-FLAIR), and DWI] were 
available for evaluation; (II) surgery was performed for 
a pathologic diagnosis after MR imaging and integrated 
clinical information was obtained; (III) the DWI scan was 
performed using the correct number of b-values (21 for the 
first dataset and 17 for the second). After these criteria had 
been applied, the primary dataset consisted of 74 patients 
(18–75 years old), including 15 patients as the internal test 
set. Of the patients in the primary dataset, 37 had LGG and 
37 had HGG according to the World Health Organization 
classification (2). The external test set comprised 55 patients 
(14–78 years old), of whom 25 patients had LGGs, with the 
remaining patients having HGGs.

Acquisition of MRI scans

The MRI scans (T1WI+C, T2W-FLAIR, and DWI 
sequences) were performed on two 3.0 tesla scanners 
(MR750, Signa HDxt, GE Medical System, Milwaukee, 
WI, USA) using a standard eight-channel phased-array head 

coil. The DWI was acquired using a single-shot spin-echo 
planar imaging sequence with 21 and 17 b-values at Hua 
Shan Hospital and Ren Ji Hospital, respectively. Diffusion 
gradients were applied in all three orthogonal directions 
(x-, y-, and z-axes) to obtain a trace-weighted image to 
minimize the influence of diffusion anisotropy. Other core 
image acquisition parameters are shown in Figure 1.

Image preprocessing

The entire process for building the prediction model is 
shown in Figure 2.

The diffusion images were eddy-current corrected, 
and the skulls were removed through MRI tools using 
the Functional Magnetic Resonance Imaging of the Brain 
Software Library (FSL) (27). Subsequently, a median 
filter was used to smoothen and denoise the images. The 
diffusion-attenuated signals were acquired at the voxel level, 
and then the signal intensity was normalized to the signal 
intensity of the b0 image.

With reference to T1WI+C images, two radiologists 
placed regions of interest (ROIs) on the solid part of tumors 
on the b =0 DWI images, avoiding necrosis, edema, and 
hemorrhage. The ROIs were then propagated to each slice 
of the parameter maps. For the external test set, a single 
radiologist at the second hospital read the diffusion images 
of multiple b-values, and the diagnostic accuracy was 0.71 
(39 of 55 cases were predicted the same as the ground truth) 
with an area under the receiver operating characteristic 
(ROC) curve (AUC) of 0.71 (95% confidence interval: 
0.57–0.86).

Multi-DWI models

Based on the above theories, the present study applied seven 
diffusion models (ADC, IVIM, SEM, SM, DKI, FROC, 
and CTRW) using MATLAB (MathWorks, Inc., 2019b, 
Natick, MA, USA).

The monoexponential model is described as Eq. [1], where 
S denotes the signal intensity with diffusion sensitization, and 
S0 denotes the signal intensity without sensitization.

( )0exp b AS DS C= − ×  [1]

The IVIM model was fitted according to Eq. [2], 
where f is the perfusion fraction; Df is the pseudodiffusion 
coefficient, which represents faster diffusion; and Ds is 
the actual diffusion coefficient, which represents slower 
diffusion (28).

https://qims.amegroups.com/article/view/10.21037/qims-22-145/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-145/rc
https://github.com/Arroway-JQ/combined-DWI-modeling-and-tumor-classification
https://github.com/Arroway-JQ/combined-DWI-modeling-and-tumor-classification
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Individuals diagnosed as 
glioma collected at the first 

hospital (n=147)

32 excluded without clinical 
information

2 excluded with corrupted 
images

41 excluded without DWI 
sequence of 21 b-value†

12 excluded without DWI 
sequence of 17 b-value‡

Individuals with integrated 
clinical information (n=115)

Finally primary dataset involved 
in this study (n=74)

Individuals diagnosed as 
glioma collected at second 

hospital (n=69)

Individuals with well quality 
images (n=67)

Finally external test dataset 
involved in this study (n=55)

Figure 1 Flowchart of the study inclusion and exclusion process. †, 21 b-value: 0, 10, 20, 30, 50, 100, 150, 200, 300, 400, 500, 600, 800, 1,000, 
1,500, 2,000, 2,500, 3,000, 3,500, 4,000, and 4,500 s/mm2. Other core image acquisition parameters for Hua Shan Hospital were as follows: 
partial Fourier, average times NEX =2 (=4 for b =3,500–4,500 s/mm2), TR =5,000 ms, TE =90.6 ms, separation between two diffusion 
gradient lobes Δ =42.688 ms, duration of each diffusion gradient δ =29.404 ms, slice thickness =4 mm, acquisition matrix size =128×128 
zeros-padded to 256×256, flip angle =90° and pixel size =1×1 mm2; ‡, 17 b-value: 0, 20, 50, 80, 150, 200, 300, 500, 800, 1,000, 1,500, 2,000, 
2,500, 3,000, 3,500, 4,000, and 4,500 s/mm2. Other core image acquisition parameters for Ren Ji Hospital were as follows: partial Fourier, 
acceleration =2, TR =3,000 ms, TE =105.8 ms, separation between two diffusion gradient lobes Δ =42.688 ms, duration of each diffusion 
gradient δ =29.404 ms, slice thickness =6 mm, acquisition matrix size =192×192, flip angle =90°, and pixel size =1×1 mm2. DWI, diffusion-
weighted imaging; TR, repetition time; TE, echo time. 

( ) ( ) ( )( )0 exp 1 expf sfS S bD f bD= − + − −  [2]

The SEM model is presented as Eq. [3], where ( )0,1α ∈  
represents the deviation of the signal attenuation (15), and 
DDC is the distributed diffusion coefficient.

( )( )0expS S DDb C α−= ×  [3]

The SM model is described as Eq. [4], where σ is 
the distribution width and ADCS is the position of the 
distribution maxima (19). 

2 2
0

1exp
2SbADCS S bσ − +


= 


 [4]

The DKI model was applied according to Eq. [5] using 
additional information on the diffusion kurtosis K.

2 2
0

1exp
6K KbD KS bS D=  − + 

 
 [5]

The FROC model is presented as Eq. [6], where δ is 
the diffusion gradient pulse width, Δ is the gradient lobe 
separation, βf

* correlates with tissue heterogeneity, and μ is 
the microstructural quantity (21).

( )
*

*
*

2 1
0 *

2 1
exp

/ 3 2 1

f
f f

f

bS S D
β

β β
µ δ

δ β
−  −

∆ −
   =   ∆ − +
−  

   
 [6]

The CTRW model was written using the Mittag-
Leffler function (MLF) as in Eq. [7], where Dc denotes 
the anomalous diffusion coefficient, αc and βc represent the 
diffusion heterogeneity of time and space (22), respectively. 

( )( )0
c

c cS S E bD β
α= −  [7]

All DWI models were applied voxel by voxel with the 
R-squared (R2) value recorded to evaluate the goodness of 
fit. The ADC, SM, and DKI models were calculated using 
polynomial fitting, and the others were fitted by applying 
the Levenberg-Marquardt algorithm (29). In total, 16 
parameters were derived from the seven models (ADC, f, Ds, 
Df, DDC, α, ADCS, σ, DK, K, D, μ, βf

*, Dc, βc, αc).

Feature extraction

The primary dataset was randomly stratified into training 
(n=59) and test (n=15) sets at a ratio of 8 to 2. Five 
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Figure 2 Flow chart for all the procedures to predict LGG and HGG in this study. The first stage is image processing, including DWI 
model building and parameter mapping. The second stage is ML-based model building. In this part, seven histogram features were extracted 
and selected using a five-step procedure: a two-sided Wilcoxon-Mann-Whitney U-test, ML feature selection, a voting system, a correlation 
test, and feature combination. Prediction models were trained and selected in the primary dataset. The third stage included validation and 
evaluation of our proposed model and traditional DWI models in the internal and external cohorts. DWI, diffusion-weighted imaging; ROI, 
region of interest; ADC, apparent diffusion coefficient; IVIM, intravoxel incoherent motion; SEM, stretched-exponential model; FROC, 
fractional order calculus; CTRW, continuous-time random walk; DKI, diffusion kurtosis imaging; SM, statistical model; ML, machine 
learning; LR, logistic regression; SVM, support-vector machine; KNN, K-nearest neighbors; NB, naïve Bayes; RF, random forests; AUC, 
area under the curve; LGG, low-grade glioma; HGG, high-grade glioma. 

randomly permuted five-fold cross-validations were used to 
evaluate our method. Balance of the training and test data 
was considered. Thus, the ratio of HGGs and LGGs was 
maintained between the training, validation, and test sets. 
An external test data set (n=55) from another medical center 
was also included for another verification.

The DWI signals of ROIs were filtered by ranking 
their R2 value from curve fitting, retaining only the top 
95% of voxels for each tumor. The mean, maximum, 
minimum, median, kurtosis, skewness, and variance values 
were calculated for each parameter and each patient in the 
primary and external datasets. In all, our model extracted 
112 (16×7) features from each case.

The DWI radiomic features were extracted using the 
PyRadiomics package in Python software (v. 3.6, Python 
Software Foundation, Wilmington, DE, USA, https://
www.python.org/) (30). Feature scaling was performed 
on both the primary and external datasets using Z-score 
transformation (31). In this study, 7,076 and 6,100 features 
were extracted from each case in the primary dataset and 

the external test set, respectively (Appendix 1).

Feature selection

All work in this section was accomplished using an open 
ML library and scikit-learn (ver. 0.22) in Python (32). The 
clinical information for the training and test datasets is 
shown in Table 1.

Feature selection was performed on five-fold cross-
validation sets. A rigorous five-step process (Figure 2) 
was implemented to select significant features and avoid 
collinearity. A two-sided Wilcoxon-Mann-Whitney 
U-test was performed to identify features which were 
significantly different (P<0.05) between HGGs and 
LGGs for subsequent analysis. Then, the most significant 
features (votes >9/2) were selected using nine ML methods: 
logistic regression, support-vector machine, K-nearest 
neighbors, random forest for a single feature, random forest 
for all features, naïve Bayes, stacking, recursive-feature 
elimination, and Least Absolute Shrinkage and Selection 

https://www.python.org/
https://www.python.org/
https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
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Operator (see Figure S1). After that, the retained features 
were subjected to correlation tests to eliminate potentially 
collinear features (r>0.70), which introduce redundant 
information to the prediction model (Table S1). Finally, 
the features were combined into subgroups based on their 
corresponding DWI models (Table S2).

The feature subgroups based on the single DWI model 
consisted of the mean value of each parameter without 
undergoing ML selection (see Appendix 2, which describes 
the feature selection for the two other DWI methods).

Training and estimator selection

Six estimators (logistic regression, support-vector machine, 
K-nearest neighbors, random forest, naïve Bayes, and 
stacking) were used to construct the classification models 
and to learn how best to combine the predictions from 
the above base machine as the new features. They were 
reclassified with logistic regression as a metaclassifier. 
Stacking is an ensemble ML algorithm that uses meta-
learning. The benefit of stacking is that it can harness 
the capabilities of a range of well-performing models 
by using their output as input and ultimately achieve a 
better predictive performance than any single model in 
the ensemble (33). For each estimator, a grid search was 
conducted for automatic parameter tuning.

Prediction models were first trained in the five-fold 
cross-validation set (34). Then, the final prediction models 
for the three classification methods were selected based on 
the highest AUC in the internal test set (see Table S3 for 
integrated training and internal testing results).

Testing and comparisons

Internal and external test sets were included to evaluate 
the performances of the single DWI, DWI radiomics, and 
ML-based multiparametric DWI prediction models. To 

determine the models’ accuracy, the AUCs were calculated 
as evaluation indices. The cutoff values that provided the 
best sensitivity and specificity were determined according to 
the maximum value of the Youden index (35). Differences 
between the three models were compared. The AUCs of the 
three models were compared using the DeLong test (36-38).

Results 

Multimodel DWI fitting

The DWI signal attenuation curves were fitted based on 
the theoretical bases of the seven diffusion models. Figure 3 
shows the maps of the 16 parameters obtained compared to 
b0 images of an LGG and an HGG.

The SEM, FROC, and CTRW models outperformed 
the other models (Table S4), with R2

mean 0.9959, 0.9788, 
and 0.9801, respectively. The R2 values of the SM and DKI 
models were similar, while those of ADC and IVIM models 
were relatively lower than the other models (<0.96). 

Significant features

After five-step feature selection, only ten features were 
selected as significant. The subgroups of these features 
and combination descriptions are shown in Table 2 and 
Table S2. Based on DWI radiomics analysis, five sequential 
texture features and four wavelet transformations were 
selected after a similar feature selection process. For the 
construction of the single DWI prediction model, only 
the mean values of parameters were chosen (see Table S5, 
which demonstrates the feature combinations of the two 
established DWI methods).

Optimal prediction models

Figure 4A shows the ROC curves of cross-validations of 

Table 1 Clinical information of patients in the training and test datasets

Data LGG HGG Age, years, mean ± SD Male Female

Training set (n=59) 29 30 46±15 40 19

Internal test set (n=15) 8 7 43±14 (P=0.45)‡ 9 6

Primary set (n=74) 37 37 45±14 49 25

External test set (n=55) 25 30 49±15 (P=0.26)‡ 31 24
‡, P value no significant different in patient age between the training and internal test sets or the training and external test sets. LGG, low-
grade glioma; HGG, high-grade glioma; SD, standard deviation.

https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 12, No 11 November 2022 5177

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(11):5171-5183 | https://dx.doi.org/10.21037/qims-22-145

b0

f

DC

ADC

Ds

HGG 

LGG

6000

5000

4000

3000

2000

1000 

0

5000

4000

3000

2000

1000 

0

1

0.8

0.6

0.4

0.2

0
1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

3

2

1

0

1

0.8

0.6

0.4

0.2

0
1

0.8

0.6

0.4

0.2

0

HGG 

LGG

HGG 

LGG

αc

DDC

Df

βc

ADCS

βf
*

K

α

D

Dk

σ

μ

Figure 3 Sixteen parameter maps for HGG and LGG cases. The images in sequence are: b0 map; ADC map; DDC map and α map for SEM; 
ADCS map and σ map for SM; f map, Ds map, and Df map for IVIM model; D map, βf

* map, and μ map for FROC model; DC map, αc map, 
and βc map for CTRW model; and DK map and K map for DKI model. ADC, apparent diffusion coefficient; HGG, high-grade glioma; 
LGG, low-grade glioma; SEM, stretched-exponential model; SM, statistical model; IVIM, intravoxel incoherent motion; FROC, fractional 
order calculus; CTRW, continuous-time random walk; DKI, diffusion kurtosis imaging. 

the combined SEM, CTRW, and FROC (SCF) model 
containing seven features (SEM model with DDC_min and 
α_skewness, CTRW model with αc_kurtosis, αc_variance 
and βc_variance, and FROC model with βf

* min and μ_
skewness as features). Then, the fourth-fold stack estimator 
for SCF was chosen as the final prediction model.

As shown in Figure 4B, the SCF model had the highest 
AUC (0.84) (sensitivity =0.86 and specificity =0.75) in the 
internal test set. Figure 4C shows that the SEM model 
had the highest AUC value (0.71) among the single DWI 

models. Furthermore, the subgroup TOP6 had the best 
performance (AUC =0.84) among the DWI radiomics 
features, as shown in Figure 4D and Table S6. Both the 
SCF model and the radiomics model significantly improved 
the predictive performance of the single DWI model 
(P=8.60×10−4, 1.90×10−4 for DeLong test, respectively).

Compared with the established methods, our method 
performed better in the external cohort. As shown in  
Table 3, in the external cohort, the SCF model showed 
both a higher accuracy and AUC value than the SEM 

https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
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(DDC_mean and α_mean in SEM model) and TOP6 
models (accuracy =0.76, 0.53, and 0.67, respectively). 
Table 4 shows that the SCF model performed significantly 
better in classifying the external test set than did the SEM 
model (AUC =0.76 and 0.53, respectively, P=0.02 for the 
DeLong test). The AUC of the SCF model was higher than 
that of the DWI radiomics model, but the difference was 
not significant (AUC =0.72, P=0.61 for the DeLong test)  
(Figure 5).

Discussion

In this study, a multiparametric DWI model to differentiate 
LGGs and HGGs was proposed. We used images with 
multiple high b-values to extract higher-order features from 
16 parameters derived from seven DWI models proposed 
in previous studies (7,15,17,19-22). Features were selected 
by using ML algorithms and statistical analyses. We found 
that the SCF prediction model performed best in both the 
primary dataset and the external test set. The robustness 
of our method was evaluated in the external test set and 

compared with that of other methods, and the proposed 
method was found to have advantages over the two 
established DWI methods.

Multiparametric DWI model

Based on different approaches to diffusion imaging, seven 
DWI models were incorporated into our model. As shown 
in Figure 3, the ADC, DDC, Dc, D, ADCS, and DK maps 
share similar areas of contrast, reflecting similar water 
diffusion distribution in the tissues, whereas the α, β*f, 
αc, and βc maps show tissue heterogeneity; these findings 
are consistent with results from previous studies (21,22). 
The SEM and CTRW models reflected microstructure 
characteristics better with high b values than other models 
and thus, had better fitting quality for signal attenuation 
(R2=0.9959, 0.9801, respectively, see Table S4). In line with 
the findings of Niendorf et al. (18), the monoexponential 
model had the worst performance of all the models, with 
the fitted curve noticeably deviating from the original curve 
in the high b-value region. 

In this study, the ML approach was used, and features 
from multiple DWI models were combined. Due to the 
incorporation of multiple features into our model, the 
problem of overfitting had to be considered. To mitigate 
the risk of overfitting, we adopted two preventive measures. 
The first was the use of a rigorous five-step feature selection 
procedure with a reduced number of features. The second 
was the use of independent internal and external test data 
sets.

Comparisons with established DWI methods

Instead of focusing on multimodality radiomics, this work 
focused on investigating and improving the diagnostic 
potency of DWI models. Our study demonstrated that 
multimodel DWI was useful, with our results being 
comparable to those of another multimodality radiomics 
study, in which the AUC of the external cohort was  
0.75 (34). We agree that advanced MRI sequences like 
diffusion imaging can provide meticulous radiologic 
information about glioma and may be suitable for 
a predictive model (5). Many previous studies have 
demonstrated the resolving ability of single DWI models. 
For example, one study reported the value of DKI with 
radiomics in grading gliomas (26). However, further 
investigation using a larger sample and an external test 
set is still needed. Compared with models in two previous 

Table 2 Subgroups of selected 10 features in the multiparametric 
DWI model

S (SEM)

DDC_min

α_skewness

C (CTRW)

αc_kurtosis

αc_variance

βc_variance

F (FROC)

β*f_min

μ_skewness

S (SM)

σ_skewness

I (IVIM)

Ds_mean

Ds _min

DWI, diffusion-weighted imaging; SEM, stretched-exponential 
model; CTRW, continuous-time random walk; FROC, fractional 
order calculus; SM, statistical model; IVIM, intravoxel incoherent 
motion.

https://cdn.amegroups.cn/static/public/QIMS-22-145-supplementary.pdf
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Figure 4 ROC curves of different models in the internal test and external validation sets. (A) The ROC curve of five randomly permuted 
five-fold cross-validation sets using SCF as input and stack as the estimator. (B) The ROC curve of feature combinations based on the 
multiparametric DWI model and ML selection in the internal test set. (C) The ROC curve of feature combinations based on the single DWI 
models in the internal test set. (D) The ROC curve of feature combinations based on DWI radiomics in the internal test set. ROC, receiver 
operating characteristic; SCF, SEM, CTRW, and FROC models; AUC, area under the curve; F, FROC model; SI, SEM and IVIM models; 
SC, SEM and CTRW models; SCs, SEM, CTRW, and statistic models; LR, logistic regression; RF, random forest; ADC, apparent diffusion 
coefficient; SM, statistical model; SEM, stretched-exponential model; DKI, diffusion kurtosis imaging; FROC, fractional order calculus; IVIM, 
intravoxel incoherent motion; CTRW, continuous-time random walk; DWI, diffusion-weighted imaging; ML, machine learning. 

Table 3 The predictive accuracy of the proposed model, the single DWI model, and DWI radiomics model in the internal and external test sets

Model
Feature 

combination
Feature-num

Prediction 
estimator

Train CV-mean 
accuracy

Train CV-mean 
AUC

Internal test 
accuracy

External test 
accuracy

Multiparametric DWI SCF† 7 Stackfold4 0.91 0.89 0.80 0.76

Single DWI SEM‡ 2 RFfold20 0.79 0.79 0.73 0.53

DWI radiomics TOP6§ 6 Stackfold3 0.96 0.98 0.80 0.67
†, “SCF” means SEM with DDC_min and α_skewness, CTRW model with αc_kurtosis, αc_variance and βc_variance, FROC model with β*f 
min and μ_skewness; ‡, “SEM” denotes stretched-exponential model, i.e., the mean values of σ, DDC in SEM model; §, “TOP6” means 
radiomics features: kurtosis of the minor axis length calculated from all b-value images, maximum of HHL calculated based on b = 
3,500 s/mm2 images, skewness of the minor axis length calculated from all b-value images, kurtosis of HHL calculated based on b = 
0 s/mm2 images, kurtosis of the interquartile range of HHH calculated from all b-value images, kurtosis of HHH calculated based on b = 
4,000 s/mm2 images. “H” and “L” denote high-pass and low-pass filters, respectively. DWI, diffusion-weighted imaging; CV, cross-
validation sets; SEM, stretched-exponential model; CTRW, continuous-time random walk; FROC, fractional order calculus. 
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Table 4 The AUC, sensitivity, and specificity of the proposed model, the single DWI model, and DWI radiomics model in internal and external 
test sets

Model
Internal test set External test set

AUC Sensitivity Specificity AUC Sensitivity Specificity

Multiparametric DWI 0.84 0.86 0.75 0.76 0.80 0.68

Single DWI 0.71 0.71 0.75 0.53 (P=0.02)† 0.43 0.60

DWI radiomics 0.84 0.86 0.88 0.72 (P=0.61)‡ 0.50 0.92
†, DeLong test between the multiparametric DWI and single DWI models with P<0.05; ‡, DeLong test between the multiparametric DWI 
and DWI radiomics models with P>0.1. DWI, diffusion-weighted imaging; AUC, area under the curve. 
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Figure 5 ROC curves of the multiparametric DWI model, the 
single DWI model, and the DWI radiomics model in the external 
test set. ROC, receiver operating characteristic; SCF, SEM, 
CTRW, and FROC models; AUC, area under the curve; SEM, 
stretched-exponential model; DWI, diffusion-weighted imaging; 
CTRW, continuous-time random walk; FROC, fractional order 
calculus. 

studies focusing on diffusion MRI in glioma grading 
(accuracy =0.80, 0.82) (9,39), our model performed better in 
cross-validation sets (accuracy =0.91), and neither of these 
studies included an independent test set. Furthermore, 
the repeatability of our multiparametric DWI model was 
demonstrated in both the internal and external test sets. In 
this study, the AUCs of the multiparametric DWI model 
and the radiomics model were significantly higher (P<0.05) 
than that of the single DWI model (AUC =0.73) in the 
internal test set. As shown in Table 3, the single DWI model 
showed a sharp decrease in performance in the external test 

set (AUC =0.53), while our multiparametric DWI model 
showed a superior performance in the external test set (AUC 
=0.76, P=0.02). These results indicate that measuring the 
mean value of parameters within ROIs in tissues based on 
the single DWI model might fail to sufficiently capture the 
tumor complexity; thus, this method would have limited 
applicability to other datasets.

Although the SCF (our method) and TOP6 (the DWI 
radiomics method) models had comparable accuracy (0.80, 
P>1) in the internal test set, the accuracy of the SCF model 
(0.76) was much higher than that of the TOP6 model 
(0.67) in the external test set. The AUC values of the SCF 
model in the external test set were decreased compared to 
those in the internal test set on account of the decreasing 
of specificity in the external test set. But, the sensitivity 
remained high at 0.80. The accuracy and AUC value of the 
SCF model were higher than those of the DWI radiomics 
model in the external test set; however the AUC showed 
no significant difference between the two models. Also, 
compared to that in the internal test set, the sensitivity of 
the DWI radiomics model in the external test set decreased 
substantially to 0.5, while the specificity remained high at 
0.92. Our findings demonstrate that quantitative analysis 
using our multiparametric DWI model may be more 
generalizable than signal analysis of images (the DWI 
radiomics model).

Our study has several limitations. First, differences 
in scanning parameters, such as b-values and the echo 
time (TE), between the training and external sets may 
have introduced biases which impacted the accuracy of 
the external test set results. In our study, the accuracy of 
the SCF model decreased by 0.04 in the external test set 
relative to the internal test set, although we used feature 
scaling (32), applied a regularization algorithm for feature 
selection, and used cross-validation to evaluate the model’s 
generalization error and to select the estimator (40,41). 



Quantitative Imaging in Medicine and Surgery, Vol 12, No 11 November 2022 5181

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(11):5171-5183 | https://dx.doi.org/10.21037/qims-22-145

Subsequent studies should be conducted by augmenting 
the number of samples, and a standard methodology 
of normalization between different cohorts also needs 
further investigation. Furthermore, the DWI data in this 
work were collected in three orthogonal directions, which 
did not meet the requirements for computing some of 
the direction-dependent matrices, such as k⊥  and k

, in 
the DKI model. The limited diffusion directions could 
have affected the isotropic K, which may be one of the 
reasons for the poor performance of the DKI model. Also, 
multiple diffusion directions, if clinically available, make it 
possible to analyze other diffusion models, such as neurite 
orientation dispersion and density imaging, diffusion basis 
spectrum imaging, and constrained diffusional variance 
decomposition models (42-44).

Conclusions

In conclusion, our multiparametric DWI model with an 
ML algorithm was found to be feasible and valuable for 
predicting LGGs and HGGs. Multiple DWI parameters 
can provide abundant critical information for clinical 
diagnosis. Compared to that of the single DWI model, the 
performance of the SCF model in glioma classification was 
significantly improved (P<0.05), with our model achieving 
higher accuracy and AUC values in both the internal 
(accuracy =0.80, AUC =0.84) and external (accuracy =0.76, 
AUC =0.76) test sets. 

In summary, our method is credible and robust for 
differentiating LGGs and HGGs in adults. The promising 
results of this study will pave the way for further research 
combining other diffusion models and involving larger 
patient groups.
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Appendix 1 

Radiomics feature extraction

In this study, 18 first order features, 22 gray-level co-occurrence matrix (GLCM) features, 14 neighboring gray-level 
dependence matrix (NGLDM), 16 gray-level run length matrix (GLRLM) features, 16 gray-level size zone matrix (GLSZM) 
features and 14 shape/size features were adopted as the radiomic features (45). A three-dimensional (3D) Coiflet wavelet 
transform was applied to the DWI images in order to extract the first order features in frequency decomposed images. The 
frequency components were HHH, HHL, HLH, HLL, LHH, LHL, LLH, and LLL, where “H” and “L” denote high-pass 
and low-pass filters, respectively (34). To characterize the textural changes on DWI images over different diffusion gradient 
(different b values), we measured 8 new sequential features from the 21 b values for each texture feature, including mean, 
max, min, median, variance, kurtosis, skewness, energy. Therefore, a total of 7076 features were extracted on primary dataset 
for each tumor with 21 b values and 6,100 features for external testing dataset for each tumor with 17 b values. It should be 
noticed that the number of radiomics features were different between two datasets. This was due to the different number of b 
values. However, this problem has been solved during the feature selection procedure by choosing the features from the DWI 
images of which b values were equal between two datasets.

Appendix 2 

Feature Selection procedure

All work in this part was accomplished using an open ML library scikit-learn (ver. 0.22), in Python (32). The whole dataset 
was split into training set (80 percent) and testing set (20 percent). The external test set included 55 cases on five-fold cross-
validation sets. Radiomics features with b values that were not included in the external test were excluded. A five-step rigorous 
selection process has been implemented both on combined DWI-model features and radiomics features:

Step I WMW U-test
All features of the training data were tested by a non-parametric WMW U-test with a significant setting of P<0.05.

Step II ML methods
On one way, a learning model-based single feature sequencing approach was involved. The idea of this approach was to use 
Logistic Regression (LR), Support-vector Machine (SVM), K-nearest neighbors (KNN), Random Forests (RF), Naïve Bayes 
(NB) and Stacking Methods (Stacks) separately as a learning estimator to build a predictive model for each individual feature 
filtered by step 1.
On the other way, the top features were selected according to scores derived from Lasso, RF and Recursive feature elimination 
(RFE) methods. Grid search was used on these estimators to define the hyper-parameters of Lasso and RF. Features ranking 
in Lasso were determined by the final coefficient, and in RF were sorted by their importance. Recursive feature elimination 
(RFE) model was also applied for selection. RFE creates a model from all features, and then eliminates the least important 
features in turn by measuring the contribution of each feature in a given model (26). In this study, RideCV was utilized as an 
underlying function to stabilize it.
In total, 9 ML based selection methods with 5-fold cross-validation performed were used, each providing the top 20 features 
of this work.

Step III Voting system
A voting system was proposed to find the common features selected by 9 methods mentioned above. We only reserved 
features with votes >9/2 and 19 features were left for multiparametric DWI based on ML and 14 features left for DWI 
radiomics.

Supplementary
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Step IV Correlation test
The final decision was made by calculating the Pearson correlation coefficient r and eliminate features with r>0.7 according 
to the rank. After this, 10 and 9 features were selected for multiparametric DWI and radiomics methods, respectively.

Step V Combination and Grouping
Features were combined in accordance with DWI models, where in this study 10 features belong to 5 different DWI 
models. Based on combination mathematics, there are 25−1=31 types of DWI model combinations. The description of these 
combinations is simply combining their capitals, such as SC for SEM-model & CTRW-model, SFs for SEM-model & 
FROC-model & SM model and the like.
In this study, we also aimed to compare with two traditional classification methods. One of traditional method is based on a 
single DWI model only measuring the average for each parameter shown in Eq. [1] to Eq. [7]. And the other method depends 
on DWI radiomics features. Therefore, we also trained and tested our estimators on these conventional combinations, 
which were also grouped following rules stipulated above. The selection procedure for radiomics features followed the same 
rules except the step 5, we only chose the top 1 to 9 features according to the rank in step 4 on the training set instead. (See  
Table S5, which shows feature combinations of two traditional methods).
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Figure S1 The votes of features selected by 9 ML selection methods (step 3).



Table S1 Correlation test results

Pink highlight data are highly colinear features (r>0.7) and blue highlight features are finally selected.

Table S2 Combinations of the subgroups of selected 10 features in multiparametric DWI model 
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Table S3 Integrated training and internal test results for each feature combination and  they were sorted according to their AUCs on 
internal test set 

Feature-
combination

Feature numbers
Prediction 
methods

trainCV acc trainCV auc test acc test auc tpr tnr Cut-off

ADC 1 LRfold25 0.7939 0.783 0.6 0.6429 0.4286 1 0.872

DDC_min' 1 'model_KNNs' 0.7 0.7994 0.7333 0.7411 0.5714 0.875 0.5455

Ds min' 1 model KNNs' 0.8333 0.9195 0.6667 0.6875 0.8571 0.5 0.6667

βf* min' 1 model_SVMs' 0.7667 0.7638 0.6 0.5982 0.5714 0.625 —

βc var' 1 'model_Stacks' 0.6 0.727 0.6 0.625 0.5714 0.75 0.5601

α skewness' 1 'model RFs' 0.6333 0.8741 0.6 0.5 0.4286 0.75 0.5847

αc var' 1 'model KNNs' 0.6333 0.823 0.5333 0.5982 0.4286 0.875 0.7143

s 1 'model_RFs' 0.6667 0.9782 0.4667 0.6161 0.7143 0.5 0.4431

μ skewness' 1 'model RFs' 0.7 1 0.4667 0.5357 0.5714 0.75 0.74

αc kurtosis' 1 'model LRCVs' 0.6667 0.7425 0.4667 0.5179 0.8571 0.375 0.4511

Ds_aver' 1 'model_RFs' 0.8 0.9253 0.4667 0.5893 0.5714 0.75 0.721

F 2 LRfold5' 0.8382 0.8184 0.6667 0.7679 1 0.5 0.442

SM 2 'LRfold12' 0.8106 0.7921 0.5333 0.6071 0.4286 1 0.8665

S 2 'LRfold24' 0.807 0.8748 0.6667 0.6786 0.8571 0.625 0.4924

SEM 2 'RFfold20' 0.7909 0.7857 0.7333 0.7143 0.7143 0.75 0.5583

DKI 2 'Stackfold12' 0.8376 0.8341 0.6667 0.6071 0.7143 0.75 0.3458

I 2 'KNNfold8' 0.6845 0.731 0.5333 0.5536 0.2857 1 1

Ss 3 'KNNfold24' 0.8376 0.8743 0.6 0.6696 0.4286 0.875 0.7143

FROC 3 'LRfold2' 0.8112 0.8079 0.6667 0.6429 0.4286 0.875 0.5855

IVIM 3 'Stackfold18' 0.7764 0.735 0.4667 0.5357 0.4286 0.875 0.5655

CTRW 3 'Stackfold15' 0.8042 0.7838 0.5333 0.5357 0.8571 0.375 0.5162

sI 3 'RFfold3' 0.7273 0.8385 0.4 0.5268 0.8571 0.375 0.506

Fs 3 'KNNfold3' 0.787 0.8519 0.6667 0.5179 0.5714 0.75 0.5556

C 3 NIfold5' 0.8182 0.7864 0.5333 0.5179 0.5714 0.625 0.4581

SI 4 'RFfold24' 0.8182 0.8635 0.8667 0.8214 0.7143 0.7143 0.7983

SF 4 'KNNfold24' 0.8312 0.9078 0.7333 0.6518 0.7143 0.7143 0.5294

FI 4 'Stackfold5' 0.7273 0.835 0.5333 0.5714 0.4286 0.4286 0.7126

Cs 4 'KNNfold9' 0.7761 0.8419 0.5333 0.5268 1 1 0.1667

SC 5 'Stackfold1' 0.8921 0.8863 0.7333 0.7857 0.7143 0.875 0.54

CF 5 'KNNfold24' 0.757 0.8509 0.5333 0.6696 1 0.375 0.25

SFs 5 'KNNfold3' 0.8585 0.9007 0.6667 0.625 0.5714 0.75 0.6429

FsI 5 'RFfold24' 0.9091 0.8587 0.5333 0.625 0.8571 0.5 0.4442

CI 5 'RFfold19' 0.6364 0.7798 0.6 0.6161 0.7143 0.625 0.3205

SsI 5 'RFfold12' 0.8182 0.8668 0.6 0.6161 0.7143 0.625 0.4288

SCs 6 'Stackfold4' 0.8955 0.8939 0.6667 0.7679 0.7143 0.875 0.5243

SFI 6 'KNNfold24' 0.8273 0.9013 0.6667 0.6518 0.7143 0.625 0.6

CFs 6 'RFfold3' 0.8182 0.858 0.7333 0.5893 0.5714 0.875 0.5739

CsI 6 'Stackfold4' 0.7273 0.8391 0.5333 0.5714 0.7143 0.625 0.4629

SCF 7 'Stackfold4' 0.9091 0.8898 0.8 0.8393 0.8571 0.75 0.5051

CFI 7 'RFfold13' 0.8182 0.8638 0.6667 0.6964 0.5714 0.875 0.5547

SCI 7 'LRfold24' 0.7976 0.8578 0.6667 0.6786 0.7143 0.75 0.491

SFsI 7 'KNNfold3' 0.8718 0.9037 0.6667 0.5982 0.7143 0.625 0.4667

SCFs 8 'Stackfold7' 0.9091 0.9021 0.7333 0.7679 0.5714 0.875 0.5308

CFsI 8 'RFfold3' 0.9091 0.8731 0.6 0.6429 0.7143 0.625 0.3624

SCsI 8 'Stackfold1' 0.9091 0.8815 0.6 0.6429 0.5714 0.75 0.5474

SCFI 9 'LRfold24' 0.8139 0.8727 0.6667 0.6607 0.8571 0.625 0.1751

All features 10 'RFfold24' 0.8755 0.8873 0.6667 0.7321 0.7143 0.75 0.5698

“tpr” refers to the sensitivity and “tnr” refers to the specificity. The highlighted row represents the best prediction model which 
achieves the highest AUC in internal test set.
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Table S4 R-squared of each DWI model to assess the goodness of fitting

DWI model Mean

ADC 0.9449

IVIM 0.9569

SEM 0.9959

SM 0.9699

DKI 0.9699

FROC 0.9788

CTRW 0.9801

Table S5 Row ‘Feature combinations’ gives the selected features based on single DWI model and radiomics respectively

DWI models

Traditional methods based on the single 
DWI model

Traditional DWI radiomics
Feature combinations

Serial numbers of 
selected features

Abbreviation Features Feature types Features/serial number

ADC Amean ADC_mean b =3,500 HHL_Maximum/ ② ; HHL_kurtosis/ ⑧ TOP1 ①

IVIM Imean f_mean, DS_mean, Df_mean b =4,000 HHH_Kurtosis/ ⑥ TOP2 ①②

SEM Smean DDC_mean, α_mean b =0 HHL_Kurtosis/ ④ TOP3 ①②③

SM smean ADCS_mean, σ_mean Sequential Kurtosis_original_shape_Minor_Axis_
Length/ ① ; Skewness_original_

shape_Minor_AxisLength/ ③

TOP4 ①②③④

DKI Dmean DK_mean, K_mean Kurtosis_HHH_Inter-
quartileRange/ ⑤ ; Skewness_
origianl_glszm_LargeAraHigh-

GrayLevelEmphasis/ ⑦

TOP5 ①②③④⑤

TOP6 ①②③④⑤⑥

FROC Fmean Df_mean, β*c_mean, μ_mean Skewness_original_shape_
Maximum2DDiameterColumn/ ⑨

TOP7 ①②③④⑤⑥⑦

CTRW Cmean DC_mean, αc_mean, βc_aver TOP8 ①②③④⑤⑥⑦⑧

TOP9 ①②③④⑤⑥⑦⑧⑨

The ‘serial number ① - ⑨ ’ was determined by the ranking after step 4. 
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Table S6 Internal test results of two traditional DWI methods

Combination 
name

Feature-num
Prediction 
estimator

trainCV_acc trainCV_auc test_acc test_auc best_tpr best_tnr Cut-off

Single DWI model

ADC 1 LRfold25 0.7939 0.783 0.6 0.6429 0.4286 1 0.872

SM 2 LRfold12 0.8106 0.7921 0.5333 0.6071 0.4286 1 0.8665

SEM 2 RFfold20 0.7909 0.7857 0.7333 0.7143 0.7143 0.75 0.5583

DKI 2 Stackfold12 0.8376 0.8341 0.6667 0.6071 0.7143 0.75 0.3458

CTRW 3 Stackfold15 0.8042 0.7838 0.5333 0.5357 0.8571 0.375 0.5162

FROC 3 LRfold2 0.8112 0.8079 0.6667 0.6429 0.4286 0.875 0.5855

IVIM 3 Stackfold18 0.7764 0.735 0.4667 0.5357 0.4286 0.875 0.5655

Radiomics

TOP6 6 Stackfold3 0.9558 0.9821 0.8 0.8393 0.8571 0.875 0.6111

TOP4 4 LRfold3 0.9421 0.944 0.6667 0.75 1 0.625 0.3141

TOP7 7 Stackfold3 0.9624 0.9551 0.7333 0.75 0.8571 0.625 0.429

TOP5 5 LRfold4 0.9321 0.9399 0.7333 0.75 0.8571 0.75 0.3827

TOP8 8 Stackfold2 0.9761 0.9821 0.8 0.75 0.5714 1 0.595

TOP9 9 Stackfold1 0.9794 0.9868 0.7333 0.6964 0.5714 0.875 0.6148

TOP3 3 LRfold1 0.9082 0.9044 0.6667 0.6607 1 0.375 0.3405

TOP2 2 LRfold10 0.8821 0.8801 0.5333 0.5179 0.4286 0.875 0.7174


