
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(1):80-93 | https://dx.doi.org/10.21037/qims-22-470

Original Article

Deep learning-assisted classification of calcaneofibular ligament 
injuries in the ankle joint

Ming Ni1^, Yuqing Zhao1, Xiaoyi Wen2, Ning Lang1, Qizheng Wang1, Wen Chen1, Xiangzhu Zeng1, 
Huishu Yuan1

1Department of Radiology, Peking University Third Hospital, Beijing, China; 2Institute of Statistics and Big Data, Renmin University of China, 

Beijing, China

Contributions: (I) Conception and design: M Ni, Y Zhao, H Yuan; (II) Administrative support: H Yuan, N Lang; (III) Provision of study 

materials or patients: M Ni, W Chen, Q Wang, X Zeng; (IV) Collection and assembly of data: M Ni, Y Zhao, W Chen, Q Wang, X Zeng;  

(V) Data analysis and interpretation: M Ni, X Wen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Huishu Yuan, MD. Department of Radiology, Peking University Third Hospital, No.49 Huayuan North Road, Haidian District, 

Beijing 100191, China. Email: huishuy@bjmu.edu.cn.

Background: The classification of calcaneofibular ligament (CFL) injuries on magnetic resonance imaging 
(MRI) is time-consuming and subject to substantial interreader variability. This study explores the feasibility 
of classifying CFL injuries using deep learning methods by comparing them with the classifications of 
musculoskeletal (MSK) radiologists and further examines image cropping screening and calibration methods.
Methods: The imaging data of 1,074 patients who underwent ankle arthroscopy and MRI examinations 
in our hospital were retrospectively analyzed. According to the arthroscopic findings, patients were divided 
into normal (class 0, n=475); degeneration, strain, and partial tear (class 1, n=217); and complete tear 
(class 2, n=382) groups. All patients were divided into training, validation, and test sets at a ratio of 8:1:1. 
After preprocessing, the images were cropped using Mask region-based convolutional neural network 
(R-CNN), followed by the application of an attention algorithm for image screening and calibration and the 
implementation of LeNet-5 for CFL injury classification. The diagnostic effects of the axial, coronal, and 
combined models were compared, and the best method was selected for outgroup validation. The diagnostic 
results of the models in the intragroup and outgroup test sets were compared with those results of 4 MSK 
radiologists of different seniorities.
Results: The mean average precision (mAP) of the Mask R-CNN using the attention algorithm for the 
left and right image cropping of axial and coronal sequences was 0.90–0.96. The accuracy of LeNet-5 for 
classifying classes 0–2 was 0.92, 0.93, and 0.92, respectively, for the axial sequences and 0.89, 0.92, and 0.90, 
respectively, for the coronal sequences. After sequence combination, the classification accuracy for classes 
0–2 was 0.95, 0.97, and 0.96, respectively. The mean accuracies of the 4 MSK radiologists in classifying the 
intragroup test set as classes 0–2 were 0.94, 0.91, 0.86, and 0.85, all of which were significantly different 
from the model. The mean accuracies of the MSK radiologists in classifying the outgroup test set as classes 
0–2 were 0.92, 0.91, 0.87, and 0.85, with the 2 senior MSK radiologists demonstrating similar diagnostic 
performance to the model and the junior MSK radiologists demonstrating worse accuracy.
Conclusions: Deep learning can be used to classify CFL injuries at similar levels to those of MSK 
radiologists. Adding an attention algorithm after cropping is helpful for accurately cropping CFL images.
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Introduction

An ankle sprain is a common sports injury, and the inversion 
force of the ankle with the foot in plantar flexion is a 
common cause of ankle ligament injuries (1). Anterior 
talofibular ligament (ATFL) and calcaneofibular ligament 
(CFL) injuries often occur together, with approximately 80% 
of ankle sprains involving the ATFL and 20% involving the 
CFL (2). Due to anatomical variability and the thin ligament 
and complex anatomy of the CFL (3), CFL injuries are 
prone to missed diagnosis or misdiagnosis (4). Moreover, the 
need for surgical repair is controversial (5), with an expert 
consensus stating that 80% of surgeons choose to repair CFL 
injuries (6). The CFL participates in forming the posterior 
fibulotalocalcaneal ligament complex (7), and studies 
have shown that talus and calcaneus varus and calcaneal 
displacement increase after CFL injuries (5). Therefore, 
accurate assessment of the severity of CFL injuries is helpful 
in the formulation of treatment plans. Ankle arthroscopy is 
the gold standard for diagnosing CFL injuries, but it cannot 
assess CFL injuries before surgery (8). Magnetic resonance 
imaging (MRI) is one method for diagnosing CFL injuries 
preoperatively. Its accuracy has been reported in the literature 
to be between 0.72 and 0.96, with sensitivities ranging from 
0.47 to 0.95 (9-11). Additionally, the diagnosis of CFL 
injuries is quite time-consuming. Although ultrasonography 
has also been used to diagnose CFL injuries, its diagnostic 
effect is inferior to that of MRI, and the examination method 
is highly controversial (12).

With the development of computer technology and 
hardware, artificial intelligence (AI) methods based on deep 
learning have received increasing attention in the medical 
field (13-16). Thus far, deep learning has been widely used in 
medical practices related to the musculoskeletal (MSK) system 
(17,18) and has an excellent performance in segmentation, 
classification, and angle measurement of different diseases 
(18-21). Yang et al. segmented the ulna and radius in dual-
energy X-ray imaging by developing a deep learning 
network with residual building blocks (ResBlock), and the 
average dice coefficients were between 0.97 and 0.99 (22).  
Astuto et al. assessed the severity of cartilage, meniscus, and 
anterior cruciate ligament damage through a hierarchic 
3-dimensional convolutional model after segmenting various 
structures on knee (MRI through V-Net, yielding an area 

under the receiver operating characteristic (ROC) curve 
(AUC) of diagnosis between 0.83 and 0.93 (23). Ashkani et al. 
used Inception V3 and Resnet-50 to detect fractures in ankle 
X-ray images, and the recognition accuracy was between 0.92 
and 0.99 (24). However, there has been no deep learning 
study for grading CFL injuries, and existing deep learning 
research for ligaments has mainly focused on the anterior 
cruciate ligament of the knee joint.

A deep learning network consists of multiple nodes, 
each of which simulates the interconnection of neurons in 
the human brain. When information received by the node 
exceeds its threshold value, the information becomes output, 
and the node is weighted. The weights of different nodes 
are adjusted repeatedly according to the error, and then an 
optimal solution is obtained after several iterations (25). 
Deep learning can reduce the time required for diagnosis 
and achieve similar diagnostic results as those of radiologists 
while demonstrating high diagnostic consistency (26). 
However, due to the complexity of the anatomy of the 
ankle joint and the slenderness of the CFL, precise locating 
and cropping of the CFL are challenging, and it is almost 
impossible to delineate the region of interest (ROI) along 
the edges of the ligament because the ligament loses its 
normal shape after tearing. Hence, accurately locating the 
CFL has become a difficult problem to solve.

This study developed an MRI-based system to classify 
CFL injuries using deep learning in order to assist 
radiologists in reporting CFL injuries more quickly 
and accurately. The study also explored screening and 
calibration methods for cropping images. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-470/rc).

Methods

Patients

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The retrospective study 
was approved by the Ethics Committee of Medical Science 
Research of Peking University Third Hospital (No. 
IRB00006761), and individual consent for this retrospective 
analysis was waived. The clinical and imaging data of patients 

Submitted May 12, 2022. Accepted for publication Sep 07, 2022. Published online Oct 13, 2022.

doi: 10.21037/qims-22-470

View this article at: https://dx.doi.org/10.21037/qims-22-470

https://qims.amegroups.com/article/view/10.21037/qims-22-470/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-470/rc


Ni et al. Deep learning for calcaneofibular ligament injuries82

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(1):80-93 | https://dx.doi.org/10.21037/qims-22-470

undergoing MRI and ankle arthroscopy in our hospital from 
January 2015 to June 2021 were retrospectively collected.

The inclusion criteria were the following: MRI 
examination of the ankle joint performed 3 months before 
ankle arthroscopy and complete surgical records. The 
exclusion criteria were the following: history of rheumatoid 
arthritis (n=1), history of previous ankle surgery (n=26), 
history of local fractures (n=11), presence of local tumors 
(n=2), and poor image quality (n=46). A total of 1,160 patients 
met the inclusion criteria. After 86 patients were excluded 
according to the exclusion criteria, 1,074 patients were finally 
included in this study. The details of patient inclusion and 
exclusion are shown in Figure 1.

All patients were divided into 3 groups according to their 
ankle arthroscopy results: a normal group (class 0, n=475); a 
degeneration, strain, and partial tear group (class 1, n=217); 
and a complete tear group (class 2, n=382). All patients 
were divided into a training set, validation set, and test set 
at a ratio of 8:1:1. The details of the grouping are shown in 
Table 1. In addition, a data set consisting of 253 patients was 
used as an outgroup set (46, 93, and 114 patients in classes 
0, 1, and 2, respectively) for outgroup validation. The 
outgroup set was derived from 2 hospitals. The period of 
data collection and the inclusion and exclusion criteria were 
the same as those for the intragroup set.

Ankle arthroscopy classification criteria

All ankle arthroscopies in this study were performed at our 

sports medicine center and were diagnosed and recorded 
according to the following criteria: normal CFL arthroscopy 
showing intact ligament alignment, regular morphology, 
and good tension; CFL degeneration or strain arthroscopy 
showing continuous ligament fiber bundles but poor tension 
and ligament laxity with ligament thickening, swelling, 
or irregular morphology; and acute strains accompanied 
by surrounding soft tissue edema. Partial tears were 
characterized by partial discontinuity of the ligament but 
with a remnant partial connection and local scar formation 
present in some patients. A complete tear was defined as a 
complete disruption of the continuity of the ligament with 
the free ends visible.

MRI scanning

MRI was performed with a 3.0 T MR system (Signa 
HDxt, GE Medical Systems, Waukesha, WI, USA), and an 
8-channel ankle coil was used for the intragroup. Axial and 
coronal fat-saturated proton density-weighted fast spin-
echo (FS-PD-FSE) sequences were obtained in the study. 
The scan parameters for the axial FS-PD-FSE sequences 
were as follows: echo time (TE) 36 ms, repetition time (TR) 
2,180 ms, field of view (FOV) 14 cm, slice thickness 3.0 
mm, slice gap 0.3 mm, and number of excitations (NEX) 2. 
The scan parameters for the coronal FS-PD-FSE sequences 
were as follows: TE 35 ms, TR 2,680 ms, FOV 14 cm, slice 
thickness 3.0 mm, slice gap 0.3 mm, and NEX 2.

The images of the outgroup were obtained from a 
Discovery MR750 (3.0 T; GE Medical Systems), Discovery 
MR750WS (3.0 T; GE Medical Systems), MAGNETOM 
Prisma (3.0 T; Siemens Healthineers, Erlangen, Germany), 
Signa MRexplorer (1.5 T; GE Medical Systems), UMR770 
(3.0 T; United Imaging Healthcare, Shanghai, China), 
Optima MR430s (1.5 T; GE Medical Systems), or Optima 
MR360 (1.5 T; GE Medical Systems). All examinations 
were conducted with axial and coronal FS-PD-FSE 
sequences. The scan parameters of the axial FS-PD-
FSE sequences were as follows: TE 26–45 ms, TR 2,060– 
3,948 ms, FOV 14–15 cm, slice thickness 2.0–3.0 mm, 
slice gap 0.2–0.3 mm, and NEX 1–2. The scan parameters 
of the coronal FS-PD-FSE sequences were as follows: 
TE 33–72 ms, TR 1,914–3,948 ms, FOV 14–15 cm, 
slice thickness 2.0–3.0 mm, slice gap 0.2–0.3 mm, and  
NEX 1–2.

Axial and coronal images of ankle joints obtained by 
scanning with different devices in the intragroup and 
outgroup are shown in Figure 2 and Figure 3.

Figure 1 Flowchart showing baseline patient characteristics.

1,160 patients enrolled initially between 
January 2015 to June 2021

1,074 patients remaining

Class 0, n=475
Class 1, n=217
Class 2, n=382

Excluded (n=86):
• 26 had a history of surgery
• 11 had a history of fracture
• 2 had a local tumor 
• 46 had poor-quality images
• 1 had rheumatoid arthritis
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Table 1 Demographic data

Group Grade Subjects (n)
Deep learning grouping (n)

Age (Y, Mean ± SD) Sex (n)
Training Validation Testing

Intragroup Class 0 475 380 47 48 32.16±11.79 305 M and 170 F

Class 1 217 174 21 22 31.53±10.84 129 M and 88 F

Class 2 382 262 60 60 30.69±10.94 250 M and 132 F

Outgroup Class 0 46 – – – 31.91±11.22 26 M and 20 F

Class 1 93 – – – 33.16±10.91 56 M and 37 F

Class 2 114 – – – 31.66±12.01 73 M and 41 F

–, represents no relevant values.
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Figure 2 Axial fat-saturation proton density-weighted fast spin-echo images of the ankle joint obtained by different scanning devices in the 
intragroup and outgroup. The red box in the image represents the region where the calcaneofibular ligament structure is located (not the 
region of interest). (A) Signa HDxt. (B) Discovery MR750WS. (C) MR750. (D) MAGNETOM Prisma. (E) Signa Mrexplorer. (F) UMR770. 
(G) Optima MR430s. (H) Optima MR360. 

MSK radiologist evaluations

Patients in both the intragroup and outgroup test sets 
were diagnosed by 4 MSK radiologists with different years 
of experience: 2 MSK radiologists with approximately  
15 years of diagnostic experience (W Chen and YQ Zhao) 

and 2 MSK radiologists with approximately 5 years of 
experience (M Ni and QZ Wang). All radiologists were 
systematically trained at our institution to diagnose 
patients with axial and coronal FS-PD-FSE images and 
record the time taken for the diagnosis (specifically, the 
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Figure 3 Coronal fat-saturation proton density-weighted fast spin-echo images of the ankle joint obtained by different scanning devices in 
intragroup and outgroup. The red box in the image represents the region where the calcaneofibular ligament structure is located (not the 
region of interest). (A) Signa HDxt. (B) Discovery MR750WS. (C) MR750. (D) MAGNETOM Prisma. (E) Signa Mrexplorer. (F) UMR770. 
(G) Optima MR430s. (H) Optima MR360.
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time between opening the patient’s image on the computer 
and obtaining the diagnosis). The diagnostic criteria were 
as follows: normal ligaments showing good tension and a 
uniform low signal with clear borders; degeneration and 
strains showing varying degrees of signal increase within 
the ligament, and with the ligament potentially being 
mildly thickened, thinned, or irregular, but continuous 
and possibly accompanied by surrounding soft tissue 
edema or effusion; partial ligament tears characterized by 
local disruption of ligament continuity and a significant 
high signal, with thickening, laxity, and irregularity of 
the ligament pattern, but with some ligaments still being 
connected; and complete ligament tears characterized by a 
complete disruption of ligament continuity and with free 
ends and a significant high signal intensity of fluid at the 
rupture site, potentially accompanied by surrounding soft 
tissue edema.

The ROI was delineated by 2 MSK radiologists (M Ni 
and YQ Zhao) with different levels of seniority. The CFL 
was first outlined by the junior MSK radiologist (M Ni), 
including the complete CFL structure, with effort made to 
minimize extraneous structures. The ROI was subsequently 
revised by the senior MSK radiologist (YQ Zhao) to ensure 
that it was appropriate. The ROIs were outlined using 
Python-based LabelImg software (https://github.com/
tzutalin/labelImg).

Deep learning workflow

In this study, the images of all patients were first preprocessed 
and then cropped by a Mask region-based convolutional 
neural network (R-CNN) to obtain local CFL images, and 
an attention algorithm was added to screen and calibrate 
the cropped regions. The cropped images were input into 

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
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LeNet-5 for CFL injury classification model training, 
and outgroup validation was performed to evaluate model 
generalizability. All deep learning models were trained on a 
computer with an Nvidia Tesla V100 [16 GB video random 
access memory (VRAM)] and Intel Xeon Gold 5215 CPU. 
The specific process is shown in Figure 4.

Preprocessing

Image preprocessing plays a vital role in image analysis; 
its primary purpose is to eliminate irrelevant information 
in an image, enhance the detectability of image features 
of interest, and simplify an image to the greatest extent, 
thereby improving the reliability of feature extraction, 
image cropping, and recognition (27). We converted the 
pixel values in all images into the range of [0, 1] through 
pixel normalization, which can speed up the convergence of 
the training network, avoid the exploding gradient problem, 
and ensure that smaller values in the output data are not 
lost. Subsequently, we resized all images to 256×256 pixels.

Since there was a  data  imbalance between the 
classifications in this study, we augmented and balanced 
the data by rotating the images (−15°–15°, random) and 
randomly adding Gaussian noise to the data. After data 
augmentation, the amount of data between the different 
groups was balanced, and the total amount of data was 

expanded, which featured unlearning and overfitting data 
in the model training. Finally, all data were shuffled before 
training.

Image detection

The complete image contains a large amount of image 
information, much of which is irrelevant information that 
increases the complexity of the input information and can 
reduce the classification effect of the model. The goal of 
image cropping is to minimize irrelevant information in the 
image (28); the features extracted by the classification model 
are more focused on the target area, thereby improving the 
classification effect of the model. In this study, Mask R-CNN 
was used to crop the local CFL image (the left and right 
sides were cropped separately) to a uniform 48×48 pixels.  
Mask R-CNN was first proposed in 2018 (29), adding a 
branch for predicting detection masks based on Faster 
R-CNN. RoIAlign has replaced the original ROI pooling 
to improve the accuracy of the ROI layer, and Mask R-CNN 
is now one of the most eminent models for image detection 
at PRESENT. The model consists of two parts: one is the 
backbone for feature extraction, and the other is the head 
for ROI classification, box regression, and mask prediction. 
Mask R-CNN is widely used in many deep-learning studies 
and has achieved excellent results (30,31).
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Figure 4 Flowchart of the deep learning process. After image preprocessing, Mask R-CNN was used for cropping, and an attention 
algorithm was applied to the cropped image for further adjustment. Finally, LeNet-5 was used for classification. R-CNN, region-based 
convolutional neural network; ROI, region of interest; FC layer, fully connected layer.
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We input the axial and coronal images (including ROIs) 
into Mask R-CNN for model training, respectively. Due 
to the complex structure of the ankle joint and the slender 
ligaments, Mask R-CNN produced many cropped images, 
most of which did not contain the CFL structure and were 
thus considered invalid. Therefore, we added an attention 
algorithm to the Mask R-CNN output. Since the position 
of the CFL in the same sequence (such as axial FS-PD-
FSE) tended to be consistent, we extracted the average 
coordinates of the ROI in the training set of the same 
sequence (left and right, separately), which were used to 
screen and calibrate the image cropping process. The 
method first extracted all manually outlined ROIs in the 
training set to calculate and obtain a mean ROI (rectangle). 
Subsequently, the overlap between the images cropped by 
Mask R-CNN and the average ROI was detected. When 
there were multiple overlapping images at the same time, 
the images with a predicted probability of more than 80% 
were retained. If there were nonoverlapping cropped images 
for individual patients, they were directly cropped according 
to the average ROI. Through this method, cropping results 
irrelevant to the target area could be excluded, and cropped 
images related to the target could be retained so that a more 
accurate cropped image could be input into the classification 
model to improve the classification effect of the model.

In general, after training Mask R-CNN with the original 
ROI-containing imaging, we added an attention algorithm 
to the output of Mask R-CNN to limit the ROI and thus 
solve the problem of the model not accurately cropping the 
CFL structure.

Classification

LeNet-5 was trained on CFL injury classification using the 
cropped images. It separately classified the axial and coronal 
FS-PD-FSE images, each of which contained multiple 
images. Different images may show different prediction 
results; thus, we assigned equal weights to each image 
of the same sequence. Finally, the classification based on 
the highest weight was used as the final output prediction 
result. Additionally, the results for the axial FS-PD-FSE and 
coronal FS-PD-FSE images were combined to obtain the 
combined diagnostic results, all images of both sequences 
were assigned the same weights, and the prediction results 
were obtained based on the weights. The axial FS-PD-FSE, 
coronal FS-PD-FSE, and combination model results were 
then compared, and the model with the best classification 
effect was selected for the outgroup set. LeNet-5 used the 

rectified linear activation function (RELU) as the activation 
function. The batch size was 32, the largest epoch was 500, 
the learning rate was 0.001, the optimizer was Adam, and 
the weight decay was 0.0005.

Statistical analysis

This study completed all deep learning model training and 
statistical analyses using Python (version 3.6.0; Python 
Software Foundation, Fredericksburg, VA, USA) software, 
and the TensorFlow (version 2.4.0, open source) framework 
was used for related data processing. The mAP was used 
to evaluate the cropping effect for the images. The ROC 
curve was used to evaluate the effect of model classification. 
The accuracy, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and the AUC 
were used to evaluate the performance of LeNet-5. The 
intraclass correlation coefficient (ICC) was used to assess 
the reliability of the diagnoses between the 4 radiologists. 
McNemar test was used to compare the difference between 
the diagnostic accuracy of the deep learning model and that 
of the radiologists. The cropped image was visualized using 
the Grad-Cam heatmap. A value of P<0.05 indicated that 
the difference was statistically significant.

Results

The total diagnostic time for the test set in the intragroup 
was 28.6 s, with an average of 220 ms per patient, and the 
total diagnostic time for the outgroup was 68.31 s, with 
an average of 270 ms per patient. The 4 MSK radiologists 
took 4.0, 3.9, 4.6, and 4.4 h, respectively, to diagnose the 
intragroup test set, averaging 107–128 s per patient, and 7.7, 
7.7, 9.4, and 9.0 h for the outgroup, respectively, with an 
average of 109–134 s per patient.

The mAP of Mask R-CNN with the attention algorithm 
for axial FS-PD-FSE image cropping was 0.94 (left) and 0.96 
(right), and that for coronal FS-PD-FSE image cropping 
was 0.90 (left) and 0.94 (right). A comparison of the ROI 
outlined by the radiologist and the cropped image obtained 
by the Mask R-CNN with the attention mechanism 
is shown in Figure 5. The AUC of LeNet-5 in the 
classification of the axial FS-PD-FSE sequences into classes 
0, 1, and 2 was 0.95, 0.97, and 0.96, and the accuracy was 
0.92, 0.93, and 0.92, respectively. The AUC of LeNet-5 in 
the classification of the coronal FS-PD-FSE sequences into 
classes 0, 1, and 2 was 0.84, 0.97, and 0.95, and the accuracy 
was 0.89, 0.92, and 0.90, respectively. The AUC after model 
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Figure 5 The region of interest outlined by the radiologists compared to the cropping results produced by Mask R-CNN with the attention 
algorithm. The green box represents the region of interest drawn by the radiologists, and the red box represents the region of interest 
obtained by Mask R-CNN with the attention algorithm. Images with more than 80% prediction probability were retained. (A,B) Axial 
images. (C,D) Coronal images, where image D exists with 2 model-cropped regions of interest. R-CNN, region-based convolutional neural 
network.

combination for classifying classes 0, 1, and 2 was 0.94, 
0.97, and 0.96, and the accuracy was 0.95, 0.97, and 0.96, 
respectively. The detailed classification results of the model 
are shown in Table 2. The confusion matrix of LeNet-5 for 
coronal images, sagittal images, model combination, and the 
outgroup data set is shown in Figure 6. Figure 7 shows the 
Grad-Cam heat map of LeNet-5 classifying CFL injuries 
under different types of images and classifications. The 
LeNet-5 pays better attention to CFL.

The ICC of the 4 MSK radiologists for the intragroup 
test set was 0.98, with mean accuracies of 0.94, 0.91, 0.86, 

and 0.85. The differences between the diagnostic results of 
the 4 MSK radiologists and the deep learning results were 
statistically significant, with the deep learning achieving 
better classification results than the MSK radiologists. 
The ICC of the MSK radiologists for the outgroup was 
0.98, with mean accuracies of 0.92, 0.91, 0.87, and 0.85. 
The differences between the diagnostic effect of the deep 
learning model and that of the 2 senior MSK radiologists 
were not statistically significant (P>0.99 and P=0.70). The 
differences between the 2 junior MSK radiologists and 
the model were statistically significant, with the latter 
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Figure 6 Confusion matrix of LeNet-5 for coronal images, sagittal images, model combination, and outgroup set. (A-C) Intragroup set. 
(D) Outgroup set. (A) Confusion matrix of axial images. (B) Confusion matrix of coronal images. (C) Confusion matrix of axial + coronal 
(combination) images. (D) Confusion matrix for outgroup set classification.

Table 2 Diagnostic parameters of LeNet-5 for the classifications based on axial, coronal, and combination images

Sequence Class AUC Accuracy* Sensitivity* Specificity* NPV* PPV*

Axial 0 0.95 0.92 (5,672/6,159) 0.85 (1,624/1,904) 0.95 (4,048/4,255) 0.94 (4,048/4,328) 0.89 (1,624/1,831)

1 0.97 0.93 (5,755/6,159) 0.92 (1,988/2,150) 0.94 (3,767/4,009) 0.96 (3,767/3,929) 0.89 (1,988/2,230)

2 0.96 0.92 (5,686/6,159) 0.89 (1,865/2,105) 0.94 (3,821/4,054) 0.94 (3,821/4,061) 0.89 (1,865/2,098)

Coronal 0 0.94 0.89 (7,858/8,858) 0.82 (2,221/2,717) 0.92 (5,637/6,141) 0.92 (5,637/6,133) 0.82 (2,221/2,725)

1 0.97 0.92 (8,162/8,858) 0.91 (2,835/3,118) 0.93 (5,327/5,740) 0.95 (5,327/5,610) 0.87 (2,835/3,248)

2 0.95 0.90 (7,932/8,858) 0.82 (2,491/3,023) 0.93 (5,441/5,835) 0.91 (5,441/5,973) 0.86 (2,491/2,885)

Combination 0 0.94 0.95 (1,196/1,255) 0.89 (397/444) 0.99 (802/811) 0.94 (802/852) 0.98 (394/403)

1 0.97 0.97 (1,216/1,255) 0.97 (403/416) 0.97 (813/839) 0.98 (813/826) 0.94 (403/429)

2 0.96 0.96 (1,205/1,255) 0.97 (384/395) 0.95 (821/860) 0.99 (821/832) 0.91 (384/423)

*, accuracy is presented as accuracy (TP + TN/TP + FP + FN + TN); Sensitivity is presented as sensitivity (TP/TP + FN); Specificity 
is presented as specificity (TN/FP + TN); NPV is presented as negative predictive value (TN/FN + TN); PPV is presented as negative 
predictive value (TP/FP + TP). AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive 
predictive value; TN, true negative; FP, false positive; FN, false negative; TP, true positive.
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outperforming the former in the outgroup test set. A 
comparison of the diagnostic performances of the MSK 
radiologists and the deep learning model is shown in Table 3.

Discussion

This study aimed to design and evaluate a deep learning 
model for CFL injury classification and compare the 
diagnostic performance with that of MSK radiologists with 
different levels of experience. The results show that deep 
learning can be used to classify CFL injuries and achieve 
similar but faster diagnostic results than can radiologists. 
Combining the images of multiple sequences can improve 
the classification effect of the model, and adding an 

attention algorithm after the cropping model is helpful for 
accurately cropping the CFL. Additionally, the results for 
the outgroup test set show that the model trained in this 
study can obtain excellent diagnostic results with images 
from different pieces of MR equipment and thus has good 
generalizability.

In this study, we trained deep learning models using 
axial and coronal FS-PD-FSE sequences separately and in 
combination. The results showed that although excellent 
diagnostic results could be obtained using axial or coronal 
PD-FSE-FS sequences alone, the accuracy, sensitivity, 
and specificity of the deep learning models improved after 
inputting a combination of the 2 sequences; even minor 
improvements can produce benefits for more patients. 

Figure 7 Grad-Cam heatmap of LeNet-5 classifying axial and coronal images. All images are partial images cropped by Mask R-CNN. The 
colors in the figure, from blue to red, indicate that the model pays less to more attention to the region. The first row of all images is the 
cropped image output by Mask R-CNN combined with the attention mechanism, the second row represents the model heatmap, and the 
third row represents the overlapping image of the cropped image and the heatmap. (A-D) The cropped images of the axial images and the 
arthroscopic results of grade 0, grade 1, and grade 2, respectively. (E-H) The cropped images of coronal images, with arthroscopic results of 
grade 0, grade 1, and grade 2, respectively. R-CNN, region-based convolutional neural network.
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Table 3 Comparison of the diagnostic results of the deep learning model and the 4 musculoskeletal radiologists in the intragroup and outgroup 
test sets

Group Reader Class Accuracy Sensitivity Specificity χ2 P value

Intragroup LeNet-5 (combination) 0 0.95 0.89 0.99 – –

1 0.97 0.97 0.97

2 0.96 0.97 0.95

Radiologist 1 0 0.93 0.9 0.95 41.38 <0.001

1 0.92 0.86 0.93

2 0.95 0.92 0.99

Radiologist 2 0 0.92 0.85 0.96 32.88 <0.001

1 0.88 0.82 0.90

2 0.92 0.88 0.94

Radiologist 3 0 0.90 0.83 0.94 20.95 <0.001

1 0.82 0.68 0.85

2 0.86 0.80 0.91

Radiologist 4 0 0.85 0.77 0.90 17.78 <0.001

1 0.84 0.68 0.87

2 0.85 0.80 0.89

Outgroup LeNet-5 (combination) 0 0.97 0.91 0.98 – –

1 0.91 0.82 0.97

2 0.89 0.93 0.86

Radiologist 1 0 0.95 0.83 0.98 0.00 1.0

1 0.90 0.88 0.91

2 0.91 0.90 0.92

Radiologist 2 0 0.92 0.80 0.95 0.15 0.70

1 0.90 0.89 0.90

2 0.92 0.88 0.96

Radiologist 3 0 0.89 0.74 0.92 5.51 0.02

1 0.84 0.81 0.86

2 0.87 0.82 0.91

Radiologist 4 0 0.90 0.70 0.95 7.95 0.005

1 0.83 0.82 0.83

2 0.83 0.78 0.87

–, represents no relevant values.

Although a CFL tear is not an absolute indication for 
surgery, a completely torn CFL is often more likely to 
cause chronic ankle instability (32). Despite the controversy 
regarding the function of the CFL, studies have shown 

that CFL tears are associated with subtalar instability and 
ankle instability (33,34). Therefore, the classification of 
CFL injuries is valuable in clinical decision-making, and a 
rapid and consistent diagnosis is important for improving 
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the efficiency of radiologists and reducing errors. In future 
studies, this aspect of the model will be used as part of 
the overall assessment of lateral ankle instability to form a 
comprehensive diagnostic system.

When we trained Mask R-CNN for image cropping, we 
found that by using a small amount of medical image data, a 
slender ligament structure, and a complex image structure, 
the cropping effect of the model was very poor, and multiple 
images were not cropped to the region where the CFL 
was located. Because the CFL loses its normal shape after 
tearing, the local features of the cropped image were very 
different. Existing image segmentation technologies require 
that the part identified for cropping has a specific boundary, 
so the direct use of the image segmentation algorithm 
was not effective. To address this, we added an attention 
algorithm after Mask R-CNN to screen all cropped images 
by restricting the cropping area to the average ROI and 
correcting the position by averaging it with the average 
ROI coordinates to improve the accuracy of the final 
cropping area. At present, deep learning models still have 
certain difficulties recognizing small structures within 
complex structures and remain limited by small amounts of 
medical data; there is no perfect solution to address these 
problems, but the method proposed in this study may serve 
as a helpful approach.

In this study, the performance of the deep learning model 
was compared with that of radiologists. The differences 
between the deep learning model and the 4 MSK radiologists 
of different seniorities for the intragroup were statistically 
significant; specifically, the diagnostic effect of the deep 
learning model was better than that of the radiologists, and 
the speed and consistency of diagnosis were better. The deep 
learning model performed similarly to the 2 senior MSK 
radiologists in diagnosing the outgroup but outperformed 
the 2 junior MSK radiologists. The deep learning model 
trained in this study had an excellent diagnostic effect when 
classifying images obtained from different pieces of MR 
equipment, showing good generalizability. Even the same 
MSK radiologist showed some intragroup and outgroup 
differences when diagnosing patients. For radiologists with 
different levels of experience and from different medical 
institutions, deep learning can help reduce the impact of a 
diagnostic gap by producing a diagnosis comparable to that 
of expert radiologists.

This study had some shortcomings. First, it included 
only patients who underwent arthroscopic surgery, resulting 
in a certain bias in the data. Second, the attention algorithm 
added in this study may need to be restored to the mean 

ROI when used in different institutions, resulting in some 
reduction in the generalizability of our method; however, 
this study also obtained good results with images from 
multiple pieces of MR equipment (outgroup test set), and 
the model still has good generalizability in normative 
scanning conditions. Third, the arthroscopic procedures 
in this study were performed by multiple surgeons, and 
there may be some differences in diagnostic results among 
them. Finally, other structures, such as the ATFL, articular 
cartilage, and bony structures, were not included in this 
study; hence we will conduct more studies in the future to 
incorporate them in the construction of additional models.

Conclusions

This study developed a deep learning model that can 
classify CFL injuries, compared its performance with 
the performance of four MSK radiologists using ankle 
arthroscopy findings as the gold standard and validated it 
with outgroup data. Better diagnostic results were obtained 
when multiple sequences were combined, and the model 
may have potential as an assistant tool. In addition, our 
proposed attention algorithm can improve the cropping 
effect and screen cropped images when cropping small 
structures with complex structures.
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