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Background: Radiomics promises to enhance the discriminative performance for clinically significant 
prostate cancer (csPCa), but still lacks validation in real-life scenarios. This study investigates the 
classification performance and robustness of machine learning radiomics models in heterogeneous MRI 
datasets to characterize suspicious prostate lesions for non-invasive prediction of prostate cancer (PCa) 
aggressiveness compared to conventional imaging biomarkers.
Methods: A total of 142 patients with clinical suspicion of PCa underwent 1.5T or 3T biparametric MRI  
(7 scanner types, 14 institutions) and exhibited suspicious lesions [prostate Imaging Reporting and 
Data System (PI-RADS) score ≥3] in peripheral or transitional zones. Whole-gland and index-lesion 
segmentations were performed semi-automatically. A total of 1,482 quantitative morphologic, shape, texture, 
and intensity-based radiomics features were extracted from T2-weighted and apparent diffusion coefficient 
(ADC)-images and assessed using random forest and logistic regression models. Five-fold cross-validation 
performance in terms of area under the ROC curve was compared to mean ADC (mADC), PI-RADS and 
prostate-specific antigen density (PSAD). Bias mitigation techniques targeting the high-dimensional feature 
space and inherent class imbalance were applied and robustness of results was systematically evaluated.
Results: Trained models showed mean area under the curves (AUCs) ranging from 0.78 to 0.83 in 
csPCa classification. Despite using mitigation techniques, high performance variability of results could be 
demonstrated. Trained models achieved on average numerically higher classification performance compared 
to clinical parameters PI-RADS (AUC =0.78), mADC (AUC =0.71) and PSAD (AUC =0.63).
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Introduction

Prostate cancer (PCa) currently is the second most common 
malignancy among men worldwide (1). Despite its high 
prevalence, PCa related mortality is low with a five-year 
survival rate of around 98% for all PCa stages combined (2).  
Considering the high PCa prevalence and low mortality 
rate, accurate differentiation of clinically significant PCa 
(csPCa) from clinically insignificant PCa (cisPCa) is of high 
importance to decrease overdiagnosis and overtreatment. 
Large prospective trials such as the PRECISION-
Trial and PROMIS-Trial have concluded that the use of 
multiparametric MRI (mpMRI) prior to biopsy increases 
detection of csPCa while decreasing detection of cisPCa 
compared to transrectal ultrasound guided biopsy (3-5). 
Whereas mpMRI has been included in the guidelines of the 
European Association of Urology (EAU) to be performed 
prior to biopsy (6), also biparametric MRI (bpMRI) without 
use of a contrast agent was shown to accurately detect and 
localize PCa (7,8). In order to improve image acquisition 
and reporting standards, the Prostate Imaging Reporting 
and Data System (PI-RADS) was introduced in the clinical 
diagnostic workup of PCa (9-11).

Over the last few years, machine-learning techniques 
have increasingly been used to evaluate imaging-based 
biomarkers to support PCa detection as well as personalized 
therapeutic decision-making. Radiomics has emerged 
as a promising tool to enhance information attainable 
from imaging by means of automated high-throughput 
data extractions and analysis combined with machine 
learning or deep learning techniques (12,13). Initial 
studies have reported promising results for radiomics-
based characterization of suspicious prostate lesions and 
significant performance increase in cancer detection in 

combination with retrospective PI-RADS assessment 
(14,15). However, increasing evidence suggests that 
radiomics models’ performance might not be robust 
and might strongly depend on the underlying data 
characteristics. Bonekamp et al. find in their analysis no 
advantage of using radiomics models over classification by 
mean apparent diffusion coefficient (ADC), while Spohn 
et al. identify variability of features as potential reason for 
lack of reproducibility of high classification performances 
and Twilt et al. describe a gap “between academic results 
and clinical practice (12,13,16). Furthermore, comparison 
of radiomics performance with clinical performance on 
the same dataset is often missing and there is still lack of 
information on the clinical impact and utility of radiomics 
models within the clinical diagnostic workup (12,13,17).

This study analyzes a heterogeneous prostate MRI 
dataset in order to differentiate csPCa with a Gleason score 
of ≥7 from cisPCa (Gleason score ≤6) and benign lesions 
(non-csPCa) using imaging-based biomarkers such as PI-
RADS, mean ADC (mADC) and prostate-specific antigen 
density (PSAD) and radiomics-based state-of-the-art 
machine learning models for the classification of suspicious 
prostate lesions (PI-RADS score ≥3). We present the 
following study in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-265/rc).

Methods

Study design

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the institutional ethics committee 

Conclusions: Radiomics models’ classification performance of csPCa was numerically but not significantly 
higher than PI-RADS scoring. Overall, clinical applicability in heterogeneous MRI datasets is limited 
because of high variability of results. Performance variability, robustness and reproducibility of radiomics-
based measures should be addressed more transparently in future research to enable broad clinical 
application.
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(Ethikkommission bei der LMU) and individual consent for 
this retrospective analysis was waived. From January 2012 
to November 2018, a total of 467 patients consecutively 
registered with the suspicion for PCa at our hospital with 
available bpMRI were considered for this study. A total of 
189 patients received histopathological correlation within 
six month and prostate-specific antigen (PSA) within four 
weeks of the MRI scans. Only patients with suspicious 
prostate lesions (PI-RADS score ≥3) with complete and 
accessible MRI datasets [including T1-weighted (T1w), T2-
weighted (T2w) and diffusion-weighted imaging (DWI)/
ADC images] were included in the study (n=142) (Figure 1).  
For each patient, clinical parameters were documented 
including presence of PCa, Gleason score of confirmation 
biopsy (n=56) or after radical prostatectomy (n=86), TNM 
classification, Union for International Cancer Control 
(UICC) stages, PI-RADS scores, PSA level and volume-
based PSAD. 

Imaging characteristics and image segmentation

Most of bpMRI scans were obtained at our hospital (n=115) 
using a 3-Tesla scanner (Magnetom Skyra, Siemens, 
Germany), whereas some patients had undergone MRI 
scans externally (n=27) using different 1.5- or 3-Tesla 
scanners (in total 7 scanner types, 14 institutions). No 
pelvic coil was used and the bpMRI protocol included 
T1w, T2w and DWI sequences. ADC maps were extracted 
from DWI sequences. The acquisition parameters for 
T2w sequences ranged in echo time from 87 to 182 ms, in 
repetition time from 1,500 to 8,740 ms, whereas resolutions 
in x and y direction were between 0.31 and 0.78 mm and 
slice thickness between 1.0–3.5 mm. Acquisition parameter 
ranges for DWI sequences used for ADC calculation 
ranged from 48 ms to 80 ms in echo time, from 1,943 to 
5,716 ms in repetition time, between 0.77 and 2.13 mm for 
resolutions in x and y direction and between 3.0–5.0 in slice 
thickness.

All MRI scans were reviewed independently and blinded 
to the clinical data and were screened for suspicious prostate 
lesions and segmented by two radiologists with >6 years 
and >4 years of experience in prostate imaging (blinded). To 
reduce inter-reader associated differences in segmentation 
size, all segmentations were controlled and adjusted by a 
reader with >7 years of experience in urogenital imaging 
(blinded). Structured reporting included PI-RADS v2.1 
score for every lesion. The lesion with the highest PI-RADS 
score in the peripheral or transitional zone was defined as 
the target lesion for each patient and included for radiomics 
analysis. If more than one lesion among the highest PI-
RADS score was present, the lesion with the lowest ADC 
value was selected as the region of interest for subsequent 
analysis. Whole organ segmentations for calculation of 
PSA density and separate single lesion segmentations as the 
regions of interest for feature extraction were performed 
semi-automatically on T2w- and DWI transversal images 
using the post-processing software MITK (Medical Imaging 
Interaction Toolkit) (Figure 2). 

Radiomics feature extraction and selection 

All radiomic features were calculated using the PyRadiomics 
package (version 3.0.1) (18). Image features can be 
distinguished in three classes: (I) shape features, (II) first 
order (distribution) features; and (III) texture features. 
First, the shape of the segmentation was used to determine 
measurements such as volume and surface, but also more 

Figure 1 Study flowchart. All consecutively patients from January 
2012 to November 2018 who were treated at the Urology 
Department of our hospital and received complete and evaluable 
bpMRI of the prostate showing a suspicious lesion (PI-RADS ≥3) 
and obtained histopathologic report within 6 months as well as 
PSA within 4 weeks prior MRI were included in the study. bpMRI, 
biparametric MRI; PSA, prostate specific antigen; PI-RADS, 
Prostate Imaging Reporting and Data System.

All consecutively treated 
patients with bpMRI of prostate

01/2012−11/2018, n=467

No PSA within 4 weeks and/
or no histopathologic report 
within 6 months of bpMRI, 

n=278

Anonymization and analysis 
of bpMRI and whole gland 

segmentation of the prostate, 
n=189

Patients without lesion or with 
lesion of PI-RADS ≤2 or with 
missing sequences, relevant 
bleeding in prostate or with 

artefacts, n=47

All patients with whole gland 
and lesion segmentation 

(PI-RADS ≥3), n=142
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sophisticated variables such as compactness and sphericity. 
The second category of features was derived from the 
distribution of intensities in the region of interest. These 
features include general measures of the distribution, 
such as the mean, median, interquartile range of the 
distribution, but also descriptors of shape, such as skewness 
and information-theoretical measures such as entropy. 
Third, texture features were derived from discretized gray 
values in the region of interest. Different matrices were 
defined to characterize patterns in the discretized gray 
values, such as gray-level size-zone matrix (GLSZM), 
gray-level run-length matrix (GLRLM), gray-level co-
occurrence matrix (GLCM). Two more matrices analyzed 
the local neighborhood of pixels [neighboring gray-tone 
difference matrix (NGTDM) and gray-level dependence 

matrix (GLDM)]. In order to mitigate the noise inherent 
to any MR measurement and to extract even more features 
in addition to the clinically used T2w and ADC images, 
filters were applied to these images. Wavelet and Laplacian 
over Gaussian (LoG) were used to sharpen or smooth the 
images, while the local binary pattern (LBP) filter was 
used as a special algorithm extracting information on local 
neighborhoods of pixels. Before calculating the features, 
T2-weighted images were normalized to a scale of 100 and 
shifted to a mean of 300 to allow for a correct and equal 
calculation of features. ADC images were not normalized 
since ADC is a quantitative measurement. Both sequences 
were resampled to their respective most common resolution: 
The T2-weighted images were resampled to 0.55 mm  
in xy- and 3 mm in z-direction, while the ADC images were 

Figure 2 Prostate and lesion segmentation. A 73-year-old patient, PSA level 12.0 ng/mL, in bpMRI suspicious lesion in the left 
posterolateral peripheral zone in mid gland (PI-RADS 4), prostatectomy revealed prostate cancer with Gleason 3+4; (A,B) T2w 
segmentation of whole prostate (yellow), peripheral zone (red) and index lesion (blue); (C,D) ADC segmentation of whole prostate (yellow) 
and index lesion (blue). PSA, prostate specific antigen; bpMRI, biparametric MRI; PI-RADS, Prostate Imaging Reporting and Data System; 
T2w, T2-weighted; ADC, apparent diffusion coefficient.

A B
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resampled to 1.25 mm in xy- and 3 mm in z-direction. The 
discretization for the features based on pattern analysis was 
adapted to the filters: On the T2-weighted images a fixed 
bin width of 10 was used for all filters, except for the LBPs, 
where a bin width of 1 was used. On ADC images the bin 
width for original and wavelet transforms was 25, while 
LoG used 10 and LBP used 1 as in the case of T2w images. 
In total, 741 radiomic features were extracted for every 
patient using T2w and ADC images in the following three 
categories: (I) shape features (n=13), (II) first order features 
(n=18×8 filters =144) and (III) texture features (n=73×8 
filters =584). 

Feature selection: minimal-redundancy-maximal-relevance 
(mRMR)

Since many features are expected to be correlated e.g., 
due to using several filters on the same image, feature-
selection algorithms were considered to reduce the number 
of features used for training. As a baseline feature selection 
algorithm, the mRMR criterion was used (19). This 
criterion simultaneously retains the feature with highest 
mutual information with respect to the target class (relevant 
features) and removes correlated (redundant) features. 
mRMR provides a ranking of features and the number of 
features selected is a hyperparameter of the classification 
pipeline. As baseline configuration, a selection of the first 
25 features of the ranking was chosen. In order to assess 
the impact of hyperparameter changes on the classification 
performance, selections of 50 and 100 features and no 
feature selection at all were tested. Thereby, the intrinsic 
robustness of the classifier with respect to correlated and 
uninformative features was evaluated.

Class imbalance: class weights, synthetic minority 
oversampling technique (SMOTE)

To cope with the class imbalance of the training sample 
(unequal incidence of patients with significant (n=93) and 
insignificant or no prostate carcinoma (n=47) within the 
study cohort), the following mitigation strategies were 
considered to avoid a classification bias towards the majority 
class. A simple class-weight-based approach was chosen 
as the baseline. To each sample, a weight of the inverse of 
the frequency of its class was assigned. These weights were 
taken into account at the calculation of the loss function and 
increased the importance of minority class examples. As an 
alternative approach following Fehr et al. (14), the SMOTE 

was used to artificially add synthetic samples to the minority 
class (20). The minority class was increased to match the 
number of training samples of the majority class.

Classifiers: logistic regression, random forest algorithms

Two machine learning approaches were used for classification: 
logistic regression and random forests. For the logistic 
regression analysis, the data was preprocessed by scaling 
each feature to its standard deviation and removing the 
mean. The logistic regression loss was penalized with 
elastic-net regularization. On each fold, a cross-validated 
grid search was run to determine the hyperparameters for 
the regularization. The main approach used random forests 
for classification (21). For the baseline classification, the 
hyperparameters were set to their default values as provided 
by scikit-learn, except for the number of estimators, which 
was set to 5,000. The feature selection mRMR with 25 
features was chosen as the baseline configuration. The 
feature selection was varied to zero, 50 and 100 features 
testing the assumption that random forests should be robust 
to correlated and uninformative features. Class weights were 
used as the baseline class-imbalance mitigation strategy with 
the variations of using no mitigation strategy as well as the 
SMOTE method. 

Model configurations

Using different combinations of the above-described 
methods, seven models were trained for the correct 
discrimination between csPCa (Gleason score ≥7) and non-
csPCa (Gleason score ≤6), one logistic regression approach 
and six different random-forest algorithms: logistic 
regression, class weights mRMR [25], class weights mRMR 
[50], class weights mRMR [100], no weights mRMR [25], 
class weights only and smote mRMR [25]. The RF model 
configurations and their respective shorthands can be found 
in Table 1, a general overview of the applied radiomics 
workflow and the model selection process in Figure 3.

Statistical analysis and machine learning

All statistical analyses were performed in R and Python 3.7. 
To evaluate the discriminative performance to differentiate 
csPCa from non-csPCa lesions, for each of the radiomics 
classifiers as well as for the PI-RADS score, the mADC 
and the PSAD, a receiver operating curve (ROC) was 
determined and the area under the curve (AUC) calculated. 
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As single-center studies often are limited by relatively 
small sample sizes (13), we assessed the performance of the 
radiomics analyses using cross-validation methods. The 
dataset was randomly divided into five folds—stratified 
by the outcome labels csPCa and non-csPCa. Training, 

including feature selection and imbalance mitigation, was 
repeated five times, such that each fold was used exactly 
once for testing and the respective four remaining folds for 
training the classifier. For each model configuration, the 
mean AUC over the five test folds was calculated. For the 

Table 1 Random forest classifier settings with their respective shorthands

Shorthand Feature selection method Imbalance mitigation method

cw | mRMR(25) mRMR with 25 features RF class weights

cw | mRMR(50) mRMR with 50 features RF class weights

cw | mRMR(100) mRMR with 100 features RF class weights

no cw | mRMR(25) mRMR with 25 features No mitigation method

mRMR(25) | SMOTE mRMR with 25 features SMOTE

cw | no FS No feature selection RF class weights

“cw | mRMR(25)” is used as baseline setting, all other configurations are variations thereof. cw, class weights; mRMR, minimal redundancy 
maximal relevance; RF, random forest; SMOTE, synthetic minority oversampling technique; FS, feature selection.

Figure 3 Radiomics workflow and model selection process of the current study. (I) Segmentation and preprocessing of images using filter 
and normalization techniques. (II) Feature extraction (shape, first order and texture features). (III) Model training and evaluation of different 
model configurations. T2w, T2-weighted; ADC, apparent diffusion coefficient; GLCM, gray-level co-occurence matrix; GLDM, gray-level 
dependence matrix; GLRLM, gray-level run-length matrix; NGTDM, neighboring gray-tone difference matrix; GLSZM, gray-level size-
zone matrix; mADC, mean apparent diffusion coefficient; PSAD, prostate specific antigen density; PI-RADS, Prostate Imaging Reporting 
and Data System; CV, cross validation; MRMR, minimal redundancy maximal relevance; cw, class weights; SMOTE, synthetic minority 
oversampling technique.
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assessment of sensitivity and specificity, the working point 
of trained classifiers was determined by the Youden’s index. 

To investigate the significance in the different model 
configurations a mixed-model approach was used. The 
setup of the random effects of the mixed model followed 
Eugster et al. (22), modeling the variation of the resampling 
of each cross-validation step as a random effect. The model 
configurations described above were modeled as fixed effects 
and the configuration “class weights mRMR(100)”—with 
the best mean AUC—was set as reference configuration. 
This allowed us to calculate P values based on the slope 
parameters for the fixed effects of the mixed model. If the 
slope parameters differed significantly from zero (using a 

significance level of 0.05), we could conclude that in case 
of a positive (negative) slope a significantly better (worse) 
model configuration was found. 

Results

Patient and lesion characteristics

The detailed clinical patient characteristics of the study 
cohort are shown in Tables 2-4. Median age of patients 
in the study cohort was 68 [66.5–69.5] years. In 13% of 
patients, no PCa was detected histologically. Of the 87% 
patients positive for PCa, 76% exhibited csPCa (GS ≥7) 
and 24% cisPCa (GS =6). Whereas 14% of lesions were 
localized in the transitional zone, 86% of index lesions 
were found in the peripheral zone. The maximum diameter 
of the lesions ranged from 7.2 up to 64 mm with a mean 
maximum diameter of 25 mm.

Prediction of cancer significance using PI-RADS, PSAD 
and mADC values

Classification performance of csPCa vs. non-csPCa was 
evaluated on the whole dataset for the three univariate 
attributes PI-RADS, PSAD and mADC. The performance 
of PI-RADS was found to achieve an AUC of 0.78 with 
a maximum Youden’s index of 0.53 (at sensitivity of 0.82 
and specificity of 0.71) at the threshold of PI-RADS of 
at least 4. PSAD scored an AUC of 0.63 with maximum 
Youden’s index of 0.35 (at sensitivity of 0.72 and specificity 
of 0.54) at a threshold of PSAD of at least 12.4 ng/mL2. 
mADC achieved an AUC of 0.71 with maximum Youden’s 
index of 0.49 (sensitivity of 0.84 and specificity of 0.63) at a 
threshold of 930 mm2/s. Figure 4 shows the ROC curves for 

Table 2 Patient characteristics

Patient characteristics Study cohort (n=142)

Age (years) 68 [66.5–69.5]

PCa-negative 18 (13%)

PCa-positive 124 (87%)

Biopsy 56 (39%)

MRI/TRUS fusion targeted biopsy 29 (52%)

Ultrasound-guided punch biopsy 27 (48%)

Prostatectomy 86 (61%)

Median prostate volume (mL)  41.5 [29.3–60.0]

Median lesion volume (mL)  1.1 [0.44–2.8]

Median PSA value (ng/mL) 7.6 [2.4–12.7]

Median PSA density (ng/mL2) 8.0 [3.7–17.3]

Median mADC prostate (mm2/s) 1,197 [1,129–1,76]

Median mADC lesion (mm2/s) 839 [769–979]

Variables are shown in median [interquartile ranges] or in 
count (percentage); PCa, prostate cancer; TRUS, transrectal 
ultrasonography; PSA, prostate specific antigen; mADC, mean 
apparent diffusion coefficient.

Table 3 Prostate lesion characteristics

MRI index lesion evaluation Study cohort (n=142)

PI-RADS 3 44 (31%)

PI-RADS 4 28 (20%)

PI-RADS 5 70 (49%)

Index lesion in PZ 122 (86%)

Index lesion in TZ 20 (14%)

PI-RADS, Prostate Imaging Reporting and Data System; PZ, 
peripheral zone; TZ, transitional zone.

Table 4 PCa grading

Grading of PCa PCa-positive cohort (n=124)

ISUP grade 1 (GS =6) = cisPCa 30 (24%)

ISUP grade ≥2 (GS ≥7) = csPCa 94 (76%)

ISUP grade 2 (GS =3+4) 37 (39%)

ISUP grade 3 (GS =4+3) 25 (27%)

ISUP grade 4 (GS =8) 12 (13%)

ISUP grade 5 (GS =9–10) 20 (21%)

PCa, prostate cancer; cisPCa, clinically insignificant PCa; 
csPCa, clinically significant PCa; ISUP, International Society of 
Urological Pathology; GS, Gleason score.
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the three discriminators, Figure 5 the AUC in comparison 
to the other classifiers.

Assessment of cancer significance using radiomics models

Cross-validated training and evaluation of the logistic 
regression and six random forest classifiers yielded mean 
AUCs from 0.78 to 0.83 with single fold AUCs in the range 
of 0.64 and 0.92, with differences between best and worst 
fold of on average 0.2. Figure 4 shows the ROC curves for 
each fold of the classifiers individually and the mean ROC 
curve averaged over all 5 folds of each classifier, precision-
recall curves are added to Figure S1. The ROC curves of 
different folds exhibited significant variation. The variance 
of the ROC curves was aggregated in the summary plot 
Figure 5, showing the AUC of each fold and the respective 
mean AUC of each classifier. Mean AUCs for the cross-
validated classifiers ranged from 0.78 to 0.83 (Table 5). Mean 
Youden’s index ranged from 0.54 to 0.62 (Table S1).

Comparison of the classification models

The classification performance of the trained models to 
correctly distinguish between csPCa and non-csPCa was on 
average higher than with PI-RADS, mADC or PSAD alone 
(Figure 5). On average, highest AUC was found for the 
random forest models using class weights to balance group 
sizes and using 50 and 100 features selected with mRMR. 
However, robustness of results was low with high variations 

Figure 4 ROC curves for clinical parameters and radiomic models. (A-C) ROC curve for single-valued attributes PSAD, mean ADC, and 
PI-RADS. (D-J) Dashed lines show ROC curves for each of the five CV iterations. Solid green line shows the mean ROC curve over all five 
CV iterations. ROC, receiver operating characteristics; PSAD, prostate specific antigen density; ADC, apparent diffusion coefficient; PI-
RADS, Prostate Imaging Reporting and Data System; SMOTE, synthetic minority oversampling technique; mRMR, minimal redundancy 
maximal relevance; cw, class weights; FS, feature selection; CV, cross validation.

Figure 5 Performance of training configurations including CV 
folds. AUCs for all variables and CV folds. AUC values of each 
single-valued variable (PSAD, mean ADC, PI-RADS) and classifier 
configuration (with shorthands from Table 1) separated by colors. 
Colored dots show the performance of the trained model on each 
CV fold (if applicable), and black horizontal lines show the mean 
performance of each configuration and variable respectively. AUC, 
area under the (ROC) curve; CV, cross validation; PSAD, prostate 
specific antigen density; ADC, apparent diffusion coefficient; PI-
RADS, Prostate Imaging Reporting and Data System; SMOTE, 
synthetic minority oversampling technique; mRMR, minimal 
redundancy maximal relevance; cw, class weights; FS, feature 
selection; CV, cross validation.
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of AUC between the five cross-validation performance 
estimates. In particular, the variation of AUCs for a single 
classifier over the five cross validation (CV) folds is higher 
than the variation of the means of the classifiers compared 
to each other. 

The analysis of the mixed model showed that none of the 
RF models had a significant change in performance when 
considering the model configuration as fixed effect and the 
CV fold as random effect. The lowest P value was obtained 
for model configuration using SMOTE as imbalance 
mitigation technique with a negative slope of fixed effects 
indicating worse performance, but at a P value of P=0.19 
not significant. PI-RADS also showed a trend for worse 
performance, but at a P value of P=0.19 also not significant. 
The only significantly worse classification approaches were 
mADC and PSAD at P values of P=0.003 and P<0.001, 
respectively. Table 5 shows a summary of the AUC values of 
all model configurations and folds with their respective P 
values from the mixed-model analysis.

Discussion

This study investigated whether radiomics-based imaging 
biomarkers can reliably detect csPCa on a consecutively 
registered heterogeneous prostate MRI dataset of suspicious 
prostate lesions (PI-RADS ≥3). We applied state-of-
the-art machine learning techniques and systematically 
trained models using different configurations of methods 
and hyperparameters, evaluated the models using CV 
and transparently reported results of all experiments. 

Radiomics results were compared to the discrimination 
performance of the clinical scoring parameters PI-
RADS, mADC and PSAD. Our trained models yielded a 
discrimination performance of mean AUCs ranging from 
0.78 to 0.83, where the worst-performing fold yielded an 
AUC of 0.62 and the best performing fold an AUC of 0.95. 
Radiomics random forest models achieved on average better 
classification performance than clinical parameters such as 
PI-RADS (AUC =0.78), mADC (AUC =0.71) and PSAD 
(AUC =0.63), but did not fully outperform them due to the 
high variability of the results within the models’ testfolds.

We hypothesize that an important factor for the high 
variability of performance derives from the heterogeneity 
of our dataset. We included all consecutively registered 
patients at the urology department of our hospital which 
reflects a realistic approach to future usage of radiomics 
models in clinical workup. The underlying MRI datasets 
were partially acquired at different institutions using a 
number of scanner types and protocols, with various T2-
sequences and DWI-sequences with several combinations of 
b-values for ADC calculation were used. This impacts the 
intensities of the resulting images and consequently changes 
the derived radiomics features (23-25). Furthermore, we 
included lesions from peripheral as well as transitional 
zones which differ due to their distinct anatomical 
embeddings and their specific tissue structures, which again 
might change which radiomics features carry discriminative 
potential (26,27). Whereas the folds were stratified by 
tumor aggressiveness (csPCa versus non-csPCa), the above-
mentioned heterogeneities could not be taken into account 

Table 5 AUC (mean) for clinical scores and trained radiomics models

PSA  
density

Mean  
ADC

PI-RADS Regression
SMOTE 

mRMR(25)
cw | 

mRMR(25)
cw |  

no FS
no cw | 

mRMR(25)
cw | 

mRMR(50)
cw | 

mRMR(100)

AUC (mean) 0.63 0.71 0.78 0.80 0.78 0.80 0.82 0.80 0.81 0.83

AUC [1] 0.73 0.77 0.85 0.91 0.88 0.92 0.88 0.91 0.91 0.92

AUC [2] 0.63 0.77 0.74 0.76 0.64 0.68 0.67 0.71 0.70 0.71

AUC [3] 0.63 0.65 0.87 0.71 0.84 0.84 0.89 0.83 0.85 0.87

AUC [4] 0.53 0.59 0.68 0.77 0.64 0.65 0.83 0.69 0.74 0.82

AUC [5] 0.64 0.78 0.75 0.86 0.88 0.89 0.84 0.87 0.84 0.81

P values <0.001 0.003 0.185 0.478 0.186 0.436 0.953 0.496 0.610 1

For each score or configuration, the mean AUC and the result for each CV fold is shown. The bottom row shows the P values yielded 
by the mixed-model analysis, showing how significantly different the classification performance of each of the model configurations 
in comparison to the best-performing “cw | mRMR(100)” was. Model configuration shorthands according to Table 1. AUC, area under 
the curve; PSA, prostate specific antigen; ADC, apparent diffusion coefficient; PI-RADS, Prostate Imaging Reporting and Data System; 
SMOTE, synthetic minority oversampling technique; mRMR, minimal redundancy maximal relevance; cw, class weights.
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when dividing folds, which—considering the small sample 
size—inevitably led to statistical fluctuations and therefore 
uneven distribution of heterogeneities over the folds.

In order to optimize classification performance of the 
models, we investigated hyperparameter settings and 
used variations of imbalance mitigation techniques on 
the baseline model in order to investigate the influence 
of a method within the given setting. In comparison to 
PI-RADS, all RF-based model configurations scored 
better in their mean classification performance, while the 
regression analysis did not add value and even performed 
worse on average. This is within expectations, since the 
RF can model more complex relations and interactions of 
features than a logistic regression. All machine-learning-
based models showed a high variability of results over the 
five folds of cross-validation, which demonstrates that the 
choice of samples for evaluation has a substantial impact. 
The models trained in this study were able to achieve high 
performances of up to an AUC of 0.92 by picking a single 
test fold, but at the same time showing differences of up to 
0.20 within the results of the five folds of the same model. 
Therefore, the classification performance on each CV fold 
needs to be reported to show the variability and thereby 
assess robustness of radiomics models. Moreover, the results 
of our study indicate that PSAD and mADC have limited 
discrimination potential and were outperformed by the 
trained models. The PI-RADS score however, which is 
routinely used in clinical work-flow, proved to be a good 
discriminator for csPCa for suspicious prostate lesions. 
Although mean performance of the radiomics models 
trained was higher than the PI-RADS score, all models also 
had folds which performed worse.

The differentiation potential of PCa aggressiveness using 
radiomics has been intensely discussed in the literature 
and results published in earlier studies vary substantially 
(12,13). Whereas some studies have reported remarkably 
promising radiomics performances to determine csPCa 
(14,15,28-32), others did not find substantial stratification 
potential or conclusive results of radiomics to outperform 
clinical scoring systems (16,33). It is difficult to fully 
compare our models with earlier research due to different 
study designs and underlying methods. The underlying 
patient population differed depending on the hypothesis 
investigated and endpoints formulated, whereas most 
concentrated on PCa detection and differentiation of  
csPCa (12). Previous studies evaluated radiomics-based 
analyses on homogeneously acquired datasets with respect 
to scanner type and protocol (14-16,28-34). While 

the homogeneity might enhance radiomics models’ 
performance, it fails to address the real-world scenario. 
When applied to different (external) datasets, model 
performance decreased in several studies (34-36), suggesting 
that single-center trained radiomics-based bpMRI models 
do not seem to sufficiently generalize to multi-center 
data sets (36), The minority of studies included suspicious 
lesions from both peripheral and transitional zones (12), 
limiting the clinical applicability of these models. In 
addition, established methods that have been shown to 
increase radiomics performance on homogeneous datasets 
such as SMOTE (14,37) did not prove valid for our models, 
confirming that the added value of methods can depend 
on the underlying dataset. Reporting checklists as well as 
evaluation criteria for radiomics studies have been proposed 
to increase transparency in publishing radiomics studies  
(38-40). Our study, however, also argues for a more 
transparent handling of variability of radiomic models 
results and for reporting of all findings to prevent overly 
optimistic or pessimistic results. This especially refers to the 
results from all folds and all configurations, which could be 
reported explicitly or using appropriate summary metrics.

Accurate differentiation of suspicious lesions on prostate 
MRI (PIRADS ≥3) for the differentiation of csPCa versus 
cisPCa or benign lesions is of high importance to decrease 
overdiagnosis and overtreatment. In order to enhance the 
diagnostic workup based on prostate MRI, radiomics has 
become a highly active field offering non-invasive imaging 
biomarkers for an objective characterization of the imaging 
data. However, its application introduces some major 
challenges which have to be carefully addressed. Current 
radiomics models lack generalizability and reproducibility. 
Transparent reporting of all investigated model configurations 
and critical evaluation of the variability of results is a 
prerequisite for reliable clinical application of radiomics.

Limitations

Our study has several limitations. Firstly, it consists of a 
relatively small sample size (n=142), which however lies 
within the average of earlier presented studies (12,13). Our 
MRI dataset did not follow a standardized imaging protocol 
as we included datasets from multiple institutions, it was 
however intended for the assessment of the generalizability 
of the models. An external validation cohort was not 
available, but strict separation of training and test data 
was achieved by means of CV. As only a limited number 
of configurations and preprocessing approaches could be 
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tested, we chose a set of state-of-the-art machine learning 
methods that have been utilized in earlier radiomics studies.

Another limitation can be seen in the fact that some 
patients underwent radical prostatectomy, while the others 
underwent MRI-guided prostate biopsy. In principle the 
MRI-guided biopsy might miss the cancer hotspot within 
the targeted lesion, earlier studies have however found 
reliable correlation of index lesions on MRI with their 
histopathologic result (41).

Conclusions

In this study, we showed that the clinical applicability of 
radiomics models on suspicious prostate lesions (PI-RADS 
≥3) in a heterogeneous, real-world dataset is limited due to 
low robustness and high variations of results. We presented 
an approach to critically evaluate and transparently 
report the variability of classification performance on all 
CV folds across a number of model configurations. In 
our study, the trained models did not reliably improve 
lesion discrimination compared to conventional imaging 
biomarkers. Performance variability, robustness and 
reproducibility of radiomics-based measures should be 
addressed more transparently in future research to enable 
broad clinical application. Further investigations on 
reducing variability and enhancing robustness are required 
to facilitate clinical application.
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Figure S1 Precision-recall curves for clinical parameters and radiomic models. (A-C) PR curves for imaging-based biomarkers PSAD, mean 
ADC and PI-RADS. (D-J) Trained radiomics models with shorthands from Table 1 in the main manuscript. Dashed lines show PR curves for 
each of the five CV iterations. Solid green line shows the mean ROC curve over all five CV iterations.
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Table S1 Maximum Youden’s index for clinical scores PSA density, mean ADC and PI-RADS, for regression and the random forest models

PSA 
density

mean  
ADC

PI-RADS
Regre  
ssion

SMOTE 
mRMR(25)

cw | 
mRMR(25)

cw |  
no FS

no cw | 
mRMR(25)

cw | 
mRMR(50)

cw | 
mRMR(100)

Max Youden's 
(mean)

0.35 0.49 0.53 0.61 0.54 0.59 0.62 0.58 0.55 0.60

Max Youden's (1) 0.45 0.54 0.74 0.74 0.74 0.74 0.79 0.69 0.68 0.74

Max Youden's (2) 0.45 0.54 0.54 0.45 0.32 0.39 0.39 0.44 0.44 0.49

Max Youden's (3) 0.29 0.45 0.63 0.51 0.68 0.61 0.74 0.61 0.57 0.57

Max Youden's (4) 0.18 0.33 0.35 0.67 0.29 0.40 0.57 0.40 0.42 0.57

Max Youden's (5) 0.39 0.60 0.39 0.69 0.68 0.79 0.62 0.73 0.63 0.63


