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Background: Lung cancer is one of the most serious cancers in the world. Subtypes of lung 
adenocarcinoma can be quickly distinguished by analyzing 3D radiomic signatures and radiological features.
Methods: This study included 493 patients from 3 hospitals with a total of 506 lesions confirmed as 
minimally invasive adenocarcinoma (MIA), adenocarcinoma in situ (AIS), or invasive adenocarcinoma 
(IAC). After segmenting the lesion area, 3D radiomic signatures were extracted using the PyRadiomics 
package v. 3.0.1 implemented in Python (https://pyradiomics.readthedocs.io/en/latest/index.html), and the 
corresponding radiological features were collected. Subsequently, the top 100 features were identified by 
feature screening methods, including the Spearman rank correlation and minimum redundancy maximum 
relevance (mRMR) feature selection, and the top 10 features were determined by the least absolute shrinkage 
and selection operator (LASSO) classifier. Multivariable logistic regression analysis was used to develop a 
nomogram incorporating 3D radiomic signatures and radiological features in the prediction system. The 
nomogram was evaluated from multiple perspectives and tested on the validation cohort.
Results: The model combined 3 radiological features and seven 3D radiomic signatures. The area 
under the curve (AUC) of the model was 0.877 (95% CI: 0.829–0.925) in the training cohort, 0.864 (95% 
CI: 0.789–0.940) in the testing cohort, and 0.836 (95% CI: 0.749–0.924) in the validation cohort. The 
nomogram applied in all 3 cohorts showed reliable accuracy and calibration. The decision curve also 
demonstrated the clinical effectiveness of the nomogram.
Conclusions: In this study, a nomogram-based model combining 3D radiomic signatures and radiological 
features was developed. Its performance in identifying IAC and MIA/AIS was satisfactory and had clinical value.
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Introduction

Lung cancer is one of the most common cancers in human 
society and is directly responsible for the high incidence 
and mortality rates of cancer worldwide (1). The dominant 
histological type of lung cancer is adenocarcinoma, 
whose incidence rate has increased over time (1,2). 
According to the latest classification, the subtypes of lung 
adenocarcinoma include atypical adenomatous hyperplasia 
(AAH), adenocarcinoma in situ (AIS), minimally invasive 
adenocarcinoma (MIA), and invasive adenocarcinoma  
(IAC) (3). Owing to the popularization and renewal of 
computed tomography (CT), the capability to screen 
pulmonary nodules has developed quickly. Due to the 
higher risk of disease recurrence for patients with IAC after 
routine treatment, lobectomy is usually recommended (4,5). 
However, patients with AIS or MIA have a better prognosis 
through active monitoring or sublobar resection (6). 
Nowadays, biopsy or postoperative pathological sections 
are mainly used in clinical practice to determine the 
subtypes of adenocarcinoma (7). However, these methods 
are both invasive and risky, emphasizing the significance 
of presurgery discrimination for supporting prognostic 
assessment to optimize clinical decision-making and avoid 
inappropriate surgery for patients.

Adenocarcinoma frequently presents as pulmonary 
nodules on CT, including pure ground-glass nodules 
(pGGNs), mixed ground-glass nodules (mGGNs), and solid 
nodules (SNs). The radiologist identifies the radiological 
features of the lesions by observing CT scans. Features 
such as lobulation, spiculate protuberance, vogue sign, left/
right lobe, and lung lobe, are related to the malignancy or 
tumor histology of GGNs (8-10). 3D radiomic signatures 
can provide more detailed information extracted from medical 
images through advanced feature analysis methods (11).  
Radiomic signatures are calculated by multiple formulae, 
which can quantify the characteristics of tumor tissue (12).  
Thus, in a 3D environment, they can provide a comprehensive 
characterization of the tumor phenotype. Radiomic 
signatures, such as nodule diameter, CT value, and lesion 
size, play important roles in the prediction of pathological 
classification (13-16), pathological staging (17), tumor 
diagnosis (benign/malignant) (18), treatment response (19),  
and patient survival (20). Radiomics has been used in the 
prediction and prognosis of lung cancer (21,22). Some 
studies use radiomic features and radiological features 
of multiphase CT to distinguish the subtypes of lung 
adenocarcinoma (such as the difference between IAC and 

MIA/AIS, the difference between MIA and AIS). Other 
studies have focused on radiomic features to explore the 
feasibility of an auxiliary diagnosis from the perspective 
of image texture and have yielded exciting results (23,24). 
Some studies have analyzed the correlation between 
radiomic features and genetic data, attempting to achieve a 
breakthrough in radiogenomics (25,26).

In this study, the ability of 3D radiomic signatures 
combined with radiological features to differentiate IAC 
from AIS and MIA was investigated, and a novel nomogram 
was developed to assess the risk of IAC preoperatively. 
In addition, this study used semiautomatic segmentation 
software and a nomogram to develop a semiautomatic 
detection process, thus realizing the standardization of data. 
The stability of the model was verified by data of different 
regions and different temporal periods. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-491/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the ethics board of Shanghai University 
of Medicine & Health Sciences, and the written informed 
consent of patients was waived by the ethics committee 
because the study was a retrospective experiment and did 
not involve patient privacy.

Patients

The data set was collected from 3 hospitals: Shanghai 
Public Health Clinical Center (hospital 1), Shanghai 
Ruijin Hospital (hospital 2), and Ningbo Beilun No. 2 
Hospital (hospital 3). In patients who showed pulmonary 
nodules on chest CT scan, those nodules diagnosed as 
pulmonary adenocarcinomas based on the pathologic 
analysis of surgical specimens were selected for analyses. 
The other inclusion criteria were the following: (I) routine 
CT examination conducted the month before surgery, (II) 
maximum tumor diameter of less than 20 mm, and (III) 
preoperative CT layer thickness of less than 2 mm. Multiple 
nodules from the same patients were analyzed separately. 
The exclusion criteria were the following: (I) obvious 
artifacts around the tumor on CT imaging and (II) the 
use of contrast medium for CT examination. Meanwhile, 
the study also collected clinical information from patients 
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(Figure 1).
A total of 401 patients with 421 pulmonary nodules 

(MIA/AIS: n=323, 76.7%; IAC: n=98, 23.3%) from hospital 
1 met the inclusion requirements. Moreover, a total of 
82 patients with 85 pulmonary nodules (MIA/AIS: n=42, 
49.4%; IAC: n=43, 50.6%) nodules from hospital 2 and 
hospital 3 were selected for inclusion in the study. 

CT image acquisition

All the patients in the study underwent an unenhanced 
chest CT examination. In hospital 1, the CT images were 
obtained on a UCT 760 scanner (United-Imaging; Shanghai, 
China; scanning conditions: 42–126 mA, 120 kV, 1-mm 
slice thickness) and a Siemens Emotion 16 CT scanner 
(Siemens Healthineers; Erlangen, Germany; scanning 
conditions: 34–123 mA, 130 kV, 1-mm slice thickness) with 
a 512×512 resolution. In hospitals 2 and 3, a Philips iCT 
256 scanner (Philips Healthcare, Cleveland, OH, USA; 
scanning conditions: 161 mA, 120 kV, 1-mm slice thickness) 
and a Philips Brilliance 16 CT scanner (Philips Healthcare; 
scanning conditions: 219 mA, 120 kV, 1-mm slice thickness) 

were used for obtaining CT images. All patients performed 
full inspiration to eliminate artifacts of respiratory 
movement in the chest CT examination. 

3D radiomic signatures and radiological features 
extraction

All the nodules in selected CT images were segmented by 
in-house, semiautomatic software (27). All segmentation 
results were manually examined by a radiologist with  
6 years of experience and confirmed by another radiologist 
with 20 years of experience. After that, a total of 1,600 3D 
radiomic signatures, including tumor size, shape, first-order 
statistics of descriptor values (histogram features), and high-
order texture features [gray-level co-occurrence matrix 
(GLCM) and gray-level run length] were extracted from 
the 3D region of interest (ROI) using open-source software 
(PyRadiomics v. 3.0.1; Appendix 1) (28).

The radiographic features were assessed independently 
by the 2 experienced radiologists mentioned above. Any 
discrepancies in interpretation between the observers 
were resolved by consensus. The radiological features 

Patients who did routine chest CT at hospital 1 in 
the month before surgery and CT layer thickness 

was less than 2 mm

Patients who did routine chest CT at hospital 2 
and 3 in the month before surgery and CT layer 

thickness was less than 2 mm

Patients (n=419) were pathologically diagnosed as 
IAC, AIS or MIA

Patients (n=101) were pathologically diagnosed as 
IAC, AIS or MIA 

The maximum diameter 
of tumor was ≤20 mm   

Patients (n=409) with nodules (n=429) Patients (n=93) with nodules (n=96)

Yes Yes

Breath motion artifact    
No No

Patients (n=401) with nodules (n=421) Patients (n=82) with nodules (n=85)

Primary cohort:  
Patients (n=278) with 

nodules (n=282) in hospital 1

Internal validation cohort: 
Patients (n=123) with 

nodules (n=139) in hospital 1

External validation cohort: 
patients (n=82) with nodules 

(n=85) in hospital 2&3

Figure 1 Flowchart of case sample selection. Hospital 1: Shanghai Public Health Clinical Center; Hospital 2: Shanghai Ruijin Hospital; 
Hospital 3: Ningbo Beilun No. 2 Hospital. CT, computed tomography; IAC, invasive adenocarcinoma; AIS, adenocarcinoma in situ; MIA, 
minimally invasive adenocarcinoma. 
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recorded and analyzed for each lesion were the following: 
(I) margin (clear, blurred), (II) lobulation (absent, present), 
(III) spiculation (absent, present), (IV) pleural attachment 
including pleural tag and indentation (absent, present), 
(V) air bronchogram (absent, present), (VI) vessel change 
(absent, present), (VII) bubble lucency (absent, present), 
(VIII) nodule location (left/right lobe; right upper lobe, 
right middle lobe, right lower lobe, left upper lobe, left 
lower lobe), and (IX) major/minor axis (calculated from the 
ROI area with PyRadiomics software).

Feature selection

A total of 1,611 features of the 3D lesion areas in the CT 
images were identified, including 1,600 radiomic signatures 
and 11 radiological features. First, all radiomic signatures 
were normalized by the scale function. Then, the variance 
of each feature was calculated and the one close to 0 was 
excluded. Meanwhile, Spearman pairwise correlation 
analysis was used to calculate the correlation strength 
between features. Features whose absolute correlation 
value was above 0.9 were identified as strong interference 
features and were removed. After that, the top 100 features 
were selected using the minimum redundancy maximum 
relevance (mRMR) method. Then, those features were 
fed into least absolute shrinkage and selection operator 
(LASSO) models to select the optimal subsets for evaluating 
IAC and MIA/AIS. Given the possible randomness, the 
feature subset was calculated 1,000 times to determine the 
best result.

Construction and validation of the prediction nomogram

In this study, the predictive factors were screened by 
analyzing the training set. Multiple logistic regression 
models were then used to forecast IAC, followed by 
a combined nomogram-based model. The diagnostic 
performance of the established predictive nomogram-based 
model was confirmed by the validation set. The calibration 
curve and receiver operating characteristic (ROC) curve 
were plotted, and the area under the curve (AUC) values 
of the predictive nomogram in the training and validation 
sets were calculated. To test the diagnostic performance and 
clinical utility of the combined nomogram, we compared 
the diagnostic accuracy of (I) the nomogram and the model 
with radiomic signatures only and (II) the nomogram and 
the model with radiological features only.

Statistical analysis

Quantitative data are described as mean ± standard deviation 
or median (25th–75th); qualitative data are described as 
counts (n). The comparisons between groups for qualitative 
variables were performed by the Fisher exact test, and 
comparisons between groups for quantitative variables were 
performed using the t-test or Wilcoxon test. A 2-sided P 
value <0.05 was considered statistically significant.

The relevant statistical analysis in the study was 
performed in the environment of R software v. 4.0.3 (R 
Foundation for Statistical Computing, Vienna, Austria). 
The Spearman correlation analysis was performed using the 
“caret” package. LASSO regression was performed using 
the “glmnet” package. The “rms” software package was used 
to complete logistic regression, nomogram construction, 
and chart calibration. The “rmda” package was used to plot 
the decision curve.

Results

Patients 

A total of 483 patients with 506 pulmonary nodules were 
divided into the training cohort (278 patients with 282 
nodules from April 2015 to February 2017), the testing 
cohort (123 patients with 139 nodules from February 2015 
to December 2016), and the validation cohort (82 patients 
with 85 nodules from September 2017 to February 2018; 
Table S1). There were no significant differences in gender 
or age among the 3 cohorts. There were no statistical 
differences observed between the IAC group and the MIA/
AIS group in segment, margin, spiculation, vessel change, 
air bronchogram, or bubble lucency. However, differences 
in lobulation, pleural attachment, and the average major 
axis were found to be statistically significant. mGGNs 
were more common and the average major/minor axis was 
larger in the IAC group than in the MIA/AIS group in the 3 
cohorts (Table 1). 

Feature selection 

All radiomic signatures were normalized. A total of 127 
features with variance close to 0 were deleted. Then, 
Spearman correlation analysis was used to delete the 
features with the absolute value of correlation greater than 
0.9, which resulted in 237 remaining features. The mRMR 
method was used to sort the remaining features and select 
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Table 1 Patient characteristic information in training cohort, testing cohort, and validation cohort

Characteristics

Training cohort (n=282) Testing cohort (n=139) Validation cohort (n=85)

MIA/AIS 
(n=216)

IAC (n=66) P value
MIA/AIS 
(n=107)

IAC (n=32) P value
MIA/AIS 
(n=42)

IAC (n=43) P value

Age (years) 50.74±11.19 54.60±11.66 <0.05 51.43±11.31 53.28±11.34 <0.05 54.02±13.39 62.74±11.36 <0.05

Gender 0.211 0.1148

Male 55 22 35 12 28 23

Female 161 44 72 20 14 20

Nodule type <0.05 <0.05 <0.05

pGGN 152 29 76 10 29 20

mGGN 64 37 31 22 13 23

Segment 0.7653 0.562 0.07993

Left upper lobe 62 18 34 7 14 7

Left lower lobe 35 7 18 4 3 7

Right upper lobe 73 26 33 15 11 21

Right middle lobe 16 4 10 2 3 2

Right lower lobe 30 11 12 4 11 6

Margin 0.8258 0.99 0.493

Blurred 192 58 92 28 33 36

Clear 24 8 15 4 9 7

Lobulation 0.0313 0.1693 0.0891

Present 158 57 76 27 3 7

Absent 58 9 31 5 39 36

Spiculation 0.4384 0.6686 0.2648

Present 152 50 71 23 34 39

Absent 64 16 36 9 8 4

Pleural attachment <0.05 <0.05 0.3273

Present 38 31 20 15 19 24

Absent 178 35 87 17 23 19

Air bronchogram 0.0923 <0.05 0.1278

Present 95 37 45 21 7 16

Absent 121 29 62 11 35 27

Vessel change 0.5801 0.6003 0.3988

Present 180 53 89 25 29 37

Absent 36 13 18 7 13 6

Bubble lucency 0.1767 0.1877 0.09175

Present 44 19 29 13 3 10

Absent 172 47 78 19 39 33

Average major axis (mm) 8.59±2.31 11.02±2.47 <0.05 8.73±2.55 11.19±2.80 <0.05 10.80±4.26 18.58±8.52 <0.05

Average minor axis (mm) 7.15±2.00 8.61±1.70 <0.05 7.31±2.21 8.53±1.91 <0.05 8.67±3.38 14.18±5.95 <0.05

Data are shown as number or mean ± standard deviation. MIA, minimally invasive adenocarcinoma; AIS, adenocarcinoma in situ; IAC, in-
vasive adenocarcinoma; pGGN, pure ground-glass nodule; mGGN, mixed ground-glass nodule. 
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the top 100. After that, LASSO regression analysis with 
a cross-validation method was conducted on the training 
cohort with the 100 remaining features to find the optimal 
feature subset (Figure 2). Finally, the optimal 10 features 
were selected.

Nomogram construction, validation, and performance

The features related to IAC prediction were extracted 
from the training set by multivariate logistic regression 
analysis. The predictors selected were pleural attachment, 
margin, major axis length, and wavelet.LLH_firstorder_
Maximum, original_firstorder_90Percentile, original_
f i r s t o r d e r _ 1 0 P e r c e n t i l e ,  l b p . 3 D . k _ g l c m _ I m c 2 , 
original_glcm_JointEntropy, wavelet.LLL_glszm_
LargeAreaHighGrayLevelEmphasis, lbp.3D.k_glrlm_
LongRunEmphasis. 

The predictive multivariate logistic regression equation 
is shown below. 

1.2709 margin 0.5392 pleural_attachment
     0.5490 major_axis_length
     0.3134 wavelet.LLH_firstorder_Maximum
     0.0541 original_firstorder_90Percentile
     0.6362 original_firstorder_10Perce

Y = − ∗ + ∗
+ ∗
+ ∗
+ ∗
+ ∗ ntile

     0.4227 lbp.3D.k_glcm_Imc2
     0.4923 original_glcm_JoinEntropy
     0.3529 wavelet.LLL_glszm_LargeAreaHighGrayLevelEmphasis
     0.1486 lbp.3D.k_glrlm_LongRunEmphasis 0.7520

− ∗
+ ∗
+ ∗
+ ∗ −  [1]

The nomogram (Figure 3) incorporating selected 
features based on multivariate logistic regression analysis 
was constructed in the training cohort and confirmed in 
the testing cohort and the validation cohort. The model 
performed well in the 3 cohorts (Figure 4). The AUC 
of the training cohort was 0.877 (95% CI: 0.829–0.925) 
with 77.8% specificity and 86.4% sensitivity, as shown in  
Figure 4A. In the testing cohort, the value of the AUC was 
0.864 (95% CI: 0.789–0.940) with 80.4% specificity and 
81.2% sensitivity, as shown in Figure 4B. In the validation 
cohort, the AUC value was 0.836 (95% CI: 0.749–0.924) 
with 78.6% specificity and 86.0% sensitivity, as shown in  
Figure 4C. Compared with the training cohort, the predictive 
ability of the model in the testing cohort and validation 
cohort was not significantly reduced. The calibration curve 
(Figure 5) of the nomogram showed that the nomogram 
demonstrated good calibration ability for the training cohort 
and also showed similar ability in the testing cohort and 
validation cohort. Meanwhile, the decision curve (Figure 6) 
analysis in the 3 cohorts proved that the overall net benefit of 
the nomogram was high compared with the “treat-none” and 
“treat-all” strategies, and the nomogram model’s prediction 
showed greater benefit with good clinical application value.

Combining the calibration curve, the ROC curve, and 
the decision curve of the model’s performance indicated 
that the nomogram performed well in the 3 cohorts and had 
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good and stable application value in predicting IAC.

Comparison with 3D radiomic signatures and radiological 
features

The 3 cohorts were also analyzed using multiple logistic 
regression based on the 3D radiomic signatures subset and 
the radiological features subset. In the training cohort, the 
AUC of the 3D radiomic signatures subset model was 0.851 
(95% CI: 0.795–0.906) with 87.0% specificity and 69.7% 
sensitivity, as shown in Figure 4G. In the testing cohort, the 
evaluation values were AUC 0.893 (95% CI: 0.824–0.962), 
95.3% specificity, and 75.0% sensitivity, as shown in  
Figure 4H. In the validation cohort, the evaluation values 
were AUC 0.836 (95% CI: 0.749–0.924), 86.0% specificity, 
and 78.6% sensitivity, as shown in Figure 4I. In the subset 
based on radiological features, the values were as follows: 
AUC 0.806 (95% CI: 0.747–0.865), 69.0% specificity, and 
78.6% sensitivity; AUC 0.777 (95% CI: 0.686–0.869), 
66.4% specificity, and 81.2% sensitivity; and AUC 0.843 
(95% CI: 0.761–0.926), 76.2% specificity, and 79.1% 
sensitivity (Figure 4D-4F).

Discussion

A nomogram incorporating 3D radiomic signatures and 
radiological features was developed and validated in our 
study. This nomogram can help to accurately describe and 

classify non-IAC and IAC, thus helping to improve clinical 
decisions. In addition, the process designed in this study 
(beginning with the semiautomatic software segmentation of 
lesions, having these checked and confirmed by radiologists, 
using the PyRadiomics package to calculate features, and 
finally, using the nomogram to make an evaluation) has 
strong reusability and can play a better auxiliary role in the 
diagnostic process of radiologists. Because of the high risk of 
recurrence, patients with IAC usually choose lobectomy for 
treatment. For MIA/AIS, because of its good prognosis, the 
treatment is usually regular monitoring or limited resection. 
Therefore, the accurate distinction between IAC and MIA/
AIS before surgery can help clinicians effectively develop a 
prognosis and thus program appropriate treatment plans.

There were three radiological features and seven 3D 
radiomic signatures used in the nomogram model. The 
margin (whether the interface of the tumor-lung is clean 
or blurred) was an important factor in identifying IAC. 
No significant difference in boundary clearness between 
IAC and MIA/AIS was found in this study (relatively more 
common in IAC), which was similar to the findings of 
previous studies (29,30). The study showed that pleural 
attachment was more common in IAC than in MIA/AIS, 
and it was also one of the important factors in the model. In 
addition, in clinical diagnosis, attachment of the lesion to 
the pleura is an important basis for differentiating benign 
from malignant lesions. The long and short axis of nodules 
has always been considered one of the important indexes 
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for identifying the subtypes of lung adenocarcinoma, and 
our model also identified the long axis as an important 
factor. The bubble lucency sign was found to be one of 

the important criteria for identifying IAC in some studies 
(31,32), but it was not used in the model of this study. 
Other studies have established models to predict nodule 
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invasiveness through radiomics and average CT values (24), 
which were also not used in this study. In a subsequent 
study, we should increase the sample size according to 
different signs in order to determine the relationship 
between radiological features and the invasiveness of lung 
adenocarcinoma. We also found that the high-dimensional 
features of multiple radiological features could be integrated 
to further reduce the workload of identification by 
radiologists. In addition, we compared the results with other 
studies (32-34), and the results showed that the evaluation 
effect of our nomogram was more accurate and robust in 
the verification set (Table S2).

The “original_firstorder_90Percentile” and “original_
firstorder_10Percentile” mean the 90th and 10th percentile 
of the lesion CT value, respectively. The “original_
glcm_JointEntropy” is a measure of the randomness/
variability in neighborhood intensity values in the GLCM 
features. The “wavelet.LLH_firstorder_Maximum” is 
the feature of the CT maximum value of the lesion area 
after the wavelet transform. All these features not only 
reflect the CT value distribution within the lesion area 
but also further analyze the trend of CT value changes. 
This probably explains why the average CT value is not 
used as a factor in the model. The “wavelet.LLL_glszm_
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Figure 5 Nomogram-predicted survival. The predicted versus actual probability for IAC in training cohort (A), testing cohort (B), and 
validation cohort (C). IAC, invasive adenocarcinoma. 

Figure 6 The clinical net benefit for nomogram models in comparison to default strategies of treating all or no patients. Decision curves of 
nomogram model for predicting the risk of IAC in the training cohort (A), the testing cohort (B), and the validation cohort (C). The black 
line shows the assumption that no patients have IAC (“treat-none”). The gray line shows the assumption that all patients have IAC (“treat-all”). 
The red line represents the net benefit of the nomogram model. IAC, invasive adenocarcinoma. 
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LargeAreaHighGrayLevelEmphasis” is the proportion in 
the image of the joint distribution of larger size zones with 
higher gray-level values in the gray-level size zone (GLSZM) 
quantifies gray level zones with wavelet transform. This 
feature shows the proportion of connected areas with 
higher CT values within the range of the lesion, and also 
reflects the size of the suspected solid area. The “lbp.3D.
k_glrlm_LongRunEmphasis” and “lbp.3D.k_glcm_Imc2” 
indicate the changing state of the texture and also quantify 
the complexity of the texture in the 3D environment. These 
features describe the changes in CT value and texture of 
the lesion area, respectively, which also explains why the 
bubble lucency sign, the vessel change sign, and other 
features are not used by the model. This also makes the 
model trained on the 3D radiomic signatures subset more 
accurate than the radiological features subset. It can be 
seen that high-dimensional radiomic signatures provide 
a more comprehensive description of the changes in the 
characteristics of the lesion area and can replace some 
traditional radiological features.

This study had some limitations. First, all samples were 
collected based on actual clinical conditions, and there was 
no balancing of the samples from the IAC group and the 
MIA/AIS group. Therefore, the nomogram model might 
have been affected by the proportion of sample subsets. 
In subsequent research, we will expand the sample size 
and sample distribution to verify the performance of the 
model. Second, the 3D radiomic signatures under study 
were calculated using only 1 publicly available software 
package, so there may be a certain degree of inclination. In 
future research, we will look for more software packages 
to calculate high-dimensional image features and aim to 
develop features that contain higher levels of information. 
Third, the CT images used in this study were scanned by 
4 different types of CT equipment, which might also have 
had an impact on the performance of the model.

Conclusions

In summary, this study proposes a nomogram combining 3D 
image features and radiological features to detect the risk 
of IAC in patients. The results confirm that the nomogram 
can assist clinicians in the diagnosis and optimization of 
treatment and, thus, has clinical application value.
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Supplementary

Appendix 1

A. PyRadiomics

It is an open-source python package for the extraction of Radiomics features from 

medical imaging. This package provides a tested and maintained open-source platform 

for easy and reproducible Radiomic Feature extraction. The platform supports both the 

feature extraction in 2D and 3D and can be used to calculate single values per feature 

for a region of interest (“segment-based”) or to generate feature maps (“voxel-based”).

If the python version is 3.5, 3.6 or 3.7(64-bits), the pyradiomics can install by

conda install -c radiomics pyradiomics

Then, instantiate the ‘featureextractor’ method with ‘extractor = 

featureextractor.RadiomicsFeatureExtractor()’. After that, used ‘result = 

extractor.execute(imagePath, labelPath)’ to automatically extract all radiomics features. 

Where, ‘imagePath’ represents the original image path, and ‘labelPath’ represents the 

binary image path of the lesion area.

A process of feature extraction as follows:

from radiomics import featureextractor 

# This module is used for interaction with pyradiomics

# Store the file paths of our testing image and label map into two variables

imagePath = "…\\IMG-0015-00116.dcm";

labelPath = "…\\116.dcm";

extractor = featureextractor.RadiomicsFeatureExtractor(label= …..)

result = extractor.execute(imagePath, labelPath)

with open('…..\\116.csv', 'w') as f:

[f.write('{0},{1}\n'.format(key, value)) for key, value in result.items()]

If you want to extract 3D region features, it is recommended to build the original image 

and annotation region files into .nrrd files respectively.
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B. Contents of the params.yaml file

setting:

binWidth: 25

label: 1

interpolator: 'sitkBSpline' # This is an enumerated value, here None is not allowed

resampledPixelSpacing: # This disables resampling, as it is interpreted as None, to 

enable it, specify spacing in x, y, z as [x, y, z]

weightingNorm: # If no value is specified, it is interpreted as None

# Image types to use: "Original" for unfiltered image, for possible filters, see 

documentation.

# Some feature extraction requirements are added here

imageType:

Original: {} # for dictionaries / mappings, None values are not allowed, '{}' is 

interpreted as an empty dictionary

LoG: {}

Wavelet: {}

Square: {}

SquareRoot: {}

Logarithm: {}

Exponential: {}

Gradient: {}

LBP3D: {}

# Featureclasses, from which features must be calculated. If a featureclass is not 

mentioned, no features are calculated

# for that class. Otherwise, the specified features are calculated, or, if none are specified, 

all are calculated (excluding redundant/deprecated features).

featureClass:

# redundant Compactness 1, Compactness 2 an Spherical Disproportion features are 

disabled by default, they can be

# enabled by specifying individual feature names (as is done for glcm) and including 

them in the list.

shape:
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shape2D:

firstorder: [] # specifying an empty list has the same effect as specifying nothing.

glcm:  # Disable SumAverage by specifying all other GLCM features available

glrlm: # for lists none values are allowed, in this case, all features are enabled

glszm:

gldm:  # contains deprecated features, but as no individual features are specified, the 

deprecated features are not enabled

ngtdm:

C. feature classes and filters

1. First Order Features ----First-order statistics describe the distribution of voxel 

intensities within the image region defined by the mask through commonly used and 

basic metrics.

2. Shape Features (3D)-----In this group of features we included descriptors of the three-

dimensional size and shape of the ROI. These features are independent from the gray 

level intensity distribution in the ROI and are therefore only calculated on the non-

derived image and mask.

3. Gray Level Co-occurrence Matrix (GLCM) Features-----A Gray Level Co-

occurrence Matrix (GLCM) of size Ng×Ng describes the second-order joint probability 

function of an image region constrained by the mask and is defined as P(i,j|δ,θ). The 

(i,j)th element of this matrix represents the number of times the combination of levels 

i and j occur in two pixels in the image, that are separated by a distance of δ pixels along 

angle θ. Pyradiomics by default computes symmetrical GLCM

4. Gray Level Size Zone Matrix (GLSZM) Features-----A Gray Level Size Zone 

(GLSZM) quantifies gray level zones in an image. A gray level zone is defined as a the 

number of connected voxels that share the same gray level intensity. 

5. Gray Level Run Length Matrix (GLRLM) Features-----A Gray Level Run Length 

Matrix (GLRLM) quantifies gray level runs, which are defined as the length in number 

of pixels, of consecutive pixels that have the same gray level value. In a gray level run 

length matrix P(i,j|θ), the (i,j)th element describes the number of runs with gray level i 

and length j occur in the image (ROI) along angle θ.

6. Neighbouring Gray Tone Difference Matrix (NGTDM) Features-----A Neighbouring 

Gray Tone Difference Matrix quantifies the difference between a gray value and the 
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average gray value of its neighbours within distance δ. The sum of absolute differences 

for gray level i is stored in the matrix.

7. Gray Level Dependence Matrix (GLDM) Features-----A Gray Level Dependence 

Matrix (GLDM) quantifies gray level dependencies in an image. A gray level 

dependency is defined as a the number of connected voxels within distance δ that are 

dependent on the center voxel.

Aside from the feature classes, there are also some built-in optional filters:

1. Laplacian of Gaussian (LoG, based on SimpleITK functionality)-----Applies a 

Laplacian of Gaussian filter to the input image and yields a derived image for each 

sigma value specified. A Laplacian of Gaussian image is obtained by convolving the 

image with the second derivative (Laplacian) of a Gaussian kernel.

2. Wavelet (using the PyWavelets package)-----Applies wavelet filter to the input image 

and yields the decompositions and the approximation.

3. Square-----Computes the square of the image intensities.

4. Square Root----- Computes the square root of the absolute value of image intensities.

5. Logarithm----- Computes the logarithm of the absolute value of the original image + 

1.

6. Exponential----- Computes the exponential of the original image.

7. Gradient----- Compute and return the Gradient Magnitude in the image.

8. Local Binary Pattern (3D)----- Compute and return the Local Binary Pattern (LBP) 

in 3D using spherical harmonics.

the features extracted in the study as follows:

14 original_shape features; 18 original_firstorder features; 24 original_glcm features; 

16 original_glrlm features; 16 original_glszm features; 14 original_gldm features;   5 

original_ngtdm features; 744 wavelet and subclass filters features; 93 square filters 

features; 93 squareroot filters features; 93 logarithm filters features; 93 exponential 

filters features; 93 gradient filters features; 279 lbp-3D and subclass filters features; 5

diagnostics_Image/Mask features.
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Table S1 F-test results (P value) of patient information in three data sets

Features Training-testing Training-validation Testing-validation

Age (years) 0.8099 0.1965 0.1318

Gender 0.0764 <0.05 0.7138

Segment 0.4943 0.9842 0.5132

Margin <0.05 <0.05 <0.05

Lobulation 0.4682 0.06544 <0.05

Spiculation 0.3168 <0.05 <0.05

Pleural attachment 0.8173 0.07822 0.1251

Air bronchogram 0.9824 0.2638 0.258

Vessel change 0.7454 <0.05 <0.05

Bubble lucency <0.05 0.6105 <0.05

Average major axis (mm) <0.05 <0.05 <0.05

Average minor axis (mm) <0.05 <0.05 <0.05

Table S2 Comparison of nomogram performance with other studies

Origin of method Training set Testing set Validation set

Paper 1 0.831 0.792 0.833

Paper 2 0.84 0.76 0.79

Paper 3 0.885 0.808 –

Our study 0.877 0.893 0.851


