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Background: Microsatellite instability (MSI) status is an important indicator for screening patients with 
endometrial cancer (EC) who have potential Lynch syndrome (LS) and may benefit from immunotherapy. 
This study aimed to develop a magnetic resonance imaging (MRI)-based radiomics nomogram for the 
prediction of MSI status in EC.
Methods: A total of 296 patients with histopathologically diagnosed EC were enrolled, and their MSI 
status was determined using immunohistochemical (IHC) analysis. Patients were randomly divided into the 
training cohort (n=236) and the validation cohort (n=60) at a ratio of 8:2. To predict the MSI status in EC, 
the tumor radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted 
images, which in turn were selected using one-way analysis of variance (ANOVA) and the least absolute 
shrinkage and selection operator (LASSO) algorithm to build the radiomics signature (radiomics score; 
radscore) model. Five clinicopathologic characteristics were used to construct a clinicopathologic model. 
Finally, the nomogram model combining radscore and clinicopathologic characteristics was constructed. The 
performance of the three models was evaluated using receiver operating characteristic (ROC), calibration, 
and decision curve analyses (DCA).
Results: Totals of 21 radiomics features and five clinicopathologic characteristics were selected to develop 
the radscore and clinicopathological models. The radscore and clinicopathologic models achieved an area 
under the curve (AUC) of 0.752 and 0.600, respectively, in the training cohort; and of 0.723 and 0.615, 
respectively, in the validation cohort. The radiomics nomogram model showed improved discrimination 
efficiency compared with the radscore and clinicopathologic models, with an AUC of 0.773 and 0.740 in 
the training and validation cohorts, respectively. The calibration curve analysis and DCA showed favorable 
calibration and clinical utility of the nomogram model.
Conclusions: The nomogram incorporating MRI-based radiomics features and clinicopathologic 
characteristics could be a potential tool for the prediction of MSI status in EC.
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Introduction

Endometrial cancer (EC) is one of the most common 
malignancies of the female reproductive system, with 
an increasing incidence worldwide (1). In China, there 
were an estimated 69,000 new cases and 16,000 deaths in 
2015, making uterine cancer the second most common 
gynecologic malignancy next to the cervical cancer (2). It is 
a heterogeneous disease with various molecular features, 
including microsatellite instability (MSI). By inactivating 
tumor suppressor genes, the mutations resulting from MSI 
can drive oncogenesis (3,4). Reports have shown that MSI 
is a common molecular alteration in different tumor types, 
among which EC has the highest prevalence, followed by 
colorectal cancer (CRC) (3,5).

Microsatellites are short repetitive nucleotide sequences 
in DNA which tend to cause errors during replication due 
to DNA polymerase slippage (6). The term MSI refers to 
the hypermutator phenotype that occurs in tumors with 
deficient DNA mismatch repair (MMR) (7). A significant 
proportion of Lynch syndrome (LS) caused by pathogenic 
germline mutations in MMR genes (8) shows MSI. 
Meanwhile, EC often occurs as sentinel cancer in women 
with LS (9). Therefore, testing of MSI status is important 
for the selection of treatment strategies and the prevention 
of secondary malignancies in patients with EC (10,11). In 
addition, studies have shown that MSI status has therapeutic 
implications, since patients with advanced-stage MSI cancers 
and metastastic MSI solid tumors might greatly benefit from 
immunotherapy (12,13). Since the approval of pembrolizumab 
for the treatment of unresectable or metastastic MSI solid 
tumors in 2017, the assessment of MSI status has become 
vital for all advanced cancers, including ECs (13). Currently, 
MSI status is mainly assessed in two ways: MSI testing and 
MMR assessment, both of which are highly concordant 
with each other and sensitive and specific (14). However, 
screening is expensive and not universal beyond tertiary 
centers (15). Hence, given the common use of magnetic 
resonance imaging (MRI) in patients with EC, developing 
a noninvasive and economical method to detect MSI/MMR 
status is of great importance for screening patients who 
might benefit from immunotherapy, and for improving the 
prognosis of these patients.

Radiomics is an emerging field which can measure 
associations between high-throughput information 
extracted from medical images and clinical outcomes to 
support personalized decision-making (16,17). Compared 

with conventional medical imaging, radiomics can expose 
disease characteristics that are invisible to the naked eye 
and has a great potential to capture important phenotype 
information and thus offer more valuable imaging 
biomarkers. Recently, radiomics has been widely applied in 
research of EC, such as the evaluation of risk stratification, 
lymph node metastasis (LNM), myometrial infiltration, and 
lymphovascular space invasion (LVSI) (18-20). Few studies 
have focused on the assessment of MSI status of EC. One 
study (21) demonstrated moderate prediction performance 
of MSI when using a CT-based radiomics model; however, 
pelvic CT is not the first choice for preoperative evaluation 
of gynecologic patients (21,22). As a first-choice imaging 
technique with superior tissue resolution, MRI has been 
shown to optimize the preoperative evaluation of patients 
with EC.

Therefore, this study aimed to develop a radiomics 
nomogram based on MRI and clinicopathologic information 
to predict MSI status in patients with EC. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-255/rc).

Methods

Study population

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This 
retrospective study was approved by the institutional 
review board of Fudan University Shanghai Cancer Center 
(FUSCC), and individual consent for this retrospective 
analysis was waived. We reviewed 412 patients with 
histopathologically diagnosed EC who had undergone pelvic 
MRI examination within 2 weeks before surgery in FUSCC 
between January 2017 and December 2020. The exclusion 
criteria were as follows: (I) no immunohistochemistry (IHC) 
for MMR proteins (MSH2, MSH6, MLH1, and PMS2) 
was available (n=68); (II) a lack of definable lesions on MRI 
(n=42); (III) errors when opening images using MITK 
software to segmented tumors (n=4); or (IV) patients had 
already received neoadjuvant chemotherapy (NACT) (n=2). 
Finally, a total of 296 patients with EC and IHC-supported 
MSI/MMR status were included in this study (Figure 1). 
Patients were randomly divided into the training cohort 
(n=236) and the validation cohort (n=60) according to a 
ratio of 8:2.

https://qims.amegroups.com/article/view/10.21037/qims-22-255/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-255/rc
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Clinicopathologic characteristics

The following clinicopathologic data were recorded: 
patient age, menopausal status, reproductive history, 
history of hypertension and diabetes mellitus, obesity, 
tumor histopathologic type, grade, lower uterine segment 
involvement (LUSI), presence of myometrial invasion (MI), 
LVSI, LNM, International Federation of Gynecology and 
Obstetrics (FIGO) stage, and serum carbohydrate antigen 
(CA)125 and CA199 levels. Obesity was defined as a body 
mass index (BMI) ≥28 kg/m2 (23), and the tumor was staged 
according to the FIGO cancer report 2018 (24).

MSI status assessment

The MSI status was determined via IHC staining of four 
MMR proteins (MLH1, MSH2, PMS2, and MSH6). 
Tumors with loss of expression of at least one of the four 
MMR proteins were classified as MSI or deficient mismatch 
repair (dMMR). In contrast, tumors with expression of all 
four MMR proteins were classified as microsatellite stability 
(MSS) or proficient mismatch repair (pMMR) (22).

MRI acquisition

All MRI were performed with a 1.5T or 3.0T MR scanner 
(Signa HDxt or Pioneer, GE, Milwaukee, WI, USA; Skyra, 
Prisma or Verio, Siemens, Erlangen, Germany; uMR 588, 
United Imaging, Shanghai, China). Patients lay supinely 

and breathed freely. The T2-weighted images (T2WI) and 
contrast-enhanced T1-weighted images (CE-T1WI) were 
archived for subsequent analysis. The parameters were as 
follows: for T2WI sequence, slice thickness: 4.0–6.0 mm, 
matrix: 256/512×256/512, repetition time: 2,015–4,200 ms, 
and echo time: 72.1–138.2 ms; and for CE-T1WI sequence, 
slice thickness: 3.0–6.0 mm, matrix: 256/512×256/512, 
repetition time: 3.51–6.77 ms, and echo time: 1.29–3.21 ms.  
The contrast agent (Magnevist, Bayer Schering, Berlin, 
German) was intravenously administrated at a dose of  
0.2 mL/kg body weight and an injection rate of 2–3 mL/s.

Tumor segmentation and radiomics feature extraction

Blinded to the patients’ clinical and pathologic information, 
the tumors were manually delineated slice-by-slice on 
sagittal T2WI and CE-T1WI to obtain volume of interest 
(VOI) by a junior radiologist (reader 1 with 3 years of 
experience in gynecologic imaging) using Medical Imaging 
Interaction Toolkit (MITK) software (version 2016.11.3; 
http://www.mitk.org/). Examples of tumor segmentation 
are shown in Figure S1 in a supplementary online appendix.

Each image was normalized by centering it at the 
mean with standard deviation. Meanwhile, voxel sizes 
were resampled into 1 mm3 by applying a B-spline 
curve interpolation algorithm. For each MRI sequence, 
quantitative radiomics features were extracted from VOIs 
using the open-access Python package, PyRadiomics 
v3.0.1 (http://www.radiomics.io/pyradiomics.html). The 

Figure 1 Data flow diagram of the study population. IHC, immunohistochemistry; MMR, DNA mismatch repair; EC, endometrial cancer; 
MRI, magnetic resonance imaging; MSI, microsatellite instability; MSS, microsatellite stability.

Patient collection (n=412)
•	 Pathologically proved as endometrial cancer
•	 Underwent MRI examination within 2 weeks before surgery
•	 From January 2017 to December 2020

Patient exclusion
•	 Didn't have an IHC for MMR proteins (n=68)
•	 Absent definable EC on MRI (n=42)
•	 Lacked of complete image layers (n=4)
•	 Received neoadjuvant chemotherapy (n=2)

296 patients included in this study 
MSI (n=98) vs. MSS (n=198)

Training cohort (n=236) 
MSI (n=76) vs. MSS (n=160)

Testing cohort (n=60) 
MSI (n=22) vs. MSS (n=38)

https://cdn.amegroups.cn/static/public/QIMS-22-255-Supplementary.pdf
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extracted features were divided into six categories: 18 first-
order features, 24 gray level co-occurrence matrix (GLCM) 
features, 16 gray level size zone matrix (GLSZM) features, 
16 gray level run length matrix (GLRLM) features, 5 
neighboring gray tone difference matrix (NGTDM) 
features, and 14 gray level dependence matrix (GLDM) 
features. All these feature classes were extracted from the 
original image and eight derived images applying eight 
image filters: wavelet, Laplacian of Gaussian (LoG, σ=1.0, 
2.0, 3.0, 4.0), square, square root, logarithm, exponential, 
gradient, and local binary pattern (LBP) in 3D. In addition, 
14 3D shape features were only extracted from the original 
image. Ultimately, a total of 1,967 radiomics features were 
extracted for each VOI from T2WI and CE-T1WI images.

The MRI images of 30 patients were randomly chosen 
to evaluate inter- and intra-observer agreement of radiomics 
features. To assess intra-observer reproducibility, reader 1 
repeatedly segmented the VOI on T2WI and CE-T1WI after 
two weeks. To assess inter-observer reproducibility, the second 
radiologist (reader 2, with 8 years of experience in gynecologic 
imaging) also independently performed VOI delineation, 
and radiomics features were extracted in an identical manner. 
The intraclass and interclass correlation coefficients (ICCs) 
were computed to evaluate the reproducibility of radiomics 
features. Features with ICCs lower than 0.75 indicating poor 
agreement were removed (25).

Feature selection and radiomics signature construction

For T2WI- and CE-T1WI-based radiomics features, 
one-way analysis of variance (ANOVA) was performed 
to eliminate the features that showed no significant 
differences between MSI and MSS tumors. All of the 
remaining features were included in the feature pool. After 
normalizing these features using z-score normalization, the 
least absolute shrinkage and selection operator (LASSO) 
algorithm was used to remove the redundant features and 
identify the optimal features using 10-fold cross-validation. 
The radiomics signature (Rradscore) was calculated for 
each patient using a linear combination of the selected 
features, which were weighted by their respective regression 
coefficients. Moreover, the Wilcoxon rank sum test was 
employed to evaluate the significant differences in the 
selected radiomics features with non-zero coefficients for 
predicting MSI tumors.

Five clinicopathologic features including age, grade, 
LUSI, and diabetes mellitus and reproductive history, which 
have been previously reported to be associated with MSI/

MMR status and LS-associated EC (26-29), were selected 
to build the clinicopathologic model.

Development and evaluation of prediction model

Three models, namely the radscore model, clinicopathologic 
model, and nomogram model combining the radiomics 
signature and clinicopathologic factors were developed 
using logistic regression in the training cohort. The optimal 
model selection was determined based on the Akaike 
information criterion (AIC).

The performance of the established models was evaluated 
based on three criteria. First, discrimination performance 
was assessed using receiver operating characteristic (ROC) 
curve analysis and quantified using the area under the curve 
(AUC) with a corresponding 95% confidence interval (CI), 
accuracy, sensitivity, and specificity. Net reclassification 
index (NRI) and total integrated discrimination index (IDI) 
were used to evaluate the additional benefit of the proposed 
model. Second, calibration performance was assessed 
through calibration curves measuring the agreement 
between the predicted and actual probability. Third, clinical 
application of the models was assessed using decision curve 
analysis (DCA), which quantified the net benefit for the 
interval of threshold probabilities. The flow chart of the 
study is displayed in Figure 2.

Statistical analysis

Mann-Whitney U, chi-square, or Fisher exact tests were 
used, as appropriate, to analyze significant differences of 
clinicopathologic features in the training and validation 
cohorts. Radiomics feature extraction was performed 
with Python programming language version 3.8 (Python 
Software Foundation, Wilmington, DE, USA). Statistical 
analysis of clinicopathologic features, radiomics feature 
selection, model building, and evaluation were conducted 
using R software version 3.5.2 (The R Foundation for 
Statistical Computing, Vienna, Austria). A P value <0.05 
was considered significant for all two-sided tests.

Results

Patient profiles

The 296 patients included 98 patients with MSI and  
198 patients with MSS. The clinicopathologic features of 
MSI and MSS tumors in the training and validation cohorts 



Lin et al. Favorable Performance of Nomogram for Predicting MSI in EC112

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(1):108-120 | https://dx.doi.org/10.21037/qims-22-255

are shown in Table 1. There were no significant differences 
in clinicopathologic features between patients with different 
MSI status in either cohort, except for grade in the 
validation cohort (P=0.024).

Feature selection and radscore building

Of the T2WI- and CE-T1WI-based radiomics features, 
1,759 and 1,802 features were considered stable, respectively 
(inter- and intraobserver ICCs ≥0.75); 333 and 44 significant 
features for MSI were retained, respectively, after ANOVA; 
and 21 most valuable radiomics features were selected using 
LASSO in the training cohort (Figure 3). The radscore of 
each patient was calculated using the 21 radiomics features 
with non-zero coefficients (Table S1). More detailed 

information is included in the supplementary online 
appendix. Moreover, the radscores were significantly different 
between MSI and MSS tumors in the training cohort 
(P<0.0001) and in the validation cohort (P<0.01) (Figure 4).

Development and evaluation of the nomogram

The selected five clinicopathologic features (age, grade, 
LUSI, diabetes mellitus and reproductive history) 
and 21 radiomics features were used to construct a 
clinicopathologic model and a radscore model, respectively. 
The nomogram model (Figure 5) was further constructed 
integrating clinicopathologic and radiomics factors. 

The ROC curves of the three models in both the training 
and validation cohorts are presented in Figure 6. The AUC 

Figure 2 Flow chart of the study including tumor segmentation, feature extraction, feature selection, model building, and model evaluation. 
CE-T1WI, contrast-enhanced T1-weighted image; T2WI, T2-weighted image; LASSO, least absolute shrinkage and selection operator; 
ROC, receiver operating characteristic.
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Table 1 Clinicopathologic characteristics of patients with MSI and MSS tumors in the training and validation cohorts

Clinicopathologic 
characteristics

Subgroups
Training cohort Validation cohort

MSI (n=76) MSS (n=160) P value MSI (n=22) MSS (n=38) P value

Age (years) <60 60 (78.9) 110 (68.8) 0.103 16 (72.7) 29 (76.3) 0.757

≥60 16 (21.1) 50 (31.3) 6 (27.3) 9 (23.7)

Histopathologic type EEC 68 (89.5) 148 (92.5) 0.435 22 (100.0) 35 (92.1) 0.292

Non-EEC 8 (10.5) 12 (7.5) 0 (0.0) 3 (7.9)

Grade 1 28 (36.8) 63 (39.4) 0.920 3 (13.6) 15 (39.5) 0.024

2 31 (40.8) 64 (40.0) 17 (77.3) 15 (39.5)

3 17 (22.4) 33 (20.6) 2 (9.1) 8 (21.1)

MI <1/2 51 (67.1) 107 (66.9) 0.942 15 (68.2) 24 (63.2) 0.837

≥1/2 16 (21.1) 36 (22.5) 6 (27.3) 10 (26.3)

None 9 (11.8) 17 (10.6) 1 (4.5) 4 (10.5)

LVSI (+) 13 (17.1) 26 (16.3) 0.869 7 (31.8) 6 (15.8) 0.197

(−) 63 (82.9) 134 (83.8) 15 (68.2) 32 (84.2)

LNM (+) 4 (5.3) 11 (6.9) 0.635 1 (4.5) 2 (5.3) 1.000

(−) 72 (94.7) 149 (93.1) 21 (95.5) 36 (94.7)

FIGO stage I 65 (85.5) 130 (81.3) 0.396 19 (86.4) 29 (76.3) 0.784

II 4 (5.3) 17 (10.6) 2 (9.1) 6 (15.8)

III–IV 7 (9.2) 13 (8.1) 1 (4.5) 3 (7.9)

LUSI (+) 15 (19.7) 25 (15.6) 0.431 4 (18.2) 4 (10.5) 0.449

(−) 61 (80.3) 135 (84.4) 18 (81.8) 34 (89.5)

Menopausal status Post- 39 (51.3) 96 (60.0) 0.208 14 (63.6) 22 (57.9) 0.662

Pre- 37 (48.7) 64 (40.0) 8 (36.4) 16 (42.1)

Reproductive history Yes 74 (97.4) 145 (90.6) 0.061 21 (95.5) 35 (92.1) 1.000

No 2 (2.6) 15 (9.4) 1 (4.5) 3 (7.9)

Hypertension (+) 22 (28.9) 55 (34.4) 0.406 7 (31.8) 15 (39.5) 0.591

(−) 54 (71.1) 105 (65.6) 15 (68.2) 23 (60.5)

Diabetes mellitus (+) 5 (6.6) 21 (13.1) 0.133 1 (4.5) 6 (15.8) 0.246

(−) 71 (93.4) 139 (86.9) 21 (95.5) 32 (84.2)

Obesity (+) 13 (17.1) 32 (20.0) 0.597 3 (13.6) 7 (18.4) 0.732

(−) 63 (82.9) 128 (80.0) 19 (86.4) 31 (81.6)

CA125 (U/mL) 27.95±36.79 30.47±56.69 0.911 23.83±15.49 24.22±18.21 0.555

CA199 (U/mL) 29.06±73.72 29.54±84.34 0.123 17.57±14.89 19.82±17.34 0.679

Continuous variables are shown as mean ± standard deviation. Categorical variables are shown as number of patients with percentages 
in parentheses. MSI, microsatellite instability; MSS, microsatellite stability; EEC, endometrial endometrioid carcinoma; MI, myometrial 
invasion; LVSI, lymphovascular space invasion; LNM, lymph node metastasis; FIGO, International Federation of Gynecology and 
Obstetrics; LUSI, lower uterine segment involvement; CA125, carbohydrate antigen 125; CA199, carbohydrate antigen 199. 
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Figure 3 Radiomics feature selection using the LASSO algorithm. (A) Tuning parameter (λ) selection in the LASSO model via 10-fold 
cross-validation based on minimum criterion. The optimal λ value of 0.0214 with log (λ) =−3.85 was selected. (B) A LASSO coefficient 
profile plot of the 377 radiomics features. The vertical line indicates the coefficient size of each resulting feature and the corresponding 
selected log (λ). LASSO, least absolute shrinkage and selection operator.
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Figure 4 Boxplots show the difference in the radscore between the MSI and MSS tumors in the training (A) and validation cohorts (B).  
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for predicting MSI in the clinicopathologic, radscore, and 
radiomics nomogram models were 0.600 (95% CI: 0.526 
to 0.674), 0.752 (95% CI: 0.688 to 0.817), and 0.773 (95% 
CI: 0.712 to 0.834) in the training cohort, respectively; 
and 0.615 (95% CI: 0.467 to 0.763), 0.723 (95% CI: 
0.576 to 0.869), and 0.740 (95% CI: 0.596 to 0.885) in the 
validation cohort, respectively. The corresponding accuracy, 
sensitivity, and specificity values are listed in Table 2. The 
nomogram model significantly improved risk reclassification 
for MSI status compared with the clinicopathologic model, 
with a categorical NRI of 22.4% (95% CI: 7.1% to 37.7%) 

and IDI of 17.3% (95% CI: 11.9% to 22.7%) in the training 
cohort, and a categorical NRI of 46.6% (95% CI: 17.5% to 
75.8%) and IDI of 17.0% (95% CI: 6.7% to 27.3%) in the 
validation cohort (all P<0.05).

The calibration curve of the nomogram demonstrated 
good consistency between prediction and observation 
in the training and validation cohorts (Figure 7). The 
DCA for the three models in the validation cohort is 
presented in Figure 8. The decision curve showed that the 
nomogram model could add more net benefit than ‘none’ 
or ‘all’ treatment within a range from 0.03 to 0.05 and 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 1 January 2023 115

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(1):108-120 | https://dx.doi.org/10.21037/qims-22-255

Figure 5 Development of radiomics nomogram based on five selected clinicopathologic features and radscore. LUSI, lower uterine segment 
involvement.
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Figure 6 The ROC curves of clinicopathologic, radscore, and nomogram models in the training (A) and validation (B) cohorts. AUC, area 
under the curve; ROC, receiver operating characteristic.

0.12 to 0.90 of threshold probability, while the radscore 
and clinicopathologic models could add more net benefit 
within a range of 0.22 to 0.76, 0.04 to 0.16, and 0.20 to 
0.63, respectively. The nomogram presented better clinical 
usefulness compared to the radscore and clinicopathologic 
models.

Discussion

To the best of our knowledge, very few studies have focused 
on the evaluation of MSI status of EC by using a radiomics-
based method. In this study, we developed a radiomics 
nomogram to assess MSI status based on preoperative pelvic 
MRI images in patients with EC. Our results indicated that 
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the developed nomogram combining radiomics features and 
clinicopathologic factors showed favorable discrimination 
efficiency for predicting MSI status of EC and demonstrated 
good fitness and clinical usefulness.

MSI is common in different malignancies, especially in EC 
and CRC (30). A previous study reported a prevalence of MSI 
of 26–33% in EC (31). In our study, approximately 33% of 
EC had MSI, and this prevalence was similar to that of other 
studies (5,32). Assessing MSI status is important to screen 
for LS-related EC and to identify patients who might benefit 
from immunotherapy. However, MSI assessment using 
polymerase chain reaction (PCR) or IHC is not widely used in 
many basic medical institutions (33). Hence, the need remains 
to develop new biomarkers to help identify MSI status of EC.

High-throughput information extracted from medical 
images with radiomics methods commonly comprises 
histogram features, shape features, and texture features, 
which could help capture tumor heterogeneity to provide 
clinical decision support (34). Several studies have 

Table 2 Prediction performance of clinicopathologic, radscore, and nomogram models

Model
Training cohort Validation cohort

AUC (95% CI) ACU SEN SPE AUC (95% CI) ACU SEN SPE

Clinicopathologic 0.600 (0.526–0.674) 0.542 0.763 0.438 0.615 (0.467–0.763) 0.467 0.682 0.342

Radscore 0.752 (0.688–0.817) 0.708 0.671 0.725 0.723 (0.576–0.869) 0.683 0.455 0.816

Nomogram 0.773 (0.712–0.834) 0.746 0.618 0.806 0.740 (0.596–0.885) 0.767 0.500 0.921

AUC, the area under the curve; CI, confidence interval; ACU, accuracy; SEN, sensitivity; SPE, specificity.
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Figure 7 Calibration curves of the nomogram in the training (A) and validation (B) cohorts. The diagonal line represents the perfect match 
between nomogram-predicted and actual probability. The solid line represents bias-corrected estimated results of the nomogram employing 
1,000 bootstrap sampling.
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Figure 8 Decision curve analysis of the clinicopathologic, 
radscore, and nomogram models in the validation cohort. The 
clinicopathologic, radscore, and nomogram models add more net 
benefit than ‘none’ or ‘all’ treatment within a range of 0.04 to 
0.16 and 0.20 to 0.63, 0.22 to 0.76, 0.03 to 0.05, and 0.12 to 0.90, 
respectively.
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demonstrated that radiomics features could be used as 
valuable biomarkers to help identify MSI status in CRC and 
EC. Studies by Cao, Fan, and Golia Pernicka et al. (33,35,36) 
achieved a favorable predictive performance for MSI status in 
CRC by combining CT based-radiomics features with clinical 
signatures. Moreover, Zhang et al. (37) and Li et al. (38)  
developed MRI-based radiomics models and achieved 
excellent predictive efficacy for MSI in rectal cancer. 
Regarding EC, Veeraraghavan et al. (21) adopted machine 
learning by integrating radiomics features extracted from 
contrast-enhanced CT images and clinical factors and 
achieved moderate accuracy in distinguishing MMR-
deficient and mutational burden-high (TMB-H) ECs. 
However, the inherent limitation of CT images to display 
tumors hinders CT-based radiomics clinical application. 
In contrast, given the advantages of excellent soft tissue 
resolution, multiparameter imaging, and nonionizing 
radiation, MRI based-radiomics models may, therefore, 
provide more valuable information (22,39).

In this study, we built three predictive models to predict 
MSI status of EC: a clinicopathologic model based on 
clinicopathologic characteristics, a radscore model based 
on radiomics features extracted from MRI images, and 
a nomogram combining radscore and clinicopathologic 
characteristics. We chose five relevant factors to develop 
the clinicopathologic model and demonstrated its less 
than satisfactory performance in both cohorts. The results 
could possibly be explained by our sample, which differed 
from those in studies undertaken in other countries 
and showed no significant differences in terms of these 
clinicopathologic features. Our results are consistent with 
Zhang et al.’s study (37) on rectal cancer and indicate that 
clinical information alone is insufficient to identify MSI 
status. A total of 21 radiomics features, including 16 features 
from T2WI and 5 features from CE-T1WI, were selected 
to build the radscore model. Among the selected features, 
the majority were extracted from the derived images. 
Furthermore, the radiomics nomogram, which incorporated 
radiomics features and clinicopathologic characteristics, 
achieved a higher discriminative performance than the 
radscore and clinicopathologic models. The reclassification 
measures of discrimination suggested that the nomogram 
model significantly improved the identification of MSI 
compared with the clinicopathologic model. These findings 
suggest that MRI-based radiomics features may offer 
additional biological information beyond clinicopathologic 
characteristics and have independent value in the prediction 
of MSI status in EC (40,41). Compared with Wang et al.’s (42)  

study based on quantitative shape features of the tumor, 
our nomogram showed better performance in predicting 
MSI status in EC. However, our nomogram model seemed 
to have lower predictive performance than the similar 
MRI-radiomics model of CRC. This is probably due to 
the less obvious heterogeneity in EC with different MSI 
status than in CRC (43). Moreover, MSI is tumor type-
specific and impacts on gene expression and phenotype 
(44,45), which may account for the varying predictive 
performance in dif ferent tumor types.  The DCA 
showed that our nomogram had greater net benefit than 
radscore or clinicopathologic characteristics models in 
the threshold probability of 0.03 to 0.05 and 0.12 to 0.90 
in the assessment of MSI status in EC, and, therefore, 
demonstrated promising clinical utility. Even though 
the discriminative efficiency of our nomogram was only 
moderate, its favorable calibration performance and clinical 
utility indicated its clinical value.

Our study had several limitations. First, this was a 
retrospective study carried out in a single center, making 
selection bias inevitable. Moreover, the sample size was 
relatively small. Therefore, the results of the study need 
to be further validated by data from multicenter studies 
involving larger samples. Second, IHC was used to evaluate 
MSI status. Although IHC for MMR proteins assessment 
is a reliable and cost-effective technique for analysis of 
MSI status, PCR is still considered the gold standard for 
assessing MSI status. The disagreement between these 
two testing methods ranged from 2% to 8% according to 
different studies (8,46) and may have impacted our results. 
Third, due to incomplete data, diffusion-weighted imaging 
(DWI), a valuable sequence for EC subtyping, grading, and 
staging, was not used to develop the radiomics nomogram. 
Fourth, manual region of interest (ROI) segmentation was 
time-consuming and might have generated unavoidable 
observer bias (47). Consequently, deep learning-based 
image segmentation is recommended in the future. 

In summary, we developed a radiomics nomogram 
incorporating MRI-based radiomics features and 
clinicopathologic characteristics to identify MSI status in 
EC. This nomogram could be a potential tool for screening 
LS, preventing second malignancies, and selecting patients 
who might benefit from immunotherapy.
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Figure S1 Examples of tumor segmentation. The tumors without myometrial invasion (A,B) and the tumors with deep myometrial invasion 
(C,D) were manually delineated on sagittal T2WI and CE-T1WI, respectively. 
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Table S1 Radscore calculation based on twenty-one selected features and the corresponding coefficients (intercept: −0.79839647)

Radiomics Features Sequences Coefficients

Original_glszm_GrayLevelNonUniformityNormalized T2WI −0.18022699

Log-sigma-2-0-mm-3D_firstorder_Median T2WI 0.15777111

Wavelet-LLH_firstorder_90Percentile T2WI 0.10232227

Wavelet-HHL_gldm_LargeDependenceHighGrayLevelEmphasis T2WI −0.24352681

Wavelet-LLL_firstorder_Median T2WI −0.01439181

Square_ngtdm_Contrast T2WI −0.07703857

Logarithm_firstorder_Mean T2WI −0.15783955

Logarithm_firstorder_Skewness T2WI 0.02622695

Logarithm_glcm_ClusterShade T2WI 0.03675137

Logarithm_gldm_LargeDependenceLowGrayLevelEmphasis T2WI 0.09734627

Exponential_glcm_Idmn T2WI 0.10942421

Gradient_firstorder_Uniformity T2WI 0.08956594

Gradient_glrlm_ShortRunEmphasis T2WI −0.02669108

Lbp-3D-m1_glszm_GrayLevelVariance T2WI −0.25541521

Lbp-3D-m2_glcm_Idmn T2WI −0.01626632

Lbp-3D-k_firstorder_10Percentile T2WI 0.02845274

Wavelet-HLH_glcm_MCC CE-T1WI −0.1836688

Square_gldm_LargeDependenceHighGrayLevelEmphasis CE-T1WI 0.11834663

Squareroot_glrlm_GrayLevelNonUniformityNormalized CE-T1WI 0.05317308

Squareroot_ngtdm_Contrast CE-T1WI −0.04020497

Lbp-3D-k_glrlm_ShortRunEmphasis CE-T1WI −0.07003751


