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Background: Accurately predicting the prognosis of patients with high-grade glioma (HGG) is potentially 
important for treatment. However, the predictive value of images of various magnetic resonance imaging 
(MRI) sequences for prognosis at different time points is unknown. We established predictive machine 
learning models of HGG disease progression and recurrence using MRI radiomics and explored the factors 
influencing prediction accuracy.
Methods: Radiomics features were extracted from T1-weighted (T1WI), contrast-enhanced T1-weighted 
(CE-T1WI), T2-weighted (T2WI), and fluid-attenuated inversion recovery (FLAIR) images (postoperative 
radiotherapy planning MRI images) obtained from 162 patients with HGG. The Mann-Whitney U test and 
least absolute shrinkage and selection operator (LASSO) algorithm were used for feature selection. Machine 
learning models were used to build prediction models to estimate disease progression or recurrence. 
The influence of different MRI sequences, regions of interest (ROIs), and prediction time points was 
also explored. The receiver operating characteristic (ROC) curve was used to evaluate the discriminative 
performance of each model, and the DeLong test was employed to compare the ROC curves. 
Results: Radiomics features from T2WI and FLAIR demonstrated greater predictive value for disease 
progression compared with T1WI or CE-TIWI. The best predictive models, with areas under the ROC 
curves (AUCs) of 0.70, 0.68, 0.78, 0.78, and 0.78 for predicting disease progression at the 6th, 9th, 12th, 
15th, and 18th month after radiotherapy, respectively, were obtained by combining clinical features with 
gross tumor volume (GTV) and clinical target volume (CTV) features extracted from T2WI and FLAIR. 
Conclusions: Structural MRI obtained before radiotherapy can be used to predict the disease progression 
or posttreatment recurrence of HGG. When using MRI radiomics to predict long-term outcomes as 
opposed to short-term outcomes, better predictive results may be obtained.
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Introduction

High-grade glioma (HGG) is a type of central nervous 
system tumor with a high degree of malignancy. The 
standard treatment strategy for HGG is surgical resection 
followed by adjuvant chemoradiotherapy (1). The median 
progression-free survival is about 7 months, even when 
the standard treatment strategy is used (2,3). Moreover, 
the recurrence time of HGG varies significantly between 
individuals (3), and the recurrence sites are primarily 
located in or near the primary tumor area (4). 

Studies have shown that increasing the prescribed dose 
of radiotherapy can reduce local recurrence and improve 
prognosis (5). However, doing so also results in increased 
doses to normal tissues. In addition, a tradeoff between the 
target dose and doses to normal tissue is necessary when the 
target area conflicts with the organs at risk. This tradeoff 
is dependent primarily on the judgment of the treating 
physician and represents a difficult medical decision for 
junior physicians without extensive experience. Therefore, 
it is necessary to develop therapeutic efficacy prediction 
models for patient stratification to assist in clinical decision-
making in terms of dose increment, radiotherapy plan 
tradeoff, adjuvant chemoradiotherapy strategy, and follow-
up strategy, among other factors (6-9).

Currently, there are 3 types of prognosis prediction 
methods for cancer patients. The first is based on basic 
clinical information such as the World Health Organization 
(WHO) grade (10), isocitrate dehydrogenase mutation  
(11-14), and genetic factors (15,16). In this method, the 
focus is mainly on determining whether clinical features 
have potential predictive value, which is achieved by 
comparing whether there is a statistical difference between 
various groups. The second method is to predict the 
prognosis of a patient based on quantitative parameters 
obtained from functional imaging such as positron emission 
tomography (PET), diffusion-weighted imaging (DWI), 
and magnetic resonance imaging (MRI) perfusion (17-21).  
This method has been demonstrated to have good 
predictive value but requires additional image acquisition 
and, therefore, additional medical resources. The third 

method is based on the use of radiomics and deep learning 
to build prediction models from manually or automatically 
extracted image features (8,22-26). In recent years, several 
studies have focused on determining the prognosis of 
patients with glioma based on radiomics or deep learning 
methods (8,9,17). However, the predictive value of MRI 
images for prognosis at different time points is still unclear, 
as is the predictive value of using various MRI sequences 
and different regions of interest (ROIs). 

In this study, our goal was to develop and validate models 
to predict disease progression or recurrence after treatment 
of patients with HGG based on postoperative MRI 
radiomics, with a focus on clinical applicability in terms of 
the existing medical practice in our hospital and avoiding 
the need to collect additional images. The value of MRI 
images in predicting prognosis at different time points and 
the predictive value of various MRI sequences of different 
ROIs were also investigated. Finally, based on our findings, 
we evaluated the performance of the constructed model at 
patient stratification. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-22-459/rc).

Methods

Patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
reviewed and approved by the ethics committee of the West 
China Hospital. Written informed consent was waived 
owing to the retrospective nature of this study. In this 
retrospective study, data obtained from patients with HGG 
treated in the West China Hospital between June 2017 and 
April 2020 were reviewed. The inclusion criteria were as 
follows: (I) patients with HGG confirmed by pathology and 
(II) patients who underwent surgical resection of glioma 
followed by adjuvant chemoradiotherapy at the West China 
Hospital. The exclusion criteria were as follows: (I) patients 
who had been treated for recurrent glioma, (II) patients 
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who had not received standard adjuvant temozolomide 
chemotherapy, (III) patients without radiotherapy planning 
MRI, (IV) patients without follow-up information or with 
incomplete information, and (V) patients with less than  
18 months follow-up and no recurrence at the end of the 
data collection period. A total of 162 patients were enrolled 
in the study.

MRI imaging

Radiotherapy planning MRI was used for radiomics feature 
extraction in this study. All MRI images were collected 
using a GE 3.0-T MRI scanner (Discovery 750 W, GE 
Healthcare, Chicago, IL, USA) following surgical resection 
of the glioma and before adjuvant chemoradiotherapy. All 
MRI scans were performed at least 3 weeks after surgical 
resection. The MRI sequences included T1-weighted 
imaging (T1WI), contrast-enhanced T1-weighted imaging 
(CE-T1WI), T2-weighted imaging (T2WI), and fluid-
attenuated inversion recovery (FLAIR) imaging.

Treatment and follow-up

All patients enrolled in this retrospective study had 
undergone surgical treatment and postoperative adjuvant 
temozolomide chemoradiotherapy. Follow-up data for all 
patients were accessed from electronic medical records. 
Disease progression or recurrence was determined 
upon meeting any of the following criteria (27): a >25% 
increase in the products of perpendicular diameters of 
enhancing lesions, a significant increase in T2WI/FLAIR 
nonenhancing lesions, any new lesions, and clear clinical 
deterioration not attributable to other causes apart from 
the tumor. Based on these criteria, all follow-up data 
(including images and follow-up records) for each patient 
were reviewed independently by 2 physicians to determine 
the time of disease progression. As for disputed points, 
an agreement was reached after discussion between the  
2 physicians.

Radiomics feature extraction

The ROIs for radiomics feature extraction came from the 
target volumes for radiotherapy planning, including gross 
tumor volume (GTV) and clinical target volume (CTV). 
They were delineated by the physician on fused computed 
tomography (CT) and MRI images. The GTV encompasses 
any GTV remaining after maximum safe resection as 

well as the volume of the surgical cavity as determined by 
postoperative T2WI and FLAIR images (28). The CTV is 
an expansion of the GTV to account for subclinical diseases. 
It includes GTV plus 1–2 cm of margin for grade III tumors 
and up to 2–2.5 cm of margin for grade IV tumors (28). 
The examples for GTV and CTV are shown in Figure 1.

Generally, the signal intensity of MRI is affected by 
scanner and sequence parameters, which makes it difficult 
to quantitatively compare between different MRIs (29,30). 
To reduce the influence of these inconsistencies on the 
extracted radiomics features, the histogram normalization 
method (31) was used to normalize individual MRI images. 
All images were rescaled to 0–255, with prior points outside 
of the 1–99% intensity range excluded. Finally, all MRIs 
were resampled to a voxel size of 0.5 mm × 0.5 mm × 3 mm.

Based on each manually delineated ROI (GTV and 
CTV), radiomics features were automatically extracted from 
each MRI sequence (including T1WI, T2WI, CE-T1WI, 
and FLAIR) using PyRadiomics (32). Based on previous 
studies (29,33), the value of the bin width parameter was set 
to 6 to ensure that the number of bins was in an appropriate 
range. Laplacian of Gaussian (LoG) kernels with parameter 
values σ =1 and 3 mm were applied to strengthen various 
levels of texture features (34,35). A total of 107 radiomics 
features, including 14 shape features, 18 first-order features, 
and 75 texture features, were extracted from each original 
image, and 93 radiomics features were extracted from each 
LoG-transformed image (14 shape features were excluded). 
For each patient, a total of 2,344 radiomics features 
corresponding to the 4 MRI sequences and 2 ROIs were 
extracted.

Feature selection, prediction model, and performance 
evaluation

To build predictive models, the extracted radiomics features 
were combined with clinical features including WHO 
grade, sex, age, radiotherapy prescription dose, radiotherapy 
fraction, time interval from surgery to radiotherapy, and 
duration of radiotherapy. To make the features mutually 
comparable, each feature was normalized to have a 
mean value of 0 and a standard deviation of 1. To reduce 
interference from redundant and irrelevant radiomics 
features and to avoid overfitting, the Mann-Whitney U test 
and least absolute shrinkage and selection operator (LASSO) 
algorithm were used to perform feature selection (36). The 
Mann-Whitney U test was used for the preliminary filtering 
of features with P≤0.05, which was considered statistically 
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Figure 1 Examples for GTV and CTV. GTV is contoured in red, and CTV is contoured in purple. Each row represents MRI images for 
1 patient; from left to right: T2WI, FLAIR, T1WI, and CE-T1WI. T2WI, T2-weighted imaging; FLAIR, fluid-attenuated inversion 
recovery; T1WI, T1-weighted imaging; CE-T1WI, contrast-enhanced T1-weighted imaging; GTV, gross tumor volume; CTV, clinical 
target volume; MRI, magnetic resonance imaging. 

significant, and the LASSO algorithm (37) was used to 
select the features that were ultimately used to build the 
predictive models. 

The selected features were used to build machine 
learning models to predict the prognosis of patients 
with HGG with the goal of predicting whether disease 
progression or recurrence would be observed in the 6th, 
9th, 12th, 15th, and 18th month after completion of 
radiotherapy. A total of 5 models were built using K-nearest 
neighbor (KNN), logistic regression, random forest (RF), 
support vector classification (SVC), and fully connected 
network (FCN) approaches. The first 4 models were built 
using the Scikit-learn package (38) while the last model was 
built using the PyTorch package (39). To build the FCN, 
we implemented 5 hidden layers with 64, 128, 256, 512, 
and 64 neurons each. The dropout strategy (40) was applied 
after each hidden layer to improve the generalizability of 
the models. Accordingly, the nonlinear fitting ability was 
promoted, and overfitting because of numerous parameters 
was alleviated.

Owing to the small sample size used in the study, the 

models were evaluated using 5×5-fold cross-validation, 
with 130 samples for the training set and 32 samples for 
the validation set in each fold. During each training phase, 
the data in the training set were divided into 2 parts based 
on 4-fold cross-validation, one of which was used for 
training the model and the other for model hyperparameter 
adjustment. Feature selection and model training were 
performed only on the training set, and the validation set 
was used only to evaluate the performance of the trained 
models. The receiver operating characteristic (ROC) 
curves and the areas under the ROC curves (AUCs) were 
calculated as comprehensive evaluation indices to evaluate 
the model performance in terms of sample sorting quality. 
This approach is suitable for obtaining robust evaluation 
results, particularly when the numbers of positive and 
negative samples are unbalanced. 

To explore the prognostic prediction value of radiomics 
features extracted from different MRI sequences and 
ROIs, these radiomics features were used to build models 
separately, and their performance was compared. In 
addition, to explore the prognostic prediction value at 
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different time points, models used to predict disease 
progression at the 6th, 9th, 12th, 15th, and 18th month after 
completion of radiotherapy were separately constructed and 
compared.

Finally, to evaluate the effectiveness of the predictive 
model in stratifying patients, the study patients were 
divided into high-risk and low-risk groups for recurrence 
and disease progression at the 12th month based on the 

predictive results. Considering 50% probability value as the 
cutoff value, the patients predicted to relapse were included 
in the high-risk group while the patients predicted to not 
relapse were included in the low-risk group.

Statistical methods

The log-rank test was used to compare Kaplan-Meier 
survival curves, and the DeLong test was used to compare 
the ROC curves of different models. All statistical tests 
were 2-sided with a statistical significance of P<0.05, and 
all analyses were performed using MedCalc version 20 
(MedCalc Software, Ostend, Belgium).

Results

A total of 162 patients with primary HGG were enrolled 
in the study. The patient numbers used by the models (the 
number of samples used in the models) predicting disease 
progression and recurrence at the 6th, 9th, 12th, 15th, and 
18th month were 162, 153, 145, 136, and 130, respectively. 
Among these, the number of cases of disease progression 
at the 6th, 9th, 12th, 15th, and 18th month (the number of 
positive samples) was 63, 71, 85, 98, and 103, respectively. 
All patients had undergone surgery followed by adjuvant 
chemoradiotherapy. The basic clinical information of the 
patients is summarized in Table 1.

The AUC for predicting disease progression and 
recurrence at the 6th, 9th, 12th, 15th, and 18th month after 
completing radiotherapy when all radiomics and clinical 
features were used for feature selection and model building 
is shown in Figure 2. Similar results were observed for 
models built using different machine learning methods, 
and the P value was between 0.07 and 0.84 when models 
were compared to each other using the DeLong test. 
The performance for predicting recurrence at the 12th, 
15th, and 18th month was better than that at the 6th and 
9th month. The DeLong test revealed that there was no 
significant difference between the models’ predictions for 
the 12th month and those for the 18th month (P=0.55 using 
the DeLong test), but there were significant differences 
between the models’ predictions for the 12th month 
and those for the 6th and 9th month (P<0.001 using the 
DeLong test). Since the models performed better for 
predicting disease progression at the 12th month and the 
positive and negative samples were relatively balanced for 
this task, we chose recurrence or disease progression at 
the 12th month as the prediction target in our subsequent 

Table 1 Patient characteristics

Clinical characteristic Range Count Frequency

WHO grade

WHO III 58 36%

WHO IV 104 64%

Gender

Male 97 60%

Female 65 40%

Age (years)

<20 5 3%

20–40 44 27%

40–60 84 52%

>60 29 18%

Prescription dose (Gy) 58.5 (20–63.4)

<60 26 16%

60 112 69%

>60 24 15%

Radiotherapy fractions 29 (10–44)

<30 21 13%

30 138 85%

>30 3 2%

Time interval from surgery to radiotherapy (days)

<40 8 5%

40–90 133 82%

>90 21 13%

Duration of radiotherapy (days)

<40 37 23%

40–45 105 65%

>45 20 12%

WHO, World Health Organization.
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analysis.
To evaluate the predictive value of single MRI sequences, 

radiomics features extracted from a single-sequence MRI 
(including GTV and CTV features) combined with clinical 
features were used for feature selection and model building. 
The AUC for predicting recurrence and disease progression 
at the 12th month after completing radiotherapy is shown 
in Figure 3. Models using radiomics features from only 
T2WI or FLAIR outperformed those from CE-T1WI 
and T1WI (P<0.001 using the DeLong test). In addition, 
the models combining radiomics features from T2WI and 
FLAIR outperformed those using radiomics features from 
any single MRI sequence and significantly outperformed 
those using features from all 4 MRI sequences (P<0.001 
using the DeLong test), as illustrated in Figure 4.

To evaluate the predictive value of radiomics features 
extracted from different ROIs, features extracted from the 
GTV and CTV were used separately for feature selection 
and model building. The AUC for predicting recurrence and 
disease progression at the 12th month after completion of 
radiotherapy is shown in Figure 5. Although the models using 
only CTV features outperformed those using GTV features 
(P<0.001 using the DeLong test), model performance did not 
improve when a combination of CTV and GTV features was 
used (P=0.544 using the DeLong test).

For insight into important features, feature selection was 
repeated 5 times in a 5-fold cross-validation of models using 
clinical features and CTV features, and the final number of 
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Figure 2 AUC for predicting disease progression and recurrence 
at the 6th, 9th, 12th, 15th, and 18th month after completion of 
radiotherapy when all radiomics features and clinical features 
were used for feature selection and model building. AUC, the area 
under the receiver operating characteristic curve; KNN, K-nearest 
neighbor; SVC, support vector classification; RF, random forest; 
FCN, fully connected network.
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Figure 3 AUC for predicting recurrence and disease progression at 
the 12th month after completion of radiotherapy when radiomics 
features extracted from a single-sequence MRI were combined 
with clinical features for feature selection and model building. 
KNN, K-nearest neighbor; SVC, support vector classification; 
RF, random forest; FCN, fully connected network; AUC, the area 
under the receiver operating characteristic curve; T1WI, T1-
weighted imaging; CE-T1WI, contrast-enhanced T1-weighted 
imaging; T2WI, T2-weighted imaging; FLAIR, fluid-attenuated 
inversion recovery; MRI, magnetic resonance imaging. 

Figure 4 AUC for predicting recurrence and disease progression at 
the 12th month after completion of radiotherapy when radiomics 
features extracted from a single-sequence MRI were combined to 
build predictive models. KNN, K-nearest neighbor; SVC, support 
vector classification; RF, random forest; FCN, fully connected 
network; AUC, the area under the receiver operating characteristic 
curve; T2WI, T2-weighted imaging; FLAIR, fluid-attenuated 
inversion recovery; MRI, magnetic resonance imaging. 
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features selected for the machine learning model construction 
ranged from 10 to 20. Five features were repeatedly selected 
in each feature selection, including a clinical feature (grad) 
and 4 radiomics features [high gray level zone emphasis in 
the gray level size zone matrix (GLSZM), long run high gray 
level emphasis in the gray level run length matrix (GLRLM), 
first-order range, and large dependence low gray level 

emphasis in the gray level dependence matrix (GLDM)]. The 
distribution of these feature values was significantly different 
among patients grouped by disease progression at the 12th 
month (Figure 6). Furthermore, the relationship between 
these selected CTV features and their corresponding GTV 
features is shown in Figure 7, and the Pearson correlation 
coefficients were found to be 0.78, 0.71, 0.52, and 0.48, 
respectively, for the high gray level zone emphasis, long run 
high gray level emphasis, large dependence low gray level 
emphasis, and first-order range features extracted from the 
GTV and CTV.

The AUCs for the KNN, SVC, logistic regression, RF, 
and FCN models built using clinical features alone were 
0.63, 0.60, 0.64, 0.65, and 0.65, respectively. The AUCs 
for the KNN, SVC, logistic regression, RF, and FCN 
models built using radiomics features alone were 0.77, 0.76, 
0.76, 0.75, and 0.77, respectively; combining clinical and 
radiomics features produced corresponding AUCs of 0.77, 
0.77, 0.76, 0.76, and 0.78, respectively, for the KNN, SVC, 
logistic regression, RF, and FCN models. The predictive 
values of the radiomics features were significantly higher 
than those of the clinical features (P<0.001 using the 
DeLong test), and the addition of clinical features did not 
significantly improve the performance of any of the models. 
The ROC curves are shown in Figure 8A.

These results indicate that the radiomics features 
extracted from MRI images obtained before radiotherapy 
have good predictive value for the progression of HGG 
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Figure 5 AUC for predicting recurrence and disease progression at 
the 12th month after completion of radiotherapy when radiomics 
features extracted from the GTV and CTV were used separately 
for feature selection and model building. KNN, K-nearest 
neighbor; SVC, support vector classification; RF, random forest; 
FCN, fully connected network; AUC, the area under the receiver 
operating characteristic curve; GTV, gross tumor volume; CTV, 
clinical target volume. 
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at 12 months after radiotherapy. The prediction models 
performed well when they were built using clinical and 
radiomics features extracted from T2WI and FLAIR 
(including GTV and CTV features). The AUCs of the best 
model were 0.70, 0.68, 0.78, 0.78, and 0.78, respectively, 
for predicting recurrence and disease progression at the 
6th, 9th, 12th, 15th, and 18th month after completion of 
radiotherapy. The ROC curves are shown in Figure 8B.

To evaluate the effectiveness of the predictive model in 
stratifying patients, the study patients were divided into 
high-risk and low-risk groups for recurrence and disease 
progression at the 12th month based on the predictive 
results. Consequently, the high-risk group exhibited shorter 
disease-free survival compared to the low-risk group, as 
illustrated in Figure 9 (P<0.001 using the log-rank test). 
The median time to progression was 9.5 months for all 
patients, while the median time to progression was 5.1 
and 18.3 months for the high-risk group and low-risk 
group, respectively. Additionally, 74%, 67%, and 40% of 
patients had progression-free survival longer than 6, 12, and  
18 months in the low-risk group, respectively. In the high-
risk group, 48%, 29%, and 8% of patients had progression-
free survival longer than 6, 12, and 18 months, respectively.

Discussion

In this study, the predictive value of MRI for disease 
progression and recurrence in patients with HGG was 
investigated using radiomics and machine learning. The 
influence of different MRI sequences, ROIs, and prediction 

time points on prediction results was also explored. The 
development and application of radiomics and machine 
learning approaches have enabled the extraction of data 
and image attributes from medical images to assist clinical 
practice. To this end, the medical images obtained in this 
study were used to predict patient outcomes to aid in clinical 
decision-making on factors including dose increment, 
radiotherapy plan tradeoff, adjuvant chemoradiotherapy 
strategy, and follow-up strategy.

To focus on the value of MRI in predicting patient 
outcomes, we assessed 5 machine learning models and 
obtained similar results for each model. Models for 
predicting disease progression and recurrence at the 12th, 
15th, and 18th month after radiotherapy were superior 
to those for predicting disease progression at the 6th and 
9th month. These results suggest that structural MRI 
information obtained between surgery and radiotherapy had 
significant predictive value in determining the long-term 
prognoses for patients with HGG.

Previously, Lundemann et al.  (17) predicted the 
recurrence region of glioma based on PET, DWI, and 
dynamic contrast-enhanced imaging, and obtained a voxel-
based prediction model with an AUC of 0.77. Tan et al. (9)  
analyzed CE-TIWI and FLAIR images for diagnosing 
HGG using radiomics and built models to predict overall 
survival (OS), obtaining a concordance index (C-index) of 
0.76. Liu et al. (8) used a similar method to analyze T2WI 
images for low-grade glioma and obtained a C-index of 0.82. 
The AUC and C-index are indicators reflecting the sorting 
ability of models, with AUC constituting a special case of 
the C-index on the binary classification task, and both are 
comparable to a certain extent. In our study, the AUC of 
the best model was 0.78, which was similar to the results 
obtained in the above-mentioned research. Based on the 
results of our prediction models, patients could be easily 
stratified into 2 subgroups. The patients in the low-risk 
group had a significantly longer median time to progression 
than did those in the high-risk group. In general, our 
results indicate that postoperative structural MRI images 
alone have certain predictive value in forecasting disease 
progression in glioma patients.

Multiple MRI sequence types, including T1WI, CE-
T1WI, T2WI, and FLAIR, were used in this study. 
Although these are all structural MRI sequence types, 
the results of this study indicate that T2WI and FLAIR 
images are more valuable in predicting HGG disease 
prognosis than are T1WI or CE-T1WI, possibly because 
slightly better tumor identification can be obtained from 
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T2WI images than from T1WI or CE-T1WI images (8). 
Combining the radiomics features extracted from T2WI 
and FLAIR improved the prediction results, suggesting that 
T2WI and FLAIR provide complementary information 
for prognosis prediction. However, combining radiomics 
features extracted from all 4 MRI sequences degraded the 
prediction performance, possibly because using all of the 
radiomics features resulted in overfitting (41). Studies with 
significantly larger sample sizes are needed to confirm this.

Radiomics is an ROI-specific image analysis method. 
Takada et al. (42) demonstrated that the ROI range has an 
impact on the radiomics analysis results, with better results 
observed when the ROI is properly expanded based on the 
target area. In this study, we performed radiomics analysis 
based on both GTV and CTV and found that models built 
using CTV radiomics features outperformed those using 
GTV radiomics. Combining GTV and CTV features did 
not improve the performance of the models, as the CTV 
includes the GTV as well as potential lesion areas around 
the tumor. This may be because some GTV and CTV 
features are correlated and provide redundant information. 
Another possibility is that CTV features are more robust to 
ROI contouring errors compared to GTV features. Further 
research is needed to explore this.

Tsien et al. (5) demonstrated that increasing the 
prescription dose of radiotherapy can prolong the OS time. 
However, adding clinical features (including dose features) 
during model construction did not improve the performance 
of the models in this study, possibly because of the 
redundancy between clinical and radiomics features or the 
difference between the 2 studies in terms of the maximum 
prescribed doses. In this study, there were no significant 
differences in the prescribed doses: 69% of the patients 
were prescribed 60 Gy, and the maximum prescribed 
dose was 63.9 Gy. In Tsien et al.’s study, by contrast, there 
was a significant prescribed dose stratification with a 
maximum prescribed dose of 81 Gy. The predictive value 
of prescription doses for patient prognosis requires further 
study.

Despite its careful design, there were some limitations 
to this study. First, because this was a retrospective study, 
there were gaps in the details of the treatment course. The 
research was conducted based on information retained by 
the hospital information system. Furthermore, only 162 
patients were enrolled in the study, and all were from the 
same hospital. Based on this limited data, cross-validation 
was used to evaluate our models and no external validation 
set was used. Thus, more data from multiple centers will be 

needed to verify the generalizability of the results. Finally, 
radiomics features were extracted using PyRadiomics 
without considering the influence of the radiomics software 
used.

Conclusions

In this study, it was shown that structural MRI obtained 
before radiotherapy can be used to predict disease 
progression or recurrence after treatment for HGG, 
with better results observed in the prediction of long-
term outcomes. T2WI and FLAIR demonstrated greater 
predictive value than did T1WI and CE-T1WI in 
predicting the prognosis of HGG. Models using radiomics 
features extracted from the CTV outperformed those using 
features obtained from the GTV. The prediction models 
could effectively stratify patients with HGG, suggesting 
the usefulness of the proposed method as an aid in clinical 
radiotherapy plans and decision-making.
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