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Background: The extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia, 
quantified on computed tomography (CT), is an established biomarker for prognosis and guides clinical 
decision-making. The clinical standard is semi-quantitative scoring of lung involvement by an experienced 
reader. We aim to compare the performance of automated deep-learning- and threshold-based methods 
to the manual semi-quantitative lung scoring. Further, we aim to investigate an optimal threshold for 
quantification of involved lung in COVID pneumonia chest CT, using a multi-center dataset. 
Methods: In total 250 patients were included, 50 consecutive patients with RT-PCR confirmed COVID-19 
from our local institutional database, and another 200 patients from four international datasets (n=50 
each). Lung involvement was scored semi-quantitatively by three experienced radiologists according to the 
established chest CT score (CCS) ranging from 0–25. Inter-rater reliability was reported by the intraclass 
correlation coefficient (ICC). Deep-learning-based segmentation of ground-glass and consolidation was 
obtained by CT Pulmo Auto Results prototype plugin on IntelliSpace Discovery (Philips Healthcare, The 
Netherlands). Threshold-based segmentation of involved lung was implemented using an open-source tool 
for whole-lung segmentation under the presence of severe pathologies (R231CovidWeb, Hofmanninger  
et al., 2020) and consecutive quantitative assessment of lung attenuation. The best threshold was investigated 
by training and testing a linear regression of deep-learning and threshold-based results in a five-fold cross 
validation strategy.
Results: Median CCS among 250 evaluated patients was 10 [6–15]. Inter-rater reliability of the CCS was 
excellent [ICC 0.97 (0.97–0.98)]. Best attenuation threshold for identification of involved lung was −522 HU. 
While the relationship of deep-learning- and threshold-based quantification was linear and strong (r2

deep-learning 

vs. threshold=0.84), both automated quantification methods translated to the semi-quantitative CCS in a non-
linear fashion, with an increasing slope towards higher CCS (r2

deep-learning vs. CCS= 0.80, r2
threshold vs. CCS=0.63).
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Introduction

Coronavirus disease 2019 (COVID-19) is an infectious 
disease, caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), which primarily manifests 
in the lungs (1). Chest computed tomography (CT) is 
regularly performed in the context of COVID pneumonia, 
since it has a potential role in its diagnosis and the 
detection of complications (1). Above all, the extent of lung 
involvement on chest CT is an established biomarker for 
the prognosis of the disease and supports clinical decision 
making (2-10). The originally established, semi-quantitative 
approach for assessment of lung involvement in COVID 
pneumonia was published by Pan et al. in 2020 (11). This 
chest CT score (CCS) considers each of the five pulmonary 
lobes with an individual score from 0–5, based on the extent 
of COVID typical findings (0: 0%; 1: <5%; 2: 5–25%; 3: 
26–50%; 4: 51–75%; 5: >75%). The sum of five lobe scores 
equals the total CCS (range: 0–25). The semi-quantitative 
CCS and its later amendments have since been extensively 
used in clinical studies exploring the prognosis of COVID 
pneumonia (2,3,5,6,8). 

Semi-quantitative calculation of the CCS is time-
consuming and requires experienced readers (3,8). 
Visual estimation of the individual lobe scores demands 
identification of involved lung tissue and comparison to the 
total lobe volume, which might introduce an inter-rater 
bias (3). Contrarily, slice-by-slice manual segmentation of 
involved vs. non-involved lung tissue might be an accurate 
method of lung involvement assessment, but is not feasible 
for daily routine diagnostic of every patient during this 
pandemic. Several artificial intelligence-based tools for 
segmentation of involved lung in COVID are under 
development or already commercially available [e.g., syngo.
via Plug-In by Siemens Healthcare, Erlangen, Germany 

(12,13); Thoracic VCAR by GE Healthcare, Chicago, 
United States of America (14); CT Lung Analysis by Canon 
Medical Systems, Ōtawara, Japan (15), IntelliSpace Portal 
CT Pulmo Auto Results by Philips Healthcare, Amsterdam, 
Netherlands]. Deep-learning-driven segmentation allows 
for fully automated, volumetric assessment of involved 
lung in COVID pneumonia in a fast manner. Further, 
numerous AI classification models of COVID pneumonia 
have been developed,  some based on automated 
segmentation results (16,17). However, to the best of our 
knowledge, satisfactory deep-learning-based segmentation 
of involved lung is still limited to the commercially offered 
products.

Besides manual semi-quantitative and automated 
deep-learning-driven assessment of lung involvement, an 
automated threshold-based approach is a third method 
to evaluate the extent of lung involvement in COVID. 
Typical CT manifestations of COVID pneumonia include 
ground-glass opacifications, consolidations, and reticular 
patterns (1). All of those findings are apparent by an 
increase of lung attenuation, when compared to the well-
aerated lung tissue. Notably, threshold-based COVID 
pneumonia segmentation is capable to achieve similar 
accuracy compared to the recent AI-based approaches (18).  
Two recent studies investigated arbitrary thresholds for 
identification of involved lung in COVID-19 (19,20). 
However, both studies examined only single-center, 
single-vendor data, and a robust threshold to discriminate 
involved vs. non-involved lung in COVID pneumonia is 
not yet investigated.

The aim of our study is to compare the performance of 
automated deep-learning- and threshold-based methods 
to the manual semi-quantitative lung involvement scoring 
by Pan et al. (11). Further, we aim to investigate an optimal 

Conclusions: The manual semi-quantitative CCS underestimates the extent of COVID pneumonia in 
higher score ranges, which limits its clinical usefulness in cases of severe disease. Clinical implementation of 
fully automated methods, such as deep-learning or threshold-based approaches (best threshold in our multi-
center dataset: −522 HU), might save time of trained personnel, abolish inter-reader variability, and allow for 
truly quantitative, linear assessment of COVID lung involvement.
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threshold for quantification of COVID involved lung in 
chest CT, and provide an exemplary tool based on our 
findings. We present the following article in accordance with 
the GRRAS reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-175/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the institutional review board of the University 
Cologne (No. 21-1426-retro) and individual consent for 
this retrospective analysis was waived.

Patient population

Patients were retrospectively enrolled from our institute 
and four publicly available datasets. This approach aimed to 
achieve a heterogeneous, multi-center, international dataset. 
If several consecutive CT exams were available for the same 
patient, only the initial scan was evaluated. Inclusion criteria 
comprised:

(I) Positive reverse transcription polymerase chain 
reaction test for SARS-CoV-2,

(II) Chest computed tomography without intravenous 
contrast administration,

(III) Patient age ≥18 years.
Fifty consecutive patients were included from our 

radiological information system, starting from 10th of 
March to 15th of October, 2020. Further 200 patients were 
randomly included from four publicly available datasets 
(n=50 patients each) (21-25). Three patients were excluded 
from the dataset by An et al., since they were obviously 
younger than 18 years, albeit their individual age was not 
reported (25). One patient was excluded from the dataset by 
Shakouri et al. due to severe thoracic scoliosis. CT exams 
were converted to a common format (.nifti) and saved to a 
shared folder to promote automated processing. There were 
no further specific steps of data curation.

Semi-quantitative scoring of lung involvement

Lung involvement was estimated semi-quantitatively by three 
experienced radiologists in independent reading sessions 
(clinical experience of >700 COVID chest CT scans each), 
obtaining the CCS as published by Pan et al. (8). Readers 
were blinded to clinical information. The readings were 
performed one CT scan at a time in a quiet environment on 

a clinically approved workstation. Readers were explicitly free 
to adapt window settings and adjust the time between the 
readings. Inter-rater reliability was assessed by the intraclass 
correlation coefficient (ICC) in a single rater type, two-way 
random-effects model (ICC2) (26).

Deep-learning-based quantification of lung involvement

To quantify lung involvement using a deep-learning-based 
approach, an IntelliSpace Discovery Plugin was used. This 
plugin is a pre-release of the CT Pulmo Auto Results 
application available in the CE-certified IntelliSpace Portal 
11.1.6 and higher releases (Philips Healthcare) (16,27,28). 
No changes have been applied to the final, commercially 
available software; i.e., the segmentation software used in 
this publication fully resembles the CT Pulmo Auto Results 
application release. The software can identify and quantify 
consolidations and ground-glass opacities in adult patients 
in a fully automated approach, employing pre-trained 
neural networks.

The software operates in a cascaded fashion. First, a 
network is applied to detect the lungs in the CT scan. 
Second, the CT scan is cropped to the region identified 
by the first network. This cropped scan is forwarded to a 
second network to segment the lungs, thereby excluding 
the main airways (including trachea, main bronchi, and 
lobar bronchi), and the main vessels. Visualizations of the 
network can be found in Figure 1. The lung segmentation 
network has an architecture in line with Milletari et al. (29). 
Next, COVID-19 related lung infiltrations are segmented 
within the lungs, using the f-net architecture as proposed 
by Brosch et al. (30) (see Figure 2). During the last step, 
a second f-net is applied to the segmented lesions to 
perform a voxel-wise classification as either consolidation 
or ground-glass opacity. The percentage portion of lung 
involvement is then computed by adding the volumes of 
consolidation and ground-glass opacity, divided by the 
total lung volume.

The networks were trained on more than 400 CT 
datasets from various public and in-house databases 
cover ing  d iverse  cases  of  pneumonia  ( inc luding 
COVID-19), cancer, and other lung pathologies. Clinical 
evaluation of the models was performed for product 
release. The estimated volume ratio errors (tolerance) of 
the total lesion, ground glass opacity, and consolidation 
as percentage portion of the whole lung were 0.638% 
(0.163–1.601%), 0.592% (0.320–2.961%), and 0.441% 
(0.115–1.092%), respectively (27).

https://qims.amegroups.com/article/view/10.21037/qims-22-175/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-175/rc
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Figure 1 Network architecture of the lung segmentation networks. (A) Network used for lung localization. (B) Network used for lung 
segmentation, which crops the computed tomography image to the lung region as identified by the first network. Each box represents a 
multi-channel feature map with the number of channels denotated in the center. The layers contained in each box are detailed in (C) using 
color-coded borders. C, 3D convolution using a 3×3×3 kernel; CS2, 3D convolution with output stride of 2 (downsampling); CT2, transposed 
convolution with output fractional stride of 2 (upsampling); BN, batch normalization; ReLU, rectified linear activation; +, Sum. 

Threshold-based quantification of lung involvement

The portion of involved lung tissue was estimated by 
dividing the number of lung voxels above-threshold by the 
total lung volume. Assessment of the optimal threshold 
is explained below. The total lung volume was obtained 
by an open-source U-net, which proved robust for lung 
segmentation under the presence of severe COVID 
pneumonia (R231CovidWeb) (31). After automated 
lung segmentation, a Gauss filter was applied to the 
CT image to equalize the lung tissue attenuation. This 
precluded image noise from artificially generating above 
threshold voxels. Further, the Gauss filter equalizes smaller 
pulmonary vessels with the surrounding aerated lung, 
shifting them below the applied attenuation threshold. 
The Gauss filter was applied with a standard deviation 
(sigma) of 1.5 mm, which was rescaled to match the voxel 
resolution of the given image per dimension. The kernel 
was truncated at 4 standard deviations resulting in a kernel 

size of 8*1.5 mm =12 mm. The threshold-based portion 
of lung involvement was reported as a numerical value 
from 0-1. The above-reported steps were implemented in 
a Python script using NumPy library for array programming 
and in R (32,33). Threshold-based assessment of lung 
involvement is illustrated in Figure 3.

Assessment of optimal thresholds and five-fold cross 
validation

To avoid overfitting to our multi-center dataset, the optimal 
threshold to differentiate the involved lung was estimated 
using a five-fold cross validation strategy. First, our study 
cohort was divided into five randomized, non-overlapping 
folds of 50 CT scans each. Secondly, five distinct regression 
models were trained based on five training subsets, 
containing four alternating folds each, and validated on 
the fifth remaining fold as specified below. r2 served as a 
measure for the accuracy of fit of the regression model.
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Figure 2 Network architecture of the lesion segmentation network. After segmentation of lung lesions, the same network architecture 
is employed for voxel-wise lesion classification as either ground-glass or consolidation. CBR, a convolutional layer followed by batch 
normalization and the rectified linear activation transfer function; CBRU, a CBR block followed by up-sampling; CS, a convolutional layer 
followed by a channel-wise softmax layer. For all blocks containing convolutions, k indicates the kernel size without the channel dimension.

The optimal threshold for discrimination of involved 
lung vs. well-aerated lung locates between −1,000 HU (air-
like attenuation) and 250 HU (soft-tissue-like attenuation). 
To investigate its exact location and the performance 
of segmentation, threshold-based assessment of lung 
involvement was repeated for consecutive arbitrary cutoffs 
from −1,000 to 250 HU by steps of 5 HU for each patient 
in the respective training subset. This resulted in 250 
threshold-specific portions of above threshold voxels 
divided by the total lung volume for each training patient. 
A linear regression model was fitted for each threshold 
including the predictor variable “percentage of voxels above 
threshold” and the target variable “deep-learning-based 
lung involvement”. The threshold of the most accurate 
regression within each training subset was adopted for 
testing on the respective fifth fold. Each of five test datasets 
yielded one r2 alongside with the particular threshold 
and the regression equation, including a 95% prediction 

interval. Mean values of the five training and testing 
iterations are reported as final results. 

Comparison of the manual, semi-quantitative CCS to the 
automated, quantitative methods

Automated, quantitative segmentation results were 
reviewed by an experienced radiologist. This additional 
sanity check, however, did not result in manual alteration of 
the dataset. To evaluate the relationship of the quantitative 
approaches (deep-learning and threshold-based) and the 
semi-quantitative CCS, non-linear regression models were 
developed.

Statistics and data analysis

Data analysis was performed using R for statistical computing 
(R Foundation, Vienna, Austria, version 4.0.0) (33).  
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Figure 3 Automated, threshold-based assessment of lung involvement. Axial slices of low-dose computed tomography (CT) (A) served 
as an input to the pretrained U-net R231Covid-Web for automated lung segmentation under the presence of severe pathologies (32) (B). 
Secondly, a Gauss filter was applied to the CT data to equalize image noise and small pulmonary vessels with the surrounding lung tissue (C). 
Lastly, the number of above threshold voxels (red overlay in panel D, coronary, sagittal, and axial reconstructions) were divided by the total 
lung volume to calculate the portion of involved lung.

Intra- and inter-observer variability were reported by the 
intraclass correlation coefficient (ICC), using the R library 
irr. Variable transformations have been conducted with 
the R libraries car and boot. The Ramsey’s RESET test 
was performed using the R library lmtest. Visualization of 
segmentations was realized by the open source software 
3D Slicer (34,35) and IntelliSpace Discovery v3.0.6 (Philips 
Healthcare, The Netherlands).

Results

Two-hundred-fifty non-contrast CTs of the chest were 
evaluated. Patient details are summarized in Table 1.

Semi-quantitative scoring of lung involvement

Median CCS was 10 [6–15], 10 [6–15], and 10 [6–15] for the 
different readers a, b, and c, respectively (Figure 4). Manual 
estimation of the CCS took about 2 min for each CT scan. 
Inter-rater reliability was excellent, yielding an ICC of 0.97 
[0.97–0.98].

Deep-learning-based quantification of lung involvement

Automated assessment of lung involvement by the deep-
learning-based method (IntelliSpace Discovery CT 
Pulmo Auto Results prototype) took about 1.5 min using 
a Tesla-P100 GPU card (Nvidia, Santa Carla, USA). The 
median portion of involved lung, as quantified by the deep-
learning method, was 5.8% [0.8–15.2%].

Assessment of optimal thresholds and five-fold cross 
validation

After splitting the dataset into five folds, linear regressions 
of deep-learning vs. threshold-based lung involvement 
were performed for consecutive thresholds from −1,000 to 
250 HU for five alternating training sets. The thresholds 
yielding the best fitting regression model within each 
training set were identified at −525, −520, −525, −520, and 
−520 HU (mean −522 HU, Figure 5). 

For each of five test splits, an analogous linear 
regression was modelled using the previously identified 
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Table 1 Patient details

Dataset Gender (F:M), age
Geographical location, 

time

Confirmation 
of COVID-19 

diagnosis

Semi-quantitative 
lung involvement 

score, median 
of three readers 

[0–25]

Scanner 
manufacturer, 
reconstruction 

kernel  
(lung:soft-tissue)

Tube voltage (kV), 
exposure (mAs)

Local dataset 26:24,  
55.2±13.6 years

Germany, 03–10/2020a Positive RT-PCR 12 [6–15] Philips, 50:0 120 kV, 29.4±9.4 mAs

RICORD (21) 17:33,  
57.0±15.5 years

Turkey, USA, Canada, 
Brazil, before 01/2021b

Positive RT-PCR 14 [10–17] Not reported,  
0:50

Not reported (3 low-dose 
CTs, 47 diagnostic CTs)

Shakouri  
et al. (22)

31:19†,  
47.2±16.3 years†

Iran, 03/2020-01/2021c Positive RT-PCR 11 [7–15] Neusoft Medical 
Systems, 11:39

Not reported

Zaffino  
et al. (23) 

27:23, 56 years  
(range,  

20–83 years)†

Italy, before 12/2020d Positive RT-PCR 10 [6–13] Toshiba [15] and 
Siemens [35], 50:0

110–120 kV,  
not reported

Clark et al., An 
et al. (24,25)

Not reported Italy and China,  
01–04/2020e

Positive RT-PCR 7 [4–9] Not reported Not reported

†, might be subject to sampling error, since patient-individual data is not reported. a, University Hospital Cologne, Cologne, Germany. b, 

Koç University Hospital, Koç, Turkey; San Francisco University Hospital, San Francisco, USA; Unity Health Toronto, full spectrum of care 
hospital network, Toronto, Canada; São Paulo University Hospital, São Paulo, Brazil. c, General University Hospital Mashhad, Mashhad, 
Iran. d, Azienda Ospedaliera Pugliese-Ciaccio, general hospital, Catanzaro, Italy. e, Xiangyang NO.1 People’s Hospital, Hubei University of 
Medicine, Hubei, China; University Hospital Milan, Milan, Italy. RICORD, The RSNA International COVID Open Radiology Database.

0 5 10 15 20 25
CCS

0 5 10 15 20 25
CCS

0 5 10 15 20 25
CCS

Reader a Reader b Reader c

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

30

20

10

0

30

20

10

0

30

20

10

0

Figure 4 Semi-quantitative assessment of lung involvement by CCS. Lung involvement of coronavirus disease 2019 pneumonia was assessed 
by the CCS on a scale from 0–25. Each of three experienced radiologists (Reader a-c) performed the independent ratings for 250 included 
patients, which are plotted as histograms. Median CCS was 10 [6–15] for Reader a, b, and c. Inter-rater reliability was excellent [intraclass 
correlation coefficient 0.97 (0.97–0.98)]. CCS, chest computed tomography scores.

best  HU thresholds .  The regress ion models  are 
summarized in Table 2.

Mean values of five-fold testing yielded the final regression 
equation y=0.96x−0.05 for prediction of deep-learning-
based lung involvement by threshold-based measurements. 
The regression yielded a high model fit (r2=0.84) as well as a 
high confidence (width of 95% prediction interval =0.23). A 
supplementary analysis demonstrated that introduction of an 
interval threshold approach did not surpass the accuracy of 

the arbitrary threshold model (Appendix 1). The final model 
is illustrated in Figure 6.

Once the optimal threshold was set, operation of 
the threshold-based method to determine the extent of 
COVID pneumonia took about 5 min per exam on a 
standard desktop computer (processor: Intel ® Core™ i9-
9980HK CPU with 2.4 GHz clock frequency). Results of 
deep-learning and threshold-based quantification of lung 
involvement are illustrated in Figure 7.

https://cdn.amegroups.cn/static/public/QIMS-22-175-supplementary.pdf
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Figure 5 Determination of the optimal threshold for the best fitting linear regression model to predict deep-learning-based lung 
involvement results. (A) Linear regressions were modelled for consecutive thresholds (x-axis) of deep-learning vs. threshold-based lung 
involvement in a five-fold cross validation strategy. Five iterations with alternating training sets are illustrated by different colors (Fold 
1-5). The best thresholds, identified by the best accuracy of fit of the regression model (highest r2, y-axis), are located in the blue rectangle, 
which is magnified in the bottom row. (B) The five training folds (bottom row, panels 1–5) identified −525, −520, −525, −520, and −520 HU 
as optimal thresholds for the best goodness-of-fit of the regression model, marked by dashed vertical lines. Consecutively, the identified 
thresholds were applied to five non-overlapping test sets (Table 2). 

Table 2 Five-fold cross validation of a linear regression model to predict deep-learning-based lung involvement by a threshold-based approach

Fold 1 2 3 4 5 Mean

Best threshold identified in training split (HU) −525 −520 −525 −520 −520 −522

Intercept of regression line −0.05 −0.05 −0.04 −0.04 −0.06 −0.05

Slope of regression line 0.93 0.96 0.89 0.97 1.03 0.96

Width of 95% prediction interval 0.20 0.30 0.20 0.18 0.26 0.23

r2 0.82 0.74 0.88 0.91 0.83 0.84

Best thresholds were identified in five training splits [200 computed tomography (CT) scans each, second row] and consecutively tested 
on five non-overlapping test folds (50 CT scans each, bottom rows).
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Comparison of the manual, semi-quantitative CCS to the 
automated, quantitative methods

A regression model was developed to describe the outcome 
of the automated, quantitative lung involvement assessment 
methods (deep-learning and threshold-based) using the 
manual semi-quantitative CCS as predictor variable. Due 
to the bounded nature [0,1] of the deep-learning and 
threshold-based variables, the dependent variables were 
logit transformed first (36). The deep-learning-based lung 
involvement results were previously remapped to a range 
0.025–0.975 to allow for a logit transformation. Afterwards, 
several models with different functional forms have been 
assessed with respect to their model fit. A linear model 

including the CCS as the predictor variable was compared 
against non-linear regression models (i.e., quadratic, cubic, 
and quartic polynomials in CCS). A Ramsey’s RESET test 
indicated that a linear model is an inferior approximation 
of the data and supports the use of non-linear regression 
models [(threshold-based model) P<0.05, (deep-learning 
model) P<0.01]. The selection of the best model was based 
on the Akaike information criterion (AIC) as well as the 
adjusted r2 as goodness-of-fit measures (37). The final 
models with the lowest AIC [(threshold-based model) AIC 
=447.6, (deep-learning model) AIC=364.5] as well as the 
highest adjusted r2 [(threshold-based model) r2=0.63, (deep-
learning model) r2=0.80] show a moderate to strong model 
fit (Figure 8).

The slopes of the resulting regression curves, which 
predict quantitative lung involvement based on the semi-
quantitative CCS, were relatively flat among lower CCS 
ratings, followed by a steep incline at CCS values of 10 and 
higher.

Discussion

Since lung involvement is a relevant predictor for the 
prognosis of COVID pneumonia and the obligation for 
intensive care treatment, we evaluated three available 
post-processing imaging approaches to assess the lung 
involvement as a valuable CT biomarker in clinical routine. 
Fully automated threshold- and deep-learning-based 
quantification of involved lung demonstrated a strong, 
linear relationship throughout our heterogeneous multi-
center, multi-vendor dataset. Besides, the manual semi-
quantitative approach correlated with the automated 
quantitative methods in a non-linear fashion, with larger 
steps of involved lung per one-point-increase of CCS rating 
towards higher CCS. i.e., throughout patients with severe 
lung infiltration, the manual CCS Pan-score underestimated 
the extent of lung involvement.

This limitation was consistent and independent for each 
of the three experienced radiologists and might restrict the 
value of the human-reader-based scoring in clinical routine. 
According to the regression equation for automated 
deep-learning-based lung involvement, an increase of the 
CCS from 5 to 10 resulted in an expanse of pulmonary 
infiltration by 4.0% of the total lung volume (3.5% to 7.5%); 
an increase of the CCS from 15 to 20, however, translated 
to a 26.6% increase of lung disease (19.8% to 46.4%), 
which was even more pronounced in the maximum CCS 
range (increase of the CCS from 20 to 25: further 30.0% 
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Figure 6 Linear regression for prediction of deep-learning-based 
lung involvement by threshold-based results. The x- and y-axis 
plot the fraction of involved lung parenchyma on COVID-19 
CT measured by automated deep-learning- and threshold-based 
methods. The final linear regression model is plotted along with 
its 95% prediction interval. The best threshold to predict the 
deep-learning-based results of lung involvement in COVID-19 
pneumonia was identified at −522 HU. Deep-learning-based 
results could be anticipated confidently and with a strong 
goodness of fit (r2=0.84, width of the 95% prediction interval 0.23, 
y=0.96x-0.05). Note that the figure contains the entire dataset 
of 250 CTs for illustration purposes, while the regression model 
was established by a cross validation strategy of five alternating 
training and test sets. COVID-19, Coronavirus Disease 2019; CT, 
computed tomography.
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B CA

Figure 7 Results of automated quantification of lung involvement in Coronavirus Disease 2019 (COVID-19) pneumonia. The 51-year-
old female patient underwent low-dose chest CT for suspected COVID-19 pneumonia. Axial CT slices confirm the clinical diagnosis, 
demonstrating a typical pattern of bilateral consolidations and ground-glass opacities (A). Panels (B) and (C) illustrate the results of deep-
learning and threshold-based segmentation of involved lung tissue, respectively. The percentage portion of lung involvement was then 
calculated as the volume of involved lung divided by the total lung volume. In this case, the deep-learning and threshold-based approaches 
resulted in a fraction of involved lung of 31.6% and 34.3%, respectively. Please note that the threshold segmented tissue in panel (C) 
includes larger vessels and motion blurred lung areas at the margin of the ribcage and mediastinum. CT, computed tomography.
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Figure 8 Relationship of automated, quantitative and human reader-based, semi-quantitative methods of lung involvement assessment. The 
chest CCS by Pan et al. was independently assessed for 250 computed tomography scans by three experienced radiologists; median values 
are plotted on the x-axis (11). The two best-fitting regression models to explain the threshold and deep-learning results (A and B) have a 
quadratic and a cubic function in CCS, respectively. The regression equations are specified as logit(ythreshold)=−3.1287+0.0826x+0.0024x2 and 
logit(ydeep-learning)=−3.6479+0.0133x+0.0121x2−0.0002x3. The 95% prediction interval is marked in grey. CCS, chest computed tomography 
scores.
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expansion of involved lung volume). In a clinical context, a 
five-point CCS increase in mild COVID pneumonia might 
be insignificant; however, an equal five-point CCS increase 
in critically ill patients demonstrates a severe reduction of 
aerated lung tissue. 

A probable explanation for the non-linear relationship of 
the manual CCS to the automated, quantitatively assessed 
fraction of involved lung tissue is the non-linear definition 
of the lobar CCS (11): A lobar CCS of 1 is already granted 
at 5% lobar involvement, and a further increase of 20% 
involvement raises the lobar CCS to a score of 2. For 
lobar CCS >2, an increase of 25% involvement is required 
for a raise by 1 point, which explains the flattened curve 
throughout mildly affected lungs. The steep curve towards 
extremely high CCS values might be explainable by the 
central tendency bias, which says that human readers tend 
to underestimate values larger than the average. Allred  
et al. recently demonstrated that the central tendency bias 
is particularly strong in participants under high cognitive 
load of their working memory, i.e., memorizing six-digit 
numbers during their judgements—an experimental set-
up that resembles the mental estimation and calculation 
process of lung involvement scoring (38). 

E v e n  i f  d o c t o r s  a r e  a w a r e  o f  t h e  n o n - l i n e a r 
characteristics of the CCS, the distortion of human 
judgements by exponential scaling is a well-known bias, 
which might promote underestimation of disease extent 
in critically ill COVID patients (39). Besides avoiding 
non-linear relationships, the abolishment of inter-rater 
error is another benefit of the clinical application of fully 
automated methods. Albeit our data suggest that inter-
rater reliability of the CCS is excellent, truly quantitative, 
volumetric methods might reflect the biological correlate of 
lung infiltration more accurate than subjective, individual 
judgements of human raters. 

Our study demonstrates that automatic quantitative 
evaluation and reporting of the percentage portion of 
aerated lung tissue could make the clinical application of 
lung involvement assessment more reliable. In line with 
this hypothesis, a recent study demonstrated that deep-
learning-based quantification of lung involvement is 
superior to the CCS, when predicting adverse outcomes of 
COVID pneumonia (9). Lastly, regular implementation of 
an automated lung involvement assessment saves time of 
trained personnel, since it renders time-consuming expert 
scorings redundant.

Up-to-date, there is a lack of comparative data about 
AI-model performance of COVID pneumonia lung 

involvement assessment. This prohibited evidence-based 
identification of the best performing deep-learning model 
for our study and warrants further investigation. We 
considered the Philips IntelliSpace Portal CT Pulmo Auto 
Results appropriate for this study, since it achieved clinical 
approval for automated assessment of COVID pneumonia 
segmentation in patients with suspected and diagnosed 
COVID pneumonia. This approved scope of application 
includes the use case in the presented study. During 
clinical validation, the software proved an excellent 
performance with error rates <1% when calculating the 
percentage portion of involved lung (27). The CE-label 
assures that the product is not only safe to use, but also 
technically able to perform in a clinical context as claimed 
by the manufacturer (40). 

For the automated threshold-based method, we found a 
robust cutoff at −522 HU to reproduce the deep-learning-
based lung involvement quantification (r2=0.84). Yet, this 
threshold demonstrated a less accurate relationship to the 
semi-quantitative CCS, compared to the deep-learning 
method (r2=0.63 vs. r2=0.80, respectively). A probable 
explanation might be overestimation of involved lung by a 
threshold-based method, since it includes larger pulmonary 
vessels and motion blurred lung areas as above-threshold 
tissue. This also explains why the regression line intersects 
the X-axis at 0.05 in Figure 6—in contrast to the deep-
learning results, the lowest estimation of involved lung 
by the threshold approach is 5%, and not 0%, which 
might correspond to the above-threshold segmented 
portion of lung vessels and motion blur. The slope of the 
regression line, however, was close to 1 (0.96), indicating 
that this portion of artificially above-threshold voxels was 
a consistent finding throughout our dataset, and did not 
skew the balanced relationship between deep-learning and 
threshold-based results. Two recent studies performed 
threshold-based lung involvement assessment of COVID 
pneumonia with arbitrary cutoffs at −700 and −500 HU, the 
latter in the range of our computed cutoff value of −522 HU 
(20,21). However, both studies only included single-center 
CT data with only one specific CT-scanner each. Thus, 
these investigated cutoffs might be of limited use for actual 
clinical application with different CT imaging protocols and 
image reconstructions. Lung attenuation measurements can 
be biased by the applied radiation dose, the vendor specific 
reconstruction filter, and depend on the quality of the CT 
scanner, which particularly implies accurate calibration (41). 
For this reason, we performed our study on an international 
multi-center, multi-vendor dataset with heterogeneous 
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acquisition and reconstruction parameters, and further 
addressed the potential issue of overfitting by five-fold cross 
validation. 

A further recent study by Khan et al. investigated the 
accuracy of seven established, advanced thresholding 
methods to segment the affected lung in COVID 
pneumonia (18). A parallel to our work is the use of 
the R231CovidWeb by Hofmanninger et al. to obtain 
the whole-lung segmentation as a starting point (31). 
Consecutively, however, Khan et al. transformed their data 
to 8-bit images (256 level greyscale) for further processing, 
rather than maintaining the established Hounsfield 
scale (18). This precludes uncomplicated adoption of 
their investigated thresholds for clinical use. Yet, their 
thresholding methods recognize advanced quantitative 
parameters such as histogram shape, measurement space 
clustering, entropy, or local gray-level surface, which 
might introduce a benefit compared to the absolute, 
arbitrary threshold in our study (42). Similar to our work, 
Khan et al. observed excellent reproduction of AI-based 
lung involvement segmentation by their threshold-based 
approaches (18). After all, the data is yet too scarce to allow 
for a definitive comparison of our methods, since Khan  
et al. examined only 28 patients (18).

The presented study had several limitations. First, we did 
not interrupt the automated processing of the quantitative 
assessments for manual alteration. This demonstrates 
feasibility of the proposed method without specific user 
interaction; however, clinical application should always 
include image inspection and a plausibility check by the 
reporting radiologist. Yet, we do not expect the applied 
U-net(R231) to limit our methodology, since it was 
trained on a heterogeneous dataset including severe lung 
pathologies, and consecutively fine-tuned to segmentation 
of COVID pneumonia lungs, yielding exceptional 
results (31,43). Additionally, marginal inclusion of highly 
attenuating, non-parenchymatic findings (e.g., pleural 
effusions) might promote the non-linear relationship 
between the quantitative and semi-quantitative methods. 
Secondly, we included only one automated deep-learning 
tool of one CT vendor to our study, which might affect 
generalizability of our method. Further, the retrospective 
design of our study might limit its clinical impact. The 
majority of included patients presented at larger university 
hospitals, which might hamper generalizability of our 
results to a non-university context. Yet, we did not observe 
a bias towards severely affected individuals, considering 
the distribution of CCS (Figure 4). Vice versa, there were 

relatively few severely affected patients in our population, 
which might imply underrepresentation of this group. 
Lastly, we did not obtain detailed clinical data about the 
severity of COVID-19 pneumonia in our study population. 
Nonetheless, the CCS is an established imaging biomarker 
for severity of COVID-19 pneumonia, and has been 
suggested a surrogate parameter for the clinical course of 
the disease by several authors (44,45).

In conclusion, our data suggest that the truly quantitative, 
percentage fraction of involved lung in COVID pneumonia 
exceeds the clinical usability of manual CCS ratings, since 
it indicates the extent of pulmonary pathology in an easily 
assessable, linear fashion. Translation into clinical daily 
routine seems to be warranted, but needs to be further 
investigated in larger prospective clinical trials. If doctors 
make use of the manual CCS as a support for clinical 
decision making, they should recognize that it operates on a 
non-linear scale, and an increase at higher scores translates 
to a much stronger expansion of pulmonary disease. 
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Appendix 1 Threshold-based approach of automated lung involvement assessment using two 
thresholds

The main manuscript introduces an arbitrary threshold at −522 HU for best assessment of lung involvement in COVID 
pneumonia. This supplementary material explores a dual-threshold approach, using an upper and lower margin to determine 
the infiltrated lung tissue.

Analogously to the full manuscript, the optimal location of both thresholds was investigated by maximizing the fit of a 
linear regression model of deep-learning and threshold-based results in a five-fold cross validation strategy. The goodness 
of fit of the regression model was reported as r2. During the training process, the same five training folds as in the main 
manuscript were used, which ensures comparability of the mono- and dual-threshold methods.

In contrast to the full manuscript, which uses an arbitrary threshold at 250 locations (−1,000 HU to 250 HU in steps of 
5 HU), this supplementary material introduces a thresholding window with an upper and lower margin. Dual-threshold-
assessed lung involvement was defined as the voxels inside this window divided by the total lung volume. The lower threshold 
margin was consecutively set at 400 locations (−1,500 HU to 500 HU in steps of 5 HU), while for each window position, 200 
window widths were assessed (width of 5 HU to 1,000 HU in steps of 5 HU). This resulted in 80,000 consecutively fitted 
linear regression models for each training fold, covering −1,500 HU to 1500 HU. Since a positive slope of the regression line 
was assumed (increasing deep-learning-based lung involvement corresponds to increasing threshold-based lung involvement), 
only those regression models with a positive slope coefficient were adopted for further analysis. Figure S1 illustrates the 
training process of the dual-threshold approach (analogously to Figure 5 of the main manuscript).

During training, the best accuracy of fit of the dual-threshold model was almost identical to the training results of the 
mono-threshold model (best r² for the five training folds 0.84, 0.86, 0.83, 0.82, 0.84, and 0.84, 0.86, 0.83, 0.81, 0.84, for the 
dual- and mono-threshold models, respectively). Similar to the mono-threshold approach of the full manuscript, the best 
fitting dual-threshold windows were then tested on five non-overlapping test sets. The five models achieving the highest 
accuracy of fit and their consecutive testing is reported in Table S1 (analogously to Table 2 of the main manuscript).

After inclusion of a second threshold, we observed only minimal changes of the regression model, compared to the mono-
threshold model. The threshold for identification of infiltrated lung was marginally higher (−504 vs. −522 HU in the dual- 
and mono-threshold models, respectively), and the slope of the regression line slightly steeper (1.03 vs. 0.96 in the dual- 
and mono-threshold models, respectively). Yet, most importantly, the performance of a threshold-based model to quantify 
COVID-19 lung involvement did not benefit from introduction of a second threshold, compared to the mono-threshold 
approach: The goodness of fit and the confidence of the regression model, as represented by the r2 and the width of the 
prediction interval, did not improve after addition of a second threshold (mean r2=0.84, mean width of 95% prediction 
interval =0.23). 

Supplementary
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Table S1 Five-fold cross validation of a linear regression model to predict deep-learning-based lung involvement by a dual-threshold-based 
approach

Fold 1 2 3 4 5 Mean

Best lower threshold identified in 
training split (best arbitrary threshold)

−510 HU  
(−525 HU)

−505 HU  
(−520 HU)

−510 HU  
(−525 HU)

−500 HU  
(−520 HU)

−495 HU  
(−520 HU)

−504 HU  
(−522 HU)

Best upper threshold identified in 
training split (not applicable for the 
mono-threshold approach)

5 HU −5 HU 10 HU 5 HU 5 HU 4 HU

Intercept of regression line −0.05 (−0.05) −0.05 (−0.05) −0.04 (−0.04) −0.03 (−0.04) −0.05 (−0.06) −0.04 (−0.05)

Slope of regression line 0.99 (0.93) 1.09 (0.96) 0.94 (0.89) 1.02 (0.97) 1.12 (1.03) 1.03 (0.96)

Width of 95% pred. interval 0.20 (0.20) 0.30 (0.30) 0.20 (0.20) 0.18 (0.18) 0.26 (0.26) 0.23 (0.23)

r² 0.82 (0.82) 0.74 (0.74) 0.88 (0.88) 0.91 (0.91) 0.83 (0.83) 0.84 (0.84)

The best upper- and lower threshold margins were identified in five training splits (200 CT scans each, second and third row) and 
consecutively tested on five non-overlapping test folds (50 CT scans each, bottom rows). Identical training and testing sets were used 
for evaluation of the mono- and dual-threshold models. Corresponding results of the mono-threshold approach are complemented in 
parentheses for better comparability.
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Figure S1 Five-fold training of a dual-threshold approach to assess COVID-19 lung involvement. A window of attenuation with a width 
between 5 to 1,000 HU was defined by two threshold margins. The portion of voxels inside this window was then divided by the total lung 
volume. This portion was calculated for 80,000 possible windows covering attenuation values between −1,500 to 1,500 HU. Consecutively, 
for each of five training folds (panel 1-5), 80,000 linear regression models were fit to the deep-learning assessed portion of lung involvement. 
All models with a positive slope coefficient are reported by their goodness of fit (r2, y-axis), ordered by the upper margin of their 
corresponding threshold window (x-axis). The best fitting models are reported in Table S1.


