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Background: Image segmentation is an important step during the processing of medical images. For 
example, for the computer aid diagnostic systems for lung cancer image analysis, the segmented regions of 
tumors would help doctors in early diagnosis to determine timely and appropriate treatment possibilities and 
thereby improve the survival rate of the patients. However, general clinical routines of manual segmentation 
for large number of medical images are very difficult and time consuming, which is the challenge we aim to 
tackle using our proposed method. 
Methods: A novel image segmentation method with evolutionary learning technique named Group 
Theoretic Particle Swarm Optimization is proposed. It can tackle multi-level thresholding optimization 
problem during the segmentation process and rebuild the search paradigm according to the solid 
mathematical foundation of symmetric group from four designable aspects, which are particle encoding, 
solution landscape, neighborhood movement and swarm topology, respectively. The Kapur’s entropy of 
multi-level thresholds is assessed as the objective function.
Results: In contrast to those conventional metaheuristics methods for lung cancer image segmentation, 
this newly presented method generates the best performance result among them. Experimental results show 
that its Kapur’s entropy has the value of 9.07, which is 16% higher than the worst case. Computational time 
is acceptable at the cost of 173.730 seconds, average level of evaluation metrics [Kappa, Precision, Recall, F1-
measure, intersection over union (IoU) and receiver operating characteristic (ROC)] is over 90%, and search 
process of multi-level threshold combination would finally converge in the later phase of iterations after 
700. The ablation study indicates that all components are significant to the contributions of our proposed 
method.
Conclusions: Group Theoretic Particle Swarm Optimization for multi-level threshold segmentation is 
an efficient way to split a medical image into distinct regions and extract tumor tissues regions from the 
background. It maintains the balanced relationship between diversification and intensification during the 
search process and helps clinicians to make the diagnosis more accurately. Our proposed method processes 
potential medical value and clinical meanings.
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Introduction

Image segmentation involves partitioning an image 
into multiple objects with meaningful structures in the 
homogeneous regions according to specific quantitative 
criteria (1-3). For medical image analysis, in order to 
help clinicians to make the diagnosis more accurately, the 
segmentation is a necessary step in advancing on which the 
quality of the diagnosis and analysis system depends (4,5).

There  a re  numerous  t ype s  o f  med ica l  image  
modalities (6), for example ultrasound (US), X-ray, positron 
emission tomography (PET), computed tomography (CT), 
magnetic resonance imaging (MRI), etc. The characteristics 
of medical images consist of several factors, such as contrast, 
blur, noise, artifacts, distortion, etc. They represent main 
features of an image and determine its quality (7). As for 
lung cancers, about 30–40% of them are adenocarcinoma, 
which is a typical category of non-small cell lung cancer 
(NSCLC). The characteristic appearances of lung cancer 
images are the slow growth of a localized ground glass 
opacity and the rapid increment of a solid mass (8). And 
many promising technologies have been developed for 
detecting those appearance changes of medical image in 
segmentation tasks with remarkable performance, they 
range from traditional approaches, like thresholding, edge-
based extraction, histogram-based bundling and watershed, 
region-based growing, to more superior methods, like 
active contour models, sparse representations, conditional 
and Markov random fields, graph cuts, deep learning-based 
algorithms (9-12). Although there exist many excellent 
methods like deep learning approaches, they still have some 
inevitable issues, for example, the results heavily depend on 
complex model structure and parameter configuration. The 
generalization of trained models is limited because of the 
huge cost of computational resources and reconstruction 
of deep models when dealing with heterogeneous data 
and objective functions during segmentation. Besides, 
a class of metaheuristic methods treat and reformulate 
the segmentation problems intrinsically as the global 
optimization, focusing on complicated objective functions 
with characteristics of noisy, non-continuous, non-convex 

and multi-modal information from a medical image (13). 
Metaheuristic is still one of the mainstreams of medical 
image segmentation since it has the ability to incorporate 
multiple criteria in objective function terms, the capacity 
to measure the qualities of different solutions and offer 
the trade-off between them by examining the quantitative 
metrics that a solution satisfies the specific criterion, and the 
availability to provide self-adaptive parameter configuration 
without too much background knowledge (14).

For multi-level threshold technologies in medical image 
segmentation, a method where the non-parametric multi-
level variance that is maximized between classes during 
segmentation procedure is developed by Otsu (15), and 
after that, Kapur et al. (16) improve branch of method by 
introducing entropy and probability distribution of the 
image histogram into it. The Ant Colony Optimization 
(ACO) can boost the performance of optimal solution 
compared to the traditional one with Otsu-based multi-
level image thresholding (17). Objective functions such as 
Otsu, Kapur and Tsallis entropy are fed into the efficient 
Krill Herd Algorithm (KHA) to search for the best values of 
threshold and it can prevent the drawbacks of single target 
function (18). Similar to this, an efficient Cuckoo Search 
Algorithm (CSA) is proposed for segmentation problem with 
multiple objectives functions (19). Partitioned-Cooperative 
Quantum-behaved Part ic le  Swarm Optimizat ion 
(SCQPSO) for auxiliary swarm and the search space is 
designed to achieve rapid convergence by shifting the mode 
of particle update (20). Chaotic Salp Swarm Algorithm 
(CSSA) is embedded into the combined model as the core to 
optimize the feature matrix obtained from two-dimensional 
(2D) curvelet transformation for segmentation (21).  
Multi-Leader Whale Optimization Algorithm (MLWOA) 
aims to overcome the drawbacks of traditional WOA during 
the segmentation process (22).

Despite good amount of works achieved by those 
researchers, we are still facing some critical shortcomings 
other than stagnation at local optimum or slow convergence. 
One of them is that most of the improvements enhance either 
the diversification (exploration) or intensification (exploitation) 
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during the search, which will influence the performance of 
search algorithms and the qualities of optimal solutions. This 
also motivates us to propose a new method based on new 
mathematical foundation, aiming to enhance the balance 
between them and facilitate the overall efficiency of search.

The purpose of this article is to introduce a novel 
metaheuristic approach named Group Theoretic Particle 
Swarm Optimization (GT-PSO) (23), for multi-level 
threshold optimization in medical image segmentation. 
With the basic concepts of symmetric group, the search 
space would be decomposed exhaustively and exclusively, 
and the process can continue under the guidance of function 
composition-based operators and equilibrium evolution of 
both local and global search. Finally, it will reach the goal 
of finding the optimal combination of multi-level threshold. 
The main contributions of this article are summarized 
as follows: the search paradigm is rebuilt on the solid 
foundation of group theory, and hierarchical decomposition 
is carried out to generate corresponding operators and 
evolution strategies for guiding the search procedure. The 
rest of this article is organized as follows: the “Methods” 
section describes the details about GT-PSO methodology; 
the “Results” section presents the experimental results; 
the “Discussion” section analyzes the performances and 
discusses the properties of the proposed method; the 
“Conclusions” section concludes the paper. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/

view/10.21037/qims-22-295/rc).

Methods

Particle encoding

The mapping function is designed for encoding the particles 
in the form of permutation with cycles of symmetric group 
of degree n, which is also the dimension of the objective 
function:

( ) ( )( ) ( ) ( )( )1 2 1n np p x p x p x p x−=   

 
[1]

The encoded vector in each particle is regarded as a 
potential candidate of the solution.

Solution landscape

In terms of symmetric group theory, four-layered 
hierarchical method is applied to decompose the solution 
space into various partitions at different levels, which 
are conjugacy class, cyclic form, orbital plane and orbit, 
respectively (Figure 1).

Conjugacy class is the first order partition of hierarchy 
with the structure of numerous cyclic factors denoted by the 
factor form:
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Figure 1 Four-layered hierarchical partitioning of the solution space.
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Cyclic form is the second order partition of hierarchy 
based on the permutation of cyclic factors denoted by the 
cyclic form:

( ) ( )1 2 1n ncyc x x x x−=    

 
[3]

Orbital plane is the third order partition of hierarchy 
where the elements in partition set X are same under two 
group actions of g1 and g2:

{ } ( ) ( ) [ ]1 2, , 1,k i iobp X iff X g X g i k=  = ∀ ∈
 

[4]

Orbit is the fourth order partition of hierarchy as the 
collection of all elements by group action g from a given 
group G:

{ } ,obt gx g G x X= | ∈ ∀ ∈
 

[5]

Notice that four-layered hierarchy is the complete 
partitioning of the solution landscape, every partition is 
unique and exclusive to each other.

Neighborhood movement

The movement of a particle happens when the specific 
group action is used on the incumbent solution to change 
the permutation of original particle. Four types of operators 
are created based on four-layered hierarchical partitions. 
Movement details are illustrated in Figure 2 following the 
corresponding explanation below.

Conjugator operator shifts the particle to another 
conjugacy class, as shown with blue arrow (Figure 2). It is an 
inter conjugacy class operator of exploration.

Cycler operator moves the particle across different 
cyclic forms, as shown with red arrows (Figure 2). It is an 
intra conjugacy class and inter cyclic form operator of 
exploration.

Planer operator changes the particle from one orbital 
plane to another, as shown with green arrows (Figure 2). It 
is an intra cyclic form and inter orbital plane operator of 
exploitation.

Orbiter operator searches the particle along the orbit 
one by one, as shown with yellow arrows (Figure 2). 
It is an intra orbital plane and inter orbit operator of 
exploitation.

Four operators cooperate with each other to move 
neighborhoods heuristically in the hierarchical partitioned 
solution space (Figure 2).

Swarm topology

Let ∇  denote the operator based on various group actions 
by group multiplication ⊗, then the swarm evolutionary 
process is formulated as:

( ) ( ) ( ) ( )1 2 3 4cnj cyc obp obtr r r r∇ = ∇ ⊗ ∇ ⊗ ∇ ⊗ ∇  [6]
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Figure 2 Neighborhood movement guided by four hierarchical operators in the solution space.
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where r is the random number, i is the particle index, 
k is the iteration count, i

kp  is the local best fitness of ith 
particle after k iterations and g

kp  is the global best fitness 
of the entire swarm after k iterations. GT-PSO would 
initialize the entire swarm randomly with a particular 
number of particles whose representations are variable 
length encoding, and it will assess the fitness score by 
setting those best values of all particles. And then it can 
decompose the solution space hierarchically and generate 
the corresponding operators. They run concurrently to 
move the neighborhoods of particles in the solution space, 
and the self-adaptive evolutionary strategy is guaranteed 

by parameter configuration to make the updates of velocity 
and position. The whole search would be stopped when 
stopping conditions are satisfied, which can be configured 
to for example, when the maximum iteration number 
is reached, or the minimum error rate is achieved. The 
detailed flowchart of GT-PSO is demonstrated in (Figure 3).

Objective function

The popular measurement of Kapur’s entropy is evaluated 
as the objective function of medical image segmentation 
formulated as:

( )1 1 0 1, , m mH H H H= + + + θ θ θ  [9]
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j is the grayscale index, L is the upper bound of 
grayscale, hj is the number of pixels and pj is the probability 
distribution of jth grayscale. i is the segmentation class index, 
θi is the ith threshold, wi is the cumulative probability and Hi 
is the entropy of ith segmentation class. The optimization 
task of segmentation is to maximize H (θ1, θ1, …θm). The 
notations of GT-PSO components are listed in (Table 1).

Parameter configuration

The proposed GT-PSO is compared to Tabu Search (TS), 
Genetic Algorithm (GA), Particle Swarm Optimization 
(PSO) and Differential Evolution (DE). The parameter 
configuration for every method is presented in (Table 2). 

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This study was approved by our 
institutional review board. Informed consent was waived.

Results

As a case study of the effect of the proposed GT-PSO, the 

Figure 3 Flowchart of GT-PSO. GT-PSO, Group Theoretic 
Particle Swarm Optimization; Y, yes; N, no; Pbest, personal best; 
Gbest, global best. 
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dataset of lung cancer MRI has been considered as the 
tested images. The illustrated result is based on the image 
#311 (Figure 4A) extracted from the dataset archive of Iraq-
Oncology Teaching Hospital/National Center for Cancer 
Diseases (IQ-OTH/NCCD), which contains 110 cases 
of 1,190 images. The detail description of data archive is 
shown in (Table 3). 

During the segmentation process, the GT-PSO has 

identified three distinct classes of image with two levels 
of thresholds that just reside in the trough between two 
crests of grayscale distribution, and the illustration of final 
histogram of segmentation is shown in (Figure 4B), The 
optimized thresholds θ1 and θ2 obtained by GT-PSO in 
grayscale distribution are 118 and 182 respectively. The 
contour of sick region is detected and segmented from 
the background tissues in the right part of (Figure 4C). 
PSO is chosen as the baseline model compared to GT-
PSO on the same image #311 (Figure 4D) because GT-
PSO is the enhanced version of PSO based on group theory 
foundation. The optimized thresholds θ1 and θ2 obtained by 
PSO in grayscale distribution are 87 and 206 respectively 
(Figure 4E), and in contrast to the visualization of GT-
PSO, the contour of sick region extracted by PSO has more 
noises and dark dots from the background (Figure 4F), 
causing the blurred quality of segmentation result. After 
1,000 iterations of the search of multi-level threshold with 
variable numbers of feasible threshold combinations in each 
particle (Figure 5).

The numerical metrics of experimental results generated 
by those compared methods (TS, GA, DE, PSO and GT-
PSO) are tabulate in (Table 4). The Kapur’s entropy is the 
same as pixel accuracy for segmentation evaluation.

As shown in (Figure 5), GT-PSO outperforms all the 
other compared methods on the tested image archives. 
The behavior of GT-PSO increases gradually in the early 
and middle of the search and gets converged in the last 
one third of the iterations around 700. Although its raising 
speed is not as fast as PSO and GA before the number of 
iterations about 300, GT-PSO still performs the best during 
the rest of the search process. And it is followed by the 
outcome of DE, which has the second-best performance of 
all compared methods. PSO and GA come to the next two 
rankings where TS shows the worst output among them.

The result of comparison of fitness values with Kapur’s 
entropy and time consumptions of all compared methods 
are displayed in (Table 4). It also proves the illustrated results 
(Figure 5) simultaneously, where GT-PSO generates the 
superior Kapur’s entropy of 9.07 at the acceptable time cost 
of 173.730 seconds. Without the consideration of running 
time, its achievement is 3% higher than DE and 16% 
higher than TS almost. As the time cost is concerned, GT-
PSO still has balanced performance between fitness value 
and time consumption compared to others. Its average level 
of other evaluation metrics of Kappa, Precision, Recall, F1-
measure, intersection over union (IoU) and area under the 
curve (AUC) is over 90%.

Table 1 Notations of GT-PSO components

Notation Remark

p Particle encoding

X Permutation set

g Group action

⊗ Group multiplication

cnj Conjugacy class

cyc Cyclic form

obp Orbital plane

obt Orbit

∇ Operator

GT-PSO, Group Theoretic Particle Swarm Optimization.

Table 2 Parameter values of compared methods

Method Parameter Value

TS Tabu list 20, 30

GA Mut rate 0.3, 0.4

Tour rate 0.1, 0.2

DE Cross prob 0.2, 0.4

Low bound 0.2, 0.3

High bound 0.7, 0.8

PSO Inertial weight 0.8, 1.2

Acc coeff 1.2, 1.5

GT-PSO Random 1&2 0.5, 0.8

Random 3&4 0.2, 0.5

Acc coeff 1.2, 1.5

Pop size 20, 30

DE, Differential Evolution; GT-PSO, Group Theoretic Particle 
Swarm Optimization; GA, Genetic Algorithm; TS, Tabu Search; 
Mut, mutation; prob, probability; Acc coeff, acceleration 
coefficients; Pop, population.
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As shown in (Figure 6), the ablation study of GT-PSO is 
implemented via removing two categories of components 
gradually from the entire algorithm. GT-PSO is an 
enhanced method of conventional PSO rebuilt on group 
theory foundation, and there are four kinds of operators: 
cnj, cyc, obp and obt, where the previous two belong to the 
category of diversification and the latter two are intensified 
operators. GT-PSO outperforms the other three without 
any one module or both, its Kapur’s entropy is 9.07 while 

the value for worst case is only 7.51, and the gap between 
them is more than 20%. For detailed results of evaluation 
metrics please refer to (Table 5).

Figure 4 The tested image (A), histogram with multi-level thresholds (B) by GT-PSO, segmentation result by GT-PSO (C), and the same 
tested image (D), histogram with multi-level thresholds (E) by PSO, segmentation result by PSO (F). GT-PSO, Group Theoretic Particle 
Swarm Optimization.

Figure 5 Fitness curves with Kapur’s entropy of compared 
methods .  GT-PSO,  Group Theoret ic  Par t ic le  Swarm 
Optimization; DE, Differential Evolution; TS, Tabu Search; GA, 
Genetic Algorithm.

Table 3 Image descriptions of IQ-OTH/NCCD

Image Number

Train 800

Validate 200

Test 190

Cross-validation 10-fold

IQ-OTH, Iraq-Oncology Teaching Hospital; NCCD, National 
Center for Cancer Diseases.
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Discussion

As we know, the multi-level threshold image segmentation 
can be regarded as the problem of combinatorial 
optimization of various thresholds within the range of 
grayscale boundary to some certain extent. Meanwhile GT-
PSO is originally designed for combinatorial optimization 
based on symmetric group definitions and concepts, thus 
it is also suitable for similar type of image segmentation 
tasks. This is the main reason why GT-PSO outperforms all 
the other comparison methods in our experiment (Table 4).  
Another reason of this superior achievement of GT-PSO 
is that the comparison methods are practical for solving 
continuous optimization problems with appropriate real 
number encoding, while the multi-level thresholding is 
actually considered as discrete optimization problem. 
GT-PSO can provide more suitable encoding and 
updating approaches with the mathematical foundation 

of symmetric group. During the early procedure of GT-
PSO, since the conjugacy class and cyclic form operators 
dominate the search according to the parameter setting 
in (Table 2), it gets a relatively slow slope when iteration 
number increases, which indicates that the search is in the 
exploration stage and the solution diversities are maintained 
in order to reach more regions in the solution landscape. 
Furthermore, the orbital plane and orbit operators act 
as the major components of particle movements and 
intensify the search to converge in the exploitation stage. 
Meanwhile, the intermedia results displayed in (Figure 6) 
has the best numerical evidence for that, and both modules 
of diversification and intensification are necessary to 
the efforts of GT-PSO. The shape of GT-PSO curve in 
(Figure 5) demonstrates the self-adaptive strategy of swarm 
evolution of balanced optimization between exploration and 
exploitation.

For the rest of the comparison methods, DE and 
GA belong to the same class due to their evolutionary 
essences of selection, crossover, mutation, etc. Same 
for PSO and GT-PSO which both belongs to swarm 
intelligence optimization algorithm, and as result their 
curves share similar shapes and trends. In addition, TS 
is the single and non-population-based metaheuristic 
algorithm belonging to an independent branch besides 
the two classes previously mentioned, and its performance 
heavily relies on the local search ability controlled by 
tabu list memory, so it would suffer the stagnation at 
local optimum and the premature convergence during 
the search process.

Compared to GA, PSO seems to have better outcome 
because of its easier update mechanism and less parameter 
configuration. And DE shows a slower converging rate 
in the early phase compared to GA, probably caused 
by the mutant information of differential vectors of 

Table 4 Fitness values with Kapur’s entropy and multiple metrics of compared methods

Method Kapur’s entropy Kappa Precision Recall F1-measure IoU AUC Time (s)

TS 7.799 0.651 0.855 0.848 0.847 0.718 0.834 90.120

GA 8.257 0.778 0.864 0.859 0.859 0.794 0.877 158.250

DE 8.801 0.860 0.917 0.917 0.917 0.866 0.940 151.920

PSO 8.568 0.821 0.893 0.892 0.892 0.832 0.916 142.830

GT-PSO 9.069 0.898 0.945 0.945 0.945 0.902 0.957 173.730

DE, Differential Evolution; GT-PSO, Group Theoretic Particle Swarm Optimization; GA, Genetic Algorithm; TS, Tabu Search; IoU, 
intersection over union; AUC, area under the curve.

Fi
tn

es
s,

 s
co

re

10

9

8

7

6

5

4

3

2

1

GT-PSO

w/o inten

w/o diver

w/o both

0 200 400 600 800 1000
Iteration, n

Figure 6 Fitness curves with Kapur’s entropy of ablation study 
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parents of DE, whereas the mutation of GA is directly 
based on fitness values of parents. So, in the beginning 
of the search, the vast majority of search information is 
focused on diversification and the differential values are 
relatively high, and it leads to the slower converging rate 
of DE. There is also a fatal problem for DE: it is very 
sensitive to the noisy raw data, and it would affect the 
behavior to some degrees. Despite the slower converging 
rate and random nature of search, DE would eventually 
outperform GA during the progressively growing 
iteration process.

The analysis of time complexity of GT-PSO is conducted 
as follows. Assuming that the dimension of objective function 
is n and its evaluating cost is cof, the swarm population is p 
and the maximum iteration number is k. In the initialization 
phase the time complexity of GT-PSO (Figure 3) is 

( )+ + = ∗ +  ini eva setT T T O p n cof , and time complexity of each 

operator is ( )= = = = ∗cnj cyc obp obtT T T T O p n  since each of 

them is the linear rearrangement of threshold combination. 
Then in a single iteration phase the time complexity of GT-

PSO should be ( )+ + = ∗ +  opt eva updT T T O p n cof , therefore 

the total time complexity would be ( )∗ ∗ +  O k p n cof . In 

image segmentation, the objective function is to assess 
the Kapur’s entropy with the polynomial time complexity 
of O (n2) at least, which is directly proportional to the size 
of the input image. Finally, the time complexity of GT-PSO 

for image segmentation is ( )2∗ ∗O k p n .
We would like to discuss and analyze the superiorities 

of our proposed method along with its shortcomings and 
challenges to come in the following list.

Contributions

 Proposed method partitions the space completely and 

approach global optimum accordingly;
 Proposed method statistically guarantees to find an 

optimal solution through mathematical proof;
 Proposed method is flexible to restrictive properties of 

the model and parameters, and versatile for practical 
discrete optimizations.

Challenges

 Proposed method does not yet guarantee completely 
to find the real global optimum solution during the 
search;

 Proposed method could possibly cost over-acceptable 
computational time when the objective function is 
extremely complex.

Optimization is one of the fundamental technologies 
for computer vision and machine learning tasks in general, 
and for these techniques in medical use. As a new search 
paradigm, we believe GT-PSO has decent potential 
and practical value for various medical applications. For 
example, in organ segmentation task, it can be applied for 
the process of feature selection, feature fusion, attenuation 
correction and intensity normalization in data pre-
processing step. And in data augmentation step, it would 
reduce over-fitting and increase samples by optimizing 
distortion, elastic deformation and noise contamination. 
The optimizer of back-propagation in deep learning 
can be replaced by GT-PSO, as well as model structure 
optimization. The nature of hierarchy of GT-PSO would 
lead to the parallel search for multi-objective detection in 
organ segmentation.

Conclusions

A novel multi-level threshold image segmentation method 
using symmetric group theory-based metaheuristic is 
proposed to solve the combinatorial optimization problem 

Table 5 Fitness values with Kapur’s entropy and multiple metrics of ablation study of GT-PSO

Method Kapur’s entropy Kappa Precision Recall F1-measure IoU AUC Time (s)

GT-PSO 9.073 0.796 0.916 0.907 0.907 0.870 0.976 184.560

w/o diver 8.253 0.614 0.837 0.825 0.820 0.757 0.914 136.950

w/o inten 8.621 0.738 0.866 0.861 0.859 0.821 0.919 150.770

w/o both 7.509 0.541 0.800 0.751 0.713 0.692 0.822 103.520

AUC, area under the curve; GT-PSO, Group Theoretic Particle Swarm Optimization; diver, diversification; inten, intensification; IoU, 
intersection over union; w/o, without.
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of multiple grayscale thresholds of medical images. GT-
PSO would generate a new search paradigm and improve 
the efficiency from four designable aspects: particle 
encoding, solution landscape, neighborhood movement 
and swarm topology. A case study of lung cancer CT image 
archive is conducted to demonstrate the performance of 
our proposed GT-PSO comparing to other metaheuristics 
algorithms. The ablation study is fulfilled to check the 
intermedia efforts of two major components of GT-PSO. 
Overall, the experimental results show that GT-PSO 
achieves the best performance and keep the equilibrium 
between exploitation and exploration, therefore we believe 
it has decent potential for interdisciplinary applications of 
clinical medicine and artificial intelligence.
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