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Background: Lowering the dose for positron emission tomography (PET) imaging reduces patients’ 
radiation burden but decreases the image quality by increasing noise and reducing imaging detail and 
quantifications. This paper introduces a method for acquiring high-quality PET images from an ultra-low-
dose state to achieve both high-quality images and a low radiation burden.
Methods: We developed a two-task-based end-to-end generative adversarial network, named bi-c-GAN, 
that incorporated the advantages of PET and magnetic resonance imaging (MRI) modalities to synthesize 
high-quality PET images from an ultra-low-dose input. Moreover, a combined loss, including the mean 
absolute error, structural loss, and bias loss, was created to improve the trained model’s performance. 
Real integrated PET/MRI data from 67 patients’ axial heads (each with 161 slices) were used for training 
and validation purposes. Synthesized images were quantified by the peak signal-to-noise ratio (PSNR), 
normalized mean square error (NMSE), structural similarity (SSIM), and contrast noise ratio (CNR). The 
improvement ratios of these four selected quantitative metrics were used to compare the images produced by 
bi-c-GAN with other methods.
Results: In the four-fold cross-validation, the proposed bi-c-GAN outperformed the other three selected 
methods (U-net, c-GAN, and multiple input c-GAN). With the bi-c-GAN, in a 5% low-dose PET, the 
image quality was higher than that of the other three methods by at least 6.7% in the PSNR, 0.6% in the 
SSIM, 1.3% in the NMSE, and 8% in the CNR. In the hold-out validation, bi-c-GAN improved the image 
quality compared to U-net and c-GAN in both 2.5% and 10% low-dose PET. For example, the PSNR using 
bi-C-GAN was at least 4.46% in the 2.5% low-dose PET and at most 14.88% in the 10% low-dose PET. 
Visual examples also showed a higher quality of images generated from the proposed method, demonstrating 
the denoising and improving ability of bi-c-GAN.
Conclusions: By taking advantage of integrated PET/MR images and multitask deep learning (MDL), the 
proposed bi-c-GAN can efficiently improve the image quality of ultra-low-dose PET and reduce radiation 
exposure.
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Introduction

The role positron emission tomography (PET) plays in 
modern clinical/preclinical medicine is extraordinary. 
Patients who undertake PET for treatment are injected with 
a large dose of radioactive tracer into tissues or organs before 
scanning. This process generates radiation exposure, which 
will inevitably be uncomfortable or harmful to patients, 
especially in patients who need multiple examinations or 
pediatric patients with a higher lifetime risk for developing 
cancer. Although lowering the dose of radioactive tracer 
can reduce radiation exposure, it also yields increased noise, 
artifacts, and a lack of imaging details (1). The contradiction 
between lowering radiation exposure and improving 
imaging quality has attracted much research interest in 
this area, including using more sophisticated facilities or 
advanced signal processing algorithms. Manufacturers have 
tried to improve the sensitivity of PET scanners by using 
higher-performance detectors that are straightforward but  
expensive (2). Moreover, once the scanners are established 
for a PET system, there is no room for data quality  
optimization (3). For a long time, algorithm-based techniques 
have focused on PET reconstruction from sinogram data (4-7)  
or traditional patch-based learning methods (8-10), which 
involve limitations such as high demand for data, high time 
consumption, or poor output quality (11-13). Deep learning 
algorithm methods, especially the encoder-decoder structure, 
with its powerful data-driven capabilities between image 
datasets, can develop an image transferring model with high 
fitness and efficiency (14-16). Recently developed integrated 
PET/magnetic resonance imaging (MRI) scanners enable 
the simultaneous acquisition of structural and functional 
information without extra radiation exposure, which gives 
more information and the potential for deep learning-based 
methods. Multitask deep learning (MDL) can improve 
generalizability by using the domain information contained 
in the training signals of related tasks as an inductive bias (17). 
Implementation of MDL has led to successes in fields from 
natural language processing to computer vision (18). To the 
best of our knowledge, MDL has not been used in a medical 
image synthesizing task such as high-quality PET synthesis. 
Given the above, this paper attempts an MDL-based method 
and treats MRI as a related source in helping to synthesize 
high-quality PET images from its ultra-low-dose modality.

Related works

Improving ultra-low-dose PET image quality by mapping 
these images to the ground truth, full-dose PET images is 
a pixel-level prediction task for which convolutional neural 
networks (CNNs) have been widely used (19). Earlier, 
Gong et al. (20) trained a deep CNN from low-dose PET 
images (20% of the full dose) to full-dose PET images using 
simulated data and fine-tuned it with real data. Later, Wang 
et al. (21) performed similar work by improving whole-
body PET quality using a CNN with corresponding MR 
images. Previous works also showed the strength of CNN 
with a U-net structure in synthesizing high-quality PET 
images (22-24). There is a tendency for CNNs to produce 
blurry results (25), but generative adversarial networks 
(GANs) may solve this by using a structural loss (26).  
Given this, Wang et al. (27) trained a GAN to improve the 
quality of low-dose PET images (25% of the full dose). 
Later, Isola (28) showed that a conditional GAN (c-GAN) 
with a conditional input and a skip connection, if trained 
using a combination of L1 loss and structured loss, could 
achieve an advantage in image–image translation tasks, 
which was then adopted by Wang (29). A c-GAN structure 
requires a conditional input which was realized by treating 
low-dose PET as conditional inputs (30,31). Many others 
have also found the advantage of anatomical information in 
PET denoising. Cui (32) took advantage of patients’ prior 
MR/computed tomography (CT) images and treated them 
as conditional inputs for a U-net to restore low-dose PET 
images. Considering input MR can influence the results of 
output PET, Onishi et al. (33) only treated MR as a prior 
guide when using a deep decoder network to synthesize 
PET from random noise. However, low-dose PET was 
not treated as an input of the network until recently. Chen 
(23,34) used a simple U-net and treated both low-dose PET 
and multiple MRI as conditional inputs to improve the 
quality of low-dose PET images.

Unlike in our study, the deep learning methods above 
are based on single-task learning (STL). We used a two-task 
based MDL method called bi-task. In bi-task, MRI is treated 
as an additional task (18) rather than additional channels in 
one task (21,23,27,34). Therefore, the impact of MR as input 
can be avoided while at the same time maintaining its effect 
of guidance. An MDL works because the regularization 
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induced by requiring an algorithm to perform well on a 
related task can be superior to ordinary regularization, which 
prevents overfitting by uniformly penalizing all complexity 
(35,36). A problem with MDL is negative transfer, 
which should be avoided because it leads to performance 
degradation (37). An instance when MDL may be particularly 
helpful is when the tasks are similar and are generally slightly 
under-sampled (17). For these two reasons, MDL fit our 
case well. First, the generation of high-quality PET images 
from MRI modalities or low-dose PET images has the same 
target. Second, the slices used to train the network are often 
limited because of the difficulty in obtaining real patient 
images in large numbers. Kuga’s (38) MDL structure used 
for multi-input, multi-target scene recognition is similar to 
our bi-task structure. One difference is that bi-task is multi-
input single-target. Previous methods for multi-input single-
target structures are building a multi-encoder and a single-
decoder (39). A weakness of the multi-encoder single-
decoder structure is that straightforward concatenation of 
extracted features from different encoders to one decoder 
often results in inaccurate estimation results (38). To avoid 
this weakness, we created two decoders by directing them 
to two targets (namely, the target for the first input and the 
target for the second input) to construct a multi-input multi-
target structure.

Our contributions

This paper tries to improve the quality of ultra-low-dose 
PET axial head images by training a bi-task network with 

ultra-low-dose PET images (5% of the full dose) and 
integrating T1-weighted MRI images for the input and 
full-dose PET images as the ground truth labels. The 
strengths of conditional input, GAN, and skip connection 
were added to the bi-task. The combined structure was 
called bi-c-GAN. A combined loss, including Euclidean 
distance, structural loss, and bias loss, was developed and 
used in the training stage to fully extract information from 
three datasets (the full-dose PET image dataset, ultra-low-
dose PET image dataset, and integrated MRI dataset). This 
paper’s main innovations and contributions are two-fold: 
(I) the bi-c-GAN network and its combined loss function 
were created, and the model was trained successfully 
using real patients’ data, which meant that the effect of 
each contributing part was analyzed specifically; (II) the 
general effect of the proposed bi-c-GAN in improving 
low-dose PET images’ quality was validated. Compared 
with U-net, c-GAN, and M-c-GAN (multiple conditional 
inputs of c-GAN treating MRI as an additional channel), 
the proposed bi-c-GAN achieved better performances in 
selected quantitative indexes. We present the following 
article in accordance with the MDAR reporting checklist 
(available at https://qims.amegroups.com/article/
view/10.21037/qims-22-116/rc).

Methods

Bi-task structure

The basic bi-task structure was inspired by the work of 
Kuga et al. (38), with some changes made according to our 
application. The mechanism of this kind of MDL structure 
is as follows. An encoder is built for each input, and a shared 
latent representation layer follows each encoder. The latent 
representations are shared because the output from each 
latent representation acts as the input of each task’s decoder; 
in other words, each latent representation followed by their 
corresponding encoders will correspond to a task’s decoder. 
In the case of two-input/two-target, four encoder/decoder 
pairs are used for training. As shown in Figure 1, our case 
included two inputs, namely low-dose PET (xLP) and T1-
weighted MRI (xT1), and two targets, namely high-quality 
synthesized PET images translating from low-dose PET 
images (yLP) and high-quality synthesized PET images 
translating from T1-weighted MRI images (yT1).

Given that the MRI is  used to assist  the PET-
synthesizing process, we called the task conditioned on low-
dose PET images the primary task and the task conditioned 

xLP

xT1
yT1

yFP

yLP

Figure 1 Illustration of a bi-task structure. The structure 
includes an input pair (xLP,xT1), an output pair (yLP,yT1), and four  
encoder-decoder pairs with each encoder’s output passed to both 
targets’ decoders. In this study, output pairs have the same value of yFP.

https://qims.amegroups.com/article/view/10.21037/qims-22-116/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-116/rc
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on the MRI image the secondary task. Both tasks worked 
in parallel and crossed each other. xLP was the input of the 
primary task and xT1 represented the input of the secondary 
task. Inputs xLP and xT1 were directly followed by their 
corresponding encoders Ep (·) and Es (·). Ep (xLP) and Es (xT1), 
which comprised the layer of shared latent representation, 
as the outputs of the two encoders. The representation layer 
was completely shared by all the decoders, which meant that 
the output of each encoder was fed into all the decoders 
(as shown in Figure 1, the dash line crossing each task); 
therefore, there were four encoder/decoder pairs given: an 
input pair (xLP, xT1) and a target pair (yLP, yT1). D (·) was the 
function of the decoder, and ŷ  was the synthesized output 
of each decoder. Then, we obtained the following:

( )
( )
( )
( )

1 1

1 1

1 1 1 1

1

1

ˆ

ˆ

ˆ

ˆ

LP LP LP LP

LP T LP T

T LP T LP

T T T T

x y x y P LP

x y x y P LP

x y x y a T

x y x y a T

y D E x

y D E x

y D E x

y D E x

→

→

→

→

 =   
=    


=    

 =   









 [1]

where ˆx yy →  represents an encoder-decoder’s synthesized 
result from an input x to a target y and the corresponding 
decoder’s function is denoted by Dx~y. Specifically, both 
of the primary task and secondary task’s targets aimed to 

synthesize a high-quality PET image as similar as a full-
dose PET image, denoted by yFP as shown in Figure 1, as 

much as possible, which meant that the ˆx yy →  of the above 
Eq. [1] yielded equal values when the corresponding 
decoders reached their final formation after a training 
process in Eq. [2]:
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Note that, with the same input and target, the training 

processes of Eq. [1]’s decoders 
LP LPx yD


 and 
1LP Tx yD



 are very 
similar, as are 

1T LPx yD


 and 
1 1T Tx yD


. For simplicity, we only 
retained 

LP LPx yD


 and 
1 1T Tx yD


 in our final model.
After simplification, two encoder-decoder pairs remained 

in our network, of which Ep (xLP) and 
LP LPx yD


 belonged 
to the primary task, Es (xT1) and 

1 1T Tx yD


 belonged to the 
secondary task, as Ep, Dp, Es, and Ds, respectively (Figure 2). 

In Figure 2, two discriminators for each task were added 
to the bi-task structure, which was then called bi-c-GAN. 
The primary task had its discriminator and encoder’s inputs 
conditioned on the low-dose PET image; the decoder’s 
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Figure 2 Illustration of the bi-c-GAN structure and the procedure of producing synthesized PET images. The main structure of bi-c-GAN 
and the training process are presented in the upper dotted block. The left dotted block shows the training pairs, which act as the inputs 
of the right network. The lower dotted block represents validating and testing stage in which the trained model is based on primary task’s 
generator. When testing by delivering the lose-dose PET images to the trained model, it will come out as synthesized PET images. c-GAN, 
conditional-generative adversarial network; PET, positron emission tomography; MRI, magnetic resonance imaging.
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output aligned to the ground truth full-dose PET image. 
The secondary task had its discriminator and encoder’s 
inputs conditioned on the MRI image; the decoder’s output 
aligned to the same ground truth full-dose PET image 
from the primary task. The combined loss was made up 
of both tasks’ mean absolute error and structural losses, in 
which the secondary task’s losses acted as the bias loss. The 
combined loss was used as the objective function to train 
and optimize the entire model.

The generator and discriminator used in Figure 2 are 
shown in detail in Figure 3. They are composed of several 
basic blocks comprising convolutions (4×4 filters), batch 
normalization, dropout, and activation (rectified linear 
unit) layers. There are eight of the above basic blocks in the 
structures of the encoders and decoders, as shown in Figure 3.  
In the encoder part, we achieved down-sampling using 
strided convolution operations with a stride of 2. Because of 
skip connection, the last layer of each block in the encoder 
layers was concatenated with those in the decoder layers. In 
the output layer, the tanh activation function was used. The 
discriminator was mainly a 70×70 patch GAN in which five 
of the above basic blocks were included (26).

Objective function

Given a batch of paired low-dose PET images and T1-
weighted MRI images as inputs of our proposed model, we 
minimized the distance and the structural and bias losses 

between the synthesized image and the corresponding 
ground truth full-dose PET image. Here, we selected the 
L1 loss (lL1) as the distance measure, as suggested by Isola 
et al. (28), and used GAN loss (lGAN), which are patches out 
of the discriminator, as the structural loss. The bias loss (lbias) 
came from the secondary task’s L1 and GAN losses. We 
defined the combined loss as the sum of the above losses. 
The gradients for the whole network were computed based 
on the combined loss by backpropagation. The combined 
loss was used for both tasks’ training processes.

Each discriminator provided structural loss for its 
corresponding task. A discriminator is an adversarial 
network that aims to distinguish the primary generator’s 
distribution from the labels. The primary generator’s output 
conditioned on an input x is denoted by G (x|θg), where G 
is the mapping from x to the synthesized output and θg is 
the parameter of G. The discriminator’s output conditioned 
on an input x and label y is denoted by D (x,y|θd), where D 
is the mapping and θd is the parameter of D. Combining G 
and D, a GAN is created by optimizing minG maxD V (D,G), 
where V is the value function. The object of our GAN 
conditioned on x can be expressed as follows:

( ) ( ) ( )( )( ),, log , log 1 ,cGAN x y xG D D x y D x G x = + −       [3]

Both generators must fulfill the needs of approaching 
the ground truth by an L1 loss, in which that of the primary 
generator Gp is:
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( ) ( )1 , 1L p x y pG y G x = −   [4]

and that of the secondary generator Gs is:

( ) ( )1 , 1L s x y sG y G x = −   [5]

The secondary task served as an inductive bias (17) that 
contributed all its losses as the bias loss; then, our final 
objective function was defined as follows:
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where λ1 and λ2 are weights of the primary network’s L1 
loss and GAN loss, respectively; λ3 and λ4 are weights of the 
secondary network’s L1 loss and GAN loss, respectively; λp 
is the weight of the main loss; and λs is the weight of the bias 
loss.

Our study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Ethical 
approval  (Sun Yat-sen University Cancer Center 
Guangzhou, China) was obtained, and the requirement for 
informed consent was waived for this retrospective analysis.

Experiment 

Data acquisition and experiment settings
Real data from the axial head slices of 67 patients were 
used in our paper. Patients (both healthy and unhealthy 
cases) were between 22 and 73 years old (47±11 years old), 
of which 30% were female. The acquisition dates were 
from July 2020 to December 2020. The T1-weighted 

MRI and PET data were simultaneously acquired on an 
integrated 3.0T PET/MRI scanner (uPMR 790 PET/
MR; United Imaging, Houston, TX, USA). Samples were 
acquired from patients 70.6±8.5 minutes after injection of 
18F-fluorodeoxyglucose (FDG) (224.4±49.9 MBq), and 
FDG was administered intravenously after fasting for at 
least 6 h. All PET scans were reconstructed with the time-
of-flight ordered-subset expectation maximization (OSEM) 
algorithm (20 subsets, 2 iterations, image matrix size of 
192×192, voxel size of 3.125×3.125×2 mm3, and a 3 mm 
post-reconstruction image-space Gaussian filter). A full 
acquisition time of 10 minutes’ results was used for the 
ground truth full-dose PET image. Low-dose PET images 
were created by constructing the histogram of the emission 
data to 10%, 5%, and 2.5% (respectively, 60, 30, and 15 s)  
of the bed duration for all the bed positions in which 5% 
was used for training the network. Each patient’s data 
included 161 slices, which contained the main regions of the 
brain and some other regions of the head. Figure 4 shows 
four selected examples of the training pairs. These samples 
were selected from different axial slices of the patients. 
Slices A and B were from the upper regions of the head, and 
slices C and D were from the lower regions. The first two 
columns of each case, which were the T1-weighted MRI 
and low-dose PET images, were the input modalities of our 
proposed network, while the third column was the ground 
truth full-dose PET images.

The whole experiment was carried out in TensorFlow 
2.2.0 (Google AI, Mountain View, CA, USA) on a computer 
equipped with an NVIDIA GeForce RTX 2080 Ti GPU. 

A B

C D

T1-weighted MRI T1-weighted MRILow-dose PET Low-dose PETFull-dose PET Full-dose PET

Figure 4 Training pair examples of four typical slices used in our experiment. Slices A and B are from the upper regions of the head, while C 
and D are from the lower regions. PET, positron emission tomography; MRI, magnetic resonance imaging.
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Specifically, we applied the Adam optimizer with fixed 
momentum parameters β1=0.5 and β2=0.999. A total of 100 
epochs were used for training. The learning rate was set 
to 0.002, and the batch size was set to 16. The loss weight 
ratio between L1 and GAN (λ1:λ2 and λ3:λ4 in Eq. [6]) was 
1:200, and the loss weight ratio for bias loss (λp:λα in Eq. [6]) 
was set from 0.1:1 to 10:1. During training, we set the low-
dose PET as the primary task’s conditional input and T1-
weighed MRI as the secondary task’s conditional input.

The main quantitative indexes we used to evaluate the 
denoising effect and image quality were peak signal-to-
noise ratio (PSNR) and contrast noise ratio (CNR), and the 
indexes for similarity from synthesized PET images to full-
dose PET were normalized mean square error (NMSE) 
and structural similarity (SSIM). Given an n×n noise-free 
monochrome image I and its noisy or synthesized image K, 
the PSNR was defined as:

( )
1 1 22 2

10 , ,
0 0

10 log
n n

I i j i j
i j

PSNR n MAX I K
− −

= =

 
= − 

 
∑∑  [7]

where MAXI is the maximum pixel value of the image. 
Here, the pixels are represented using eight bits per sample, 
which is 255. Ii,j and Ki,j represent the pixel values in I and K.

The NMSE was defined as:

( )
1 1 1 12 2

, , ,
0 0 0 0

n n n n

i j i j i j
i j i j

NMSE I K I
− − − −

= = = =

= −∑∑ ∑∑  [8]

The SSIM index was defined as:

( ) ( )( ) ( )( )2 2 2 2
1 2 1 2, 2 2I K I K I K I KSSIM I K c c c cµ µ σ σ µ µ σ σ = + + + + + +   [9]

where μI and μK are the means of images I and K, σI and 

σK are the standard deviations of images I and K, c1=(k1L)2, 
c2=(k2L)2, and L is the dynamic range of the pixel values (here, 
255); k1=0.01 and k2=0.03 by default.

The CNR was defined as:

( ), i k refCNR I K m m SD= −  [10]

where mi and mk represent the mean intensity inside image 
I and K region of interest (ROI), respectively, and SDref was 
the pixel-level standard deviation inside the reference’s ROI. 
In this study, the ROI was extended to be the whole image.

The contribution of each made-up part of the bi-task 
was analyzed by conducting an ablation experiment. A 
comparative experiment with U-net, c-GAN, and M-c-
GAN was carried out to study the advantage of the 
proposed method. The synthesized result with a higher 
PSNR and SSIM and lower NMSE and CNR values was 
treated as being higher quality. Visual examples and an error 
map were also used to present the quality of synthesized 
images.

Ablation experiment
This stage of the experiment focused on two main 
contributions of bi-task-based bi-c-GAN: the effects of 
training losses and the effects of conditional inputs. We 
discussed the effects of conditional input, and the effects 
of the primary task’s different conditional inputs were also 
considered. The quantitative metrics of the synthesized 
results from each involved experiment are shown in  
Table 1. The presented quantitative values in Table 1 were 
based on each experiment’s best result. The first column 
of Table 1 indicates the trained network’s structure in 

Table 1 Details and quantitative metrics of networks involved in the ablation experiment

Network structure Conditional input Loss function PSNR (dB) NMSE (%) SSIM CNR (%)

Low dose – – 18.50 1.80 0.862 26.1

U-net PET lL1 25.44 0.37 0.976 6.13

U-net MRI lL1 21.23 0.96 0.924 3.95

Bi-U-net PET* & MRI lL1+Lbias 25.86 0.33 0.976 6.68

c-GAN PET lL1+LGAN 29.94 0.15 0.990 0.61

M-c-GAN PET & MRI lL1+LGAN 30.03 0.13 0.991 2.99

Bi-c-GAN PET* & MRI lL1+Lbias+LGAN 32.07 0.08 0.994 0.67

Bi-c-GAN PET & MRI* lL1+Lbias+LGAN 25.74 0.34 0.976 0.8

The best results are marked in bold. *, treated as the primary task’s conditional input. c-GAN, conditional generative adversarial network; 
M-c-GAN, multiple c-GAN; Bi-c-GAN, bi-task c-GAN; PSNR, peak signal-to-noise ratio; PET, positron emission tomography; MRI, 
magnetic resonance imaging; NMSE, normalized square error of the mean; SSIM, structural similarity; CNR, contrast noise ratio.
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which U-net used a skip connection only, bi-U-net means 
a combination of bi-task and skip connection, c-GAN 
combines skip connection, and GAN, and bi-c-GAN is a 
combination of skip connection, GAN, and bi-task. Further, 
a multiple conditional input using MRI as an additional 
input for a conditional GAN (M-c-GAN) was also trained. 
As it presents, the bi-c-GAN structural with PET images as 
its primary task’s conditional input when training with the 
combined loss achieved the best quantitative values in three 
indexes and the second best in another.
The contribution of bias loss
As shown in Figure 5, PSNR was selected to illustrate the 
effects of different loss combinations along the training 
stage. When training with only L1 loss, overfitting occurred 
around epochs 20 to 40. When training combined only 
bias loss and L1 loss, the overfitting situation was slightly 
improved. When training combined only GAN loss and 
L1 loss, the overfitting situation was largely improved, but 
slow training speed and fluctuations were caused. When the 
bias loss, L1 loss, and GAN loss were combined, the PSNR 
was greatly improved, and the speed of training was also 
improved, but the effect of fluctuations was also inherent. 
Above all, the combination of the L1 loss, GAN loss, and 
bias loss achieved the highest PSNR values despite the 
uncertainty it could bring.

The selection of bias loss weight (λp:λs) values had a 
large effect on the trained model. Some values led to a 

better appearance, while others had no effect or even a 
negative effect. We focused on studying the effects of 
different bias loss weights on model bi-c-GAN’s test results. 
Letting kps=λp:λs, quantitative results and visual examples 
using different kps (0, 0.01, 0.1, 1, 10, and 100) can be seen 
in Figure 6A and 6B, in which kps acts as a baseline for 
comparisons. In Figure 6A, we found that when kps equals 0.1 
and 10, the model achieved a better appearance with higher 
PSNR and SSIM values. Negative transfer occurred when 
kps was very large. As extreme examples, in Figure 6B, the 
synthesized result of kps =10 had more details and a higher 
black and white contrast, and the visual image of kps =100 
was the lowest quality. 
The contribution of conditional inputs
There were four kinds of conditional inputs when training: 
single-task-based model (like U-net and c-GAN) using 
low-dose PET modality as the conditional input, single-
task-based model using MRI modality as the conditional 
input, a bi-task-based structure using low-dose PET 
modality as the primary task’s conditional input and MRI 
modality as the secondary task’s conditional input, and a bi-
task-based structure using MRI modality as the primary 
task’s conditional input and low-dose PET modality as 
the secondary task’s conditional input. Using different 
modalities as conditional inputs when training affected the 
quality of results.

Figure 7 shows visual examples and error maps of one 
axial slice’s tested results using four selected models. These 
selected models represent the above-mentioned four kinds 
of conditional input in which c-GAN was used to represent 
a single task’s case. First, as shown in Figure 7A, in which 
both use the c-GAN based model, the one using the MRI 
modal as a conditional input generated fewer details than 
the one using PET as the conditional input, but neither 
generated more details than bi-c-GAN-based methods. 
Further, using MRI as c-GAN’s conditional input or the 
primary task’s conditional input of bi-c-GAN influenced 
the generated results. For example, in the ROI shown on 
the right downside of each image, there should be two sets 
of black areas, but MRI-based methods can only clearly 
generate one set of black areas with the incorrect size and 
position. A more overall view of the difference between the 
synthesized images and the ground truth can be shown in 
Figure 7B, the error maps, and three selected ROI. Again, 
using PET as conditional input of bi-c-GAN presented 
fewer differences from the original full-dose PET image 
than all others with no red area and more blue areas. From 
ROIs, we again found that methods with MRI as conditional 
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Figure 5 Comparison of the validation process using different loss 
functions, PSNR vs. training epoch. The larger the PSNR value, 
the better denoising effect one method can achieve. Proposed 
combined loss is “L1+GAN+bias loss”. PSNR, peak signal-to-noise 
ratio; GAN, generative adversarial network.
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inputs presented a distorted synthesis. Therefore, it was 
necessary to treat PET as the primary task’s conditional 
input when training the bi-c-GAN.

Results

The statistical results from four-fold cross-validation using 
U-net, c-GAN, M-c-GAN, and the proposed bi-c-GAN 
are presented here. The PSNR, NMSE, SSIM, and CNR 
were used as quantitative matrixes to evaluate their effects 
on improving the quality of 5% low-dose PET images. 
Another hold-out validation was used to test the effects 
of the proposed method on other low-dose PETs of 2.5% 
and 10%. In the comparative results, the superiority of the 
proposed method over traditional methods was highlighted 
mainly in three aspects: it had better quantitative 
achievements, it was better in improving some specific 
slices, and it was more efficient in improving a wider range 
of other lose-dose PET of 2.5% and 10%.

Cross-validation

During four-fold cross-validation, 64 datasets were 
separated into four folds. For each time, three folds were 
treated as a training set and another one as a test set. The 
process was repeated four times to yield an overall statistical 

result. Figure 8 and Table 2 present the detailed comparing 
results from which we found that the proposed method 
achieved the best mean (± standard deviation) values and 
median (Q1/Q3) values in all selected quantitative metrics. 
The Wilcoxon signed-rank test was used to compare all 
image quality metrics (95% confidence interval). For 
example, PSNR was improved by bi-c-GAN from low-
dose PET’s 17.36±2.85 dB to 27.2±2.12 dB significantly 
(P<0.001), compared with U-net 25.98±2.17 dB (P=0.101), 
c-GAN 26.19±2.41 dB (P=0.025)  and M-c-GAN 
26.21±2.42 dB (P=0.145). Considering each slice’s initial 
state is different, we proposed improvement ratios to make 
comparisons easy, namely, the improvement ratio of PSNR 
(PIR), NMSE (NIR), SSIM (SIR), and CNR (CIR). These 
ratios are defined in Eq. [11]:

( ) 11 100%i i i
i

i

M LP
r

LP
− −

= − ⋅  [11]

in which M represents model’s synthesized result, LP 
represents low-dose PET, i ranging from 1 to 4 is the index 
of four components in the metric set (1: PSNR, 2: NMSE, 
3: SSIM, 4: CNR). By calculating the improvement ratio of 
each above, results were presented in Table 2, which shows 
that the average PIR of proposed bi-c-GAN was improved 
by 6.7–7.3% compared with the other three methods. NIR 
also improved by 1.3–1.8%, SIR improved by 0.6–0.7%, 

Figure 6 The effects of different bias loss weights on synthesized results. (A) The quantitative comparisons of PSNR and SSIM when using 
different bias loss weighs (kps), the chosen kps values here are 0, 0.01, 0.1, 1, 10 and 100. (B) Visual examples of one slice’s synthesized results 
when using these different bias loss weighs. The first column contains input (5% low-dose PET image) and label (full-dose PET image), and 
other columns are synthesized images in which the first row appears better than the second row. In two regions of interest which are marked 
in blue arrows, bad results indicate a lack of details. PSNR, peak signal-to-noise ratio; SSIM, structural similarity; PET, positron emission 
tomography.
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Figure 7 The effects of different conditional inputs on synthesized results. (A) Visual examples and their ROIs of one axial slice’s generating 
results using different kinds of conditional inputs, the first image is 5% low dose PET image act as original state of PET here, the last image 
is full dose PET image act as ground truth here, other images here are synthesized results using different models, from left to right: c-GAN 
conditioned on MRI (c-GAN+MRI); c-GAN conditioned on PET (c-GAN+PET); bi-c-GAN with primary task conditioned on MRI (bi-
c-GAN on MRI); bi-c-GAN with primary task conditioned on PET (bi-c-GAN on PET); a ROI is selected from the right upside of the 
image, which contains two sets of black matters. (B) Error maps of corresponding images in (A). The differences have been normalized to 
(0, 1), as depicted by the color bars in the right side of error map; blue means a small difference, and red means a large difference. ROI 1 is 
a large region in the middle of image which marked by red boxes; ROI 2 and 3 are small regions in images’ top and bottle which are marked 
by red arrows. PERT, positron emission tomography; ROI, region of interest; c-GAN, conditional-generative adversarial network; Bi-c-
GAN, bi-task c-GAN; PET, positron emission tomography; MRI, magnetic resonance imaging.

1.00

0.95

0.90

0.85

0.80

0.4

0.3

0.2

0.1

0.0

30

25

20

15

6

4

2

0

PSNR (dB) NMSE, %

Low-dose PET U-net c-GAN M-c-GAN bi-c-GAN

SSIM CNR
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to compare in the beginning of each image. PSNR, peak signal-to-noise ratio; NMSE, normalized square error of the mean; SSIM, 
structural similarity; CNR, contrast noise ratio; PET, positron emission tomography; c-GAN, conditional generative adversarial network; 
M-c-GAN, multiple c-GAN; Bi-c-GAN, bi-task c-GAN.
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and CIR improved by 8–8.9%.
Figure 9 illustrates visual examples of different methods’ 

effects in four selected slices (selected from up to low 
regions of the head axial). Both U-net and c-GAN were 
used to compare the proposed bi-c-GAN. Blue squares 
indicate three ROIs, and the detail is at the bottom of 
each image. Visual examples showed that the bi-c-GAN-
based model presented more detail than the other two 
methods, especially in three ROIs. For example, in ROI 
2 of slice (4), the proposed bi-c-GAN model synthesized 
the clearest black matter sets and the compared methods 
showed a lack of details. Table 3 shows that PIR and SIR 
were selected to study the bi-c-GAN’s effect on four 
selected slices over U-net and c-GAN based on the cross-
validation experiment; the overall improvement ratio of 
each was also presented to act as a reference. From Table 3, 
besides showing the advantage of the proposed bi-c-GAN, 
we also noticed that the effect of the proposed bi-c-GAN 
on the upper parts of the head (slice 1 plus slice 2) was more 
obvious than the effect on the lower parts of the head (slice 

3 plus slice 4). The bi-c-GAN’s average PIR in the upper 
parts was 12.9–17.4% higher than that of U-net and c-GAN 
compared with its improvement in lower parts (9.2–16.1%). 
The bi-c-GAN’s average SIR also achieved an improvement 
of 1.1–1.9% in the upper parts over U-net and c-GAN 
compared with the lower parts’ improvement of 0.9–1.1%. 
All these indicated that bi-c-GAN’s effect on improving 
low-dose PET image quality was more obvious in the upper 
areas of the head.

Hold-out validation result

In the hold-out validation, all 64 datasets were used for 
training, and another 3 datasets were used for testing. 
During the hold-out validation, the wider effect of our 
proposed method compared to the other two methods 
was analyzed. The trained models (trained with 5% low-
dose PET as conditional input of bi-c-GAN’s primary task) 
were tested not only in 5% low-dose PET images but also 
in 2.5% and 10% low-dose PET images. The statistical 

Table 2 Comparison of image quality metrics for U-net, c-GAN, M-c-GAN, and the proposed method

U-net c-GAN M-c-GAN Proposed

PSNR (dB)

Median (Q1/Q3) 26.4 (24.8/27.5) 26.5 (24.9/28.0) 26.6 (24.6/28.1) 27.5 (26.1/28.6)

PIR (mean ± SD) 11.51%±5.82% 11.69%±5.12% 11.65%±5.10% 13.17±5.84%

P value 0.101 0.025 0.145 <0.001

NMSE (%)

Median (Q1/Q3) 0.309 (0.242/0.445) 0.301 (0.209/0.443) 0.299 (0.210/0.463) 0.242 (0.186/0.340)

NIR (mean ± SD) 70.31%±91.26% 73.55%±86.84% 74.82%±76.02% 81.66%±46.35%

P value <0.001 <0.001 <0.001 0.016

SSIM

Median (Q1/Q3) 0.981 (0.974/0.986) 0.981 (0.973/0.987) 0.982 (0.974/0.986) 0.985 (0.980/0.987)

SIR (mean ± SD) 26.05%±20.46% 26.02%±19.84% 26.02±19.81% 26.72%±20.69%

P value <0.001 <0.001 <0.001 0.079

CNR (%)

Median (Q1/Q3) 5.69 (2.64/10.9) 5.79 (2.75/11.0) 6.15 (2.61/11.1) 3.88 (1.72/7.66)

CIR (mean ± SD) 71.76%±49.81% 72.41%±50.34% 72.62%±46.70% 80.60%±32.90%

P value 0.277 0.177 0.526 0.214

P value, Wilcoxon signed-rank test in which significance level was set to be 5% and proposed bi-c-GAN was compared with U-net, c-GAN, 
M-c-GAN and low-dose PET. Q1/Q3, 25% and 75% percentile values of quartile. PSNR, peak signal to noise ratio; NMSE, normalized 
mean square error; SSIM, structural similarity; CNR, contrast noise ratio; c-GAN, conditional generative adversarial network; M-c-GAN, 
multiple c-GAN; PIR, improvement ratio of PSNR; SIR, improvement ratio of SSIM.
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results of different methods’ PIR and SIR (mean and 
standard deviation) values and one slice’s visual examples 
are presented in Figure 10. The result showed that the bi-c-
GAN-based model trained to improve 5% of low-dose PET 
images’ quality could maintain its advantage and achieved 
a stable performance in improving 2.5% and 10% of low-
dose PET images. At the same time, the performances of 
other methods tended to vary. For example, Figure 10A 
shows that the bi-c-GAN presented good preferences for 

PIR, with an 85.78%±15.22% improvement in the 2.5% 
low-dose PET compared with U-net’s 81.32%±12.02% 
(P=0.027) and c-GAN’s 74.72%±6.73% (P=0.019). The 
bi-c-GAN showed an average improvement ratio of 4.46–
6.60%, with a 69.89%±24.31% improvement in the 5% 
low-dose PET compared with U-net’s 59.22%±25.82% 
(P=0.003) and c-GAN’s 60.70%±16.70% (P=0.004), and an 
average improvement ratio of 9.19–10.67%. The bi-c-GAN 
also showed a 20.03%±11.43% improvement in 10% low-

Figure 9 Visual examples of the synthesized PET images by using different methods. Column (A) is T1-weighted MRI; column (B) is 5% 
low-dose PET images; columns (C), (D) and (E) are synthesized results from U-net, c-GAN, and the proposed method; the last column (F) 
is the full-dose PET image. Slice 1 to slice 4 are four selected axial parts of the head as shown in Figure 4. Three ROI are also listed in the 
bottom of slice 2 and slice 4. In ROI 1, a blue arrow was also used to mark one set of black matter. ROI, region of interest; MRI, magnetic 
resonance imaging; PET, positron emission tomography.
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dose PET compared with U-net’s 5.15%±8.56% (P=0.031) 
and c-GAN’s 20.01%±8.59% (no significance) with an 
average improvement ratio of 0.01–14.88%. The advantage 
is also shown in Figure 10C; when compared with the 
proposed method (column d’s images), synthesized results 
and their corresponding selected ROIs of U-net (column b’s 
images) and c-GAN (column c’s images) presented a lack of 
details in improving 2.5% and 5% low-dose PET images or 
overfitting in improving 10% low-dose PET images.

Discussion

In this paper, bi-task-based bi-c-GAN was trained 
successfully, demonstrating a high denoising and image 
quality improving ability. As explained in Methods section, 
bi-c-GAN is a novel end-to-end encoder-decoder network 
structure combining the strength of skip connection, 
conditional input, GAN, and bi-task structure; to make all 
parts cooperate well, a novel combined loss was used in 
the training stage. In the ablation experiment, we found 
that the combined loss contributed to bi-c-GAN’s training 
by alleviating overfitting and improving training speed 
though it also could bring instability. Moreover, if the 
wrong bias loss’s weight was chosen when training using 
combined loss, a negative transfer occurred. To avoid this, 
the bias loss’s weight should not be too large, resulting in 
negative transferring or too small, which will have little 
effect. Further, conditional input acted differently when 
contributing to the training result. Although using T1-

weighed MRI can provide an inductive bias that benefits the 
training process, it is not useful when training using MRI 
as conditional input or as primary task’s conditional input 
directly because it tends to achieve comparatively lower 
PSNR and SSIM values, higher NMSE, and CNR values 
as shown in Table 1. It also has a poor image detail in visual 
examples, as shown in Figure 7. A potential explanation 
for this is that although T1-weighted MRI images provide 
extra information, it is still very different from PET images’ 
shape and pattern. These differences may remain in the 
synthesized PET images and then cause distortions in the 
synthesized PET images.

In the statistical analysis, a four-fold cross-validation was 
first carried out and tested in 5% low-dose PETs. The bi-
c-GAN-based model outperformed U-net, c-GAN, and 
M-c-GAN-based models with significant results. In the 
evaluation shown in Figure 8 and Table 2, bi-c-GAN’s has 
a better denoising ability, which was concluded by higher 
PSNR values and lower CNR values. These values were 
more similar to full-dose PET, as indicated by a higher 
SSIM values and lower NMSE values. Visual examples also 
showed that bi-c-GAN had more detailed and less distorted 
results. Moreover, when improving upper slices of the head 
axial, bi-c-GAN showed more potential, with a higher 
improvement ratio than the compared methods. This 
indicates bi-c-GAN’s ability to improve the quality of PET 
images for these regions. In the hold-out validation, the 
proposed bi-c-GAN and two comparing models were tested 
on PET images of various low doses. The statistical results 

Table 3 The statistical comparison of synthesized results from slices involved in Figure 9. PIR and SIR of U-net, c-GAN, and the proposed  
bi-c-GAN were presented. Overall achievements acted as references

Models Slice 1 Slice 2 Slice 3 Slice 4 Overall

U-net

PIR (%) 59.8±19.9 60.0±18.6 46.7±27.0 48.0±32.1 53.5±25.8

SIR (%) 29.8±19.6 25.8±20.2 21.3±17.7 27.4±23.0 26.1±20.5

c-GAN

PIR (%) 58.2 ±14.7 57.1±12.3 50.6±24.8 51.0±30.7 54.1±22.3

SIR (%) 29.5±18.7 25.3±19.2 21.7±17.2 27.7±22.7 26.0±19.9

Bi-c-GAN

PIR (%) 64.9±19.4 67.8±23.8* 53.5±25.7 57.3±30.0 60.8±25.7

SIR (%) 30.2±20.0* 26.5±21.2 21.9±17.6 28.3±22.8 26.7±20.7

Values are presented in the format of mean ± stand deviation. *, the highest improvement ratio. c-GAN, conditional generative adversarial 
network; Bi-c-GAN, bi-task c-GAN.



Quantitative Imaging in Medicine and Surgery, Vol 12, No 12 December 2022 5339

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(12):5326-5342 | https://dx.doi.org/10.21037/qims-22-116

indicated that bi-c-GAN could extend its advantage and 
effect to improve the quality of 2.5% and 10% of low-dose 
PET images, demonstrating its more general effect. This 
can be very useful in a practical situation since a reduced 
dose will not be an exact amount.

Improving ultra-low-dose PET image quality with deep 

learning-based methods can be timesaving and financially 
affordable. Our proposed bi-c-GAN has narrowed the gap 
in realizing this potential. However, some limitations of 
bi-c-GAN still exist. First, the bi-task-based structure is 
very large, and training requires extra resources. Further, 
the performance of synthesized results is influenced by the 
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Figure 10 Hold-out validation’s statistical results and visual examples. (A) and (B) are statistical results (mean ± standard deviation) from 
comparisons using U-net, c-GAN, and the proposed method to improve different initial low-dose PET images of 2.5%, 5%, and 10%: (A) 
PIR; (B) SIR. The proposed method is compared with two other methods. * indicates a significant result (P<0.05). (C) A visual example is 
a visual example of different methods’ synthesized results using different levels’ low dose PET inputs: (a) low-dose PET inputs of 2.5%, 
5% and 10%; (b) U-net; (c) c-GAN; (d) proposed method; (e) full-dose PET. Three regions of interests are marked by blue boxes. PIR, 
improvement ratio of peak signal-to-noise ratio; SIR, improvement ratio of structural similarity; PET, positron emission tomography; c-GAN, 
conditional generative adversarial network.
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combined loss’s weights. Finally, the efficiency of bi-c-GAN 
needs to be tested in other body parts or a whole-body.

Conclusions

This paper trialed a novel method called bi-c-GAN 
to improve the quality of ultra-low-dose PET images 
and reduce patients’ radiation exposure burden. The 
experimental results from 67 real patients demonstrated the 
advantage of the proposed method over compared methods 
in denoising effects, the similarity to full-dose PET, more 
detail and less distortion in synthesized images, and wider 
effects. Future work will focus on optimizing our structure 
and attempting to apply it in a whole-body scenario.

Acknowledgments

Funding: This work was supported by the National Natural 
Science Foundation of China (No. 81871441), the Shenzhen 
Excellent Technological Innovation Talent Training Project 
of China (No. RCJC20200714114436080), the Natural 
Science Foundation of Guangdong Province in China 
(No. 2020A1515010733), and the Guangdong Innovation 
Platform of Translational Research for Cerebrovascular 
Diseases of China.

Footnote

Reporting Checklist: The authors have completed the MDAR 
reporting checklist. Available at https://qims.amegroups.
com/article/view/10.21037/qims-22-116/rc

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-116/
coif). JY is the employee of the Shanghai United Imaging 
Healthcare. HW, ZH and NZ are employees of the 
United Imaging Research Institute of Innovative Medical 
Equipment. The other authors have no conflicts of interest 
to declare. 

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. Our study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). Ethical approval (Sun Yat-sen University 
Cancer Center Guangzhou, China) was obtained, and 

the informed consent requirement was waived for this 
retrospective analysis.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Catana C. The Dawn of a New Era in Low-Dose PET 
Imaging. Radiology 2019;290:657-8.

2. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi 
RD. Total-Body PET: Maximizing Sensitivity to Create 
New Opportunities for Clinical Research and Patient 
Care. J Nucl Med 2018;59:3-12.

3. Karakatsanis NA, Fokou E, Tsoumpas C. Dosage 
optimization in positron emission tomography: state-of-
the-art methods and future prospects. Am J Nucl Med Mol 
Imaging 2015;5:527-47.

4. Hu Z, Xue H, Zhang Q, Gao J, Zhang N, Zou S, Teng 
Y, Liu X, Yang Y, Liang D, Zhu X, Zheng H. DPIR-
Net: Direct PET image reconstruction based on the 
Wasserstein generative adversarial network. IEEE Trans 
Radiat Plasma Med Sci 2020;5:35-43.

5. Zeng T, Gao J, Gao D, Kuang Z, Sang Z, Wang X, Hu 
L, Chen Q, Chu X, Liang D, Liu X, Yang Y, Zheng 
H, Hu Z. A GPU-accelerated fully 3D OSEM image 
reconstruction for a high-resolution small animal PET 
scanner using dual-ended readout detectors. Phys Med 
Biol 2020;65:245007.

6. Zhang W, Gao J, Yang Y, Liang D, Liu X, Zheng H, Hu Z. 
Image reconstruction for positron emission tomography 
based on patch-based regularization and dictionary 
learning. Med Phys 2019;46:5014-26.

7. Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, Yang Y, Zhu X, 
Liang D, Zheng H. Obtaining PET/CT images from non-
attenuation corrected PET images in a single PET system 
using Wasserstein generative adversarial networks. Phys 
Med Biol 2020;65:215010.

8. Kang J, Gao Y, Shi F, Lalush DS, Lin W, Shen D. 
Prediction of standard-dose brain PET image by using 
MRI and low-dose brain 18FFDG PET images. Med Phys 

https://qims.amegroups.com/article/view/10.21037/qims-22-116/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-116/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-116/coif
https://qims.amegroups.com/article/view/10.21037/qims-22-116/coif
https://qims.amegroups.com/article/view/10.21037/qims-22-116/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Quantitative Imaging in Medicine and Surgery, Vol 12, No 12 December 2022 5341

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(12):5326-5342 | https://dx.doi.org/10.21037/qims-22-116

2015;42:5301-9.
9. Wang Y, Zhang P, An L, Ma G, Kang J, Shi F, Wu X, 

Zhou J, Lalush DS, Lin W, Shen D. Predicting standard-
dose PET image from low-dose PET and multimodal MR 
images using mapping-based sparse representation. Phys 
Med Biol 2016;61:791-812.

10. Zhang Q, Gao J, Ge Y, Zhang N, Yang Y, Liu X, Zheng 
H, Liang D, Hu Z. PET image reconstruction using a 
cascading back-projection neural network. IEEE J Sel Top 
Signal Process 2020;14:1100-11.

11. Qi J. Theoretical evaluation of the detectability of random 
lesions in Bayesian emission reconstruction. Inf Process 
Med Imaging 2003;18:354-65.

12. Wangerin KA, Ahn S, Wollenweber S, Ross SG, Kinahan 
PE, Manjeshwar RM. Evaluation of lesion detectability in 
positron emission tomography when using a convergent 
penalized likelihood image reconstruction method. J Med 
Imaging (Bellingham) 2017;4:011002.

13. Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Nye JA, Yang 
X. Machine learning in quantitative PET: A review of 
attenuation correction and low-count image reconstruction 
methods. Phys Med 2020;76:294-306.

14. Häggström I, Schmidtlein CR, Campanella G, Fuchs TJ. 
DeepPET: A deep encoder-decoder network for directly 
solving the PET image reconstruction inverse problem. 
Med Image Anal 2019;54:253-62.

15. Olveres J, González G, Torres F, Moreno-Tagle JC, 
Carbajal-Degante E, Valencia-Rodríguez A, Méndez-
Sánchez N, Escalante-Ramírez B. What is new in 
computer vision and artificial intelligence in medical 
image analysis applications. Quant Imaging Med Surg 
2021;11:3830-53.

16. Greco F, Mallio CA. Artificial intelligence and abdominal 
adipose tissue analysis: a literature review. Quant Imaging 
Med Surg 2021;11:4461-74.

17. Caruana R. Multitask learning. Mach Learn 1997;28:41-75.
18. Ruder S. An overview of multi-task learning in deep neural 

networks. arXiv preprint arXiv:05098 2017.
19. Krizhevsky A, Sutskever I, Hinton GE. ImageNet 

classification with deep convolutional neural networks. In: 
Pereira F, Burges CJ, Bottou L, Weinberger KQ. Editors. 
Advances in Neural Information Processing Systems 25 
(NIPS 2012). 2012;25:1097-105.

20. Gong K, Guan J, Liu CC, Qi J. PET Image Denoising 
Using a Deep Neural Network Through Fine Tuning. 
IEEE Trans Radiat Plasma Med Sci 2019;3:153-61.

21. Wang YJ, Baratto L, Hawk KE, Theruvath AJ, Pribnow A, 
Thakor AS, Gatidis S, Lu R, Gummidipundi SE, Garcia-

Diaz J, Rubin D, Daldrup-Link HE. Artificial intelligence 
enables whole-body positron emission tomography scans 
with minimal radiation exposure. Eur J Nucl Med Mol 
Imaging 2021;48:2771-81.

22. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image 
reconstruction by domain-transform manifold learning. 
Nature 2018;555:487-92.

23. Chen KT, Toueg TN, Koran MEI, Davidzon G, Zeineh 
M, Holley D, Gandhi H, Halbert K, Boumis A, Kennedy 
G, Mormino E, Khalighi M, Zaharchuk G. True ultra-
low-dose amyloid PET/MRI enhanced with deep learning 
for clinical interpretation. Eur J Nucl Med Mol Imaging 
2021;48:2416-25.

24. Ronneberger O, Fischer P, Brox T. editors. U-net: 
Convolutional networks for biomedical image 
segmentation. International Conference on Medical 
image computing and computer-assisted intervention; 
Springer; 2015.

25. Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. 
editors. Context encoders: Feature learning by inpainting. 
Proceedings of the IEEE conference on computer vision 
and pattern recognition; 2016.

26. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, 
Warde-Farley D, Ozair S, Courville A, Bengio Y. 
editors. Generative adversarial nets. Advances in neural 
information processing systems; 2014.

27. Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, Lin W, 
Wu X, Zhou J, Shen D. 3D Auto-Context-Based Locality 
Adaptive Multi-Modality GANs for PET Synthesis. IEEE 
Trans Med Imaging 2019;38:1328-39.

28. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image 
translation with conditional adversarial networks. 2017 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2017:5967-76.

29. Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu 
X, Zhou J, Shen D, Zhou L. 3D conditional generative 
adversarial networks for high-quality PET image 
estimation at low dose. Neuroimage 2018;174:550-62.

30. Mirza M, Osindero S. Conditional generative adversarial 
nets. arXiv preprint arXiv:05098 2014.

31. Wang TC, Liu MY, Zhu JY, Tao A, Kautz J, Catanzaro 
B. High-resolution image synthesis and semantic 
manipulation with conditional gans. 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 
2018:8798-807.

32. Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, Zheng 
K, Wu Z, Fu L, Xu B, Zhu Z, Tian J, Liu H, Li Q. PET 
image denoising using unsupervised deep learning. Eur J 



Sun et al. Bi-task based low-dose PET image quality improving5342

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(12):5326-5342 | https://dx.doi.org/10.21037/qims-22-116

Nucl Med Mol Imaging 2019;46:2780-9.
33. Onishi Y, Hashimoto F, Ote K, Ohba H, Ota R, Yoshikawa 

E, Ouchi Y. Anatomical-guided attention enhances 
unsupervised PET image denoising performance. Med 
Image Anal 2021;74:102226.

34. Chen KT, Gong E, de Carvalho Macruz FB, Xu J, 
Boumis A, Khalighi M, Poston KL, Sha SJ, Greicius MD, 
Mormino E, Pauly JM, Srinivas S, Zaharchuk G. Ultra-
Low-Dose 18F-Florbetaben Amyloid PET Imaging 
Using Deep Learning with Multi-Contrast MRI Inputs. 
Radiology 2019;290:649-56.

35. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans 
Knowl Data Eng 2009;22:1345-59.

36. Patel VM, Gopalan R, Li R, Chellappa R. Visual domain 
adaptation: A survey of recent advances. IEEE Signal 
Process Mag 2015;32:53-69.

37. Hajiramezanali E, Dadaneh SZ, Karbalayghareh A, Zhou 
M, Qian X. Bayesian multi-domain learning for cancer 
subtype discovery from next-generation sequencing 
count data. Advances in Neural Information Processing 
Systems; 2018.

38. Kuga R, Kanezaki A, Samejima M, Sugano Y, Matsushita 
Y. Multi-task learning using multi-modal encoder-decoder 
networks with shared skip connections. Proceedings of 
the IEEE International Conference on Computer Vision 
Workshops; 2017.

39. Eitel A, Springenberg JT, Spinello L, Riedmiller M, 
Burgard W. Multimodal deep learning for robust RGB-D 
object recognition. 2015 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), 
2015: 681-7.

Cite this article as: Sun H, Jiang Y, Yuan J, Wang H, Liang D,  
Fan W, Hu Z, Zhang N. High-quality PET image synthesis 
from ultra-low-dose PET/MRI using bi-task deep learning. 
Quant Imaging Med Surg 2022;12(12):5326-5342. doi: 
10.21037/qims-22-116


