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Background: The coronavirus disease 2019 (COVID-19) led to a dramatic increase in the number of cases 
of patients with pneumonia worldwide. In this study, we aimed to develop an AI-assisted multistrategy image 
enhancement technique for chest X-ray (CXR) images to improve the accuracy of COVID-19 classification.
Methods: Our new classification strategy consisted of 3 parts. First, the improved U-Net model with a 
variational encoder segmented the lung region in the CXR images processed by histogram equalization. 
Second, the residual net (ResNet) model with multidilated-rate convolution layers was used to suppress 
the bone signals in the 217 lung-only CXR images. A total of 80% of the available data were allocated for 
training and validation. The other 20% of the remaining data were used for testing. The enhanced CXR 
images containing only soft tissue information were obtained. Third, the neural network model with a 
residual cascade was used for the super-resolution reconstruction of low-resolution bone-suppressed CXR 
images. The training and testing data consisted of 1,200 and 100 CXR images, respectively. To evaluate 
the new strategy, improved visual geometry group (VGG)-16 and ResNet-18 models were used for the 
COVID-19 classification task of 2,767 CXR images. The accuracy of the multistrategy enhanced CXR 
images was verified through comparative experiments with various enhancement images. In terms of 
quantitative verification, 8-fold cross-validation was performed on the bone suppression model. In terms of 
evaluating the COVID-19 classification, the CXR images obtained by the improved method were used to 
train 2 classification models.
Results: Compared with other methods, the CXR images obtained based on the proposed model had better 
performance in the metrics of peak signal-to-noise ratio and root mean square error. The super-resolution 
CXR images of bone suppression obtained based on the neural network model were also anatomically close 
to the real CXR images. Compared with the initial CXR images, the classification accuracy rates of the 
internal and external testing data on the VGG-16 model increased by 5.09% and 12.81%, respectively, while 
the values increased by 3.51% and 18.20%, respectively, for the ResNet-18 model. The numerical results 
were better than those of the single-enhancement, double-enhancement, and no-enhancement CXR images.
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Introduction

The coronavirus disease 2019 (COVID-19), initially caused 
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is one of the most severe diseases threatening 
lung health worldwide. COVID-19 is highly infectious 
and significantly impacts patients with poor physical 
immunity or a history of lung disease (1,2). In addition, 
fear of COVID-19 can also lead to a decline in mental 
health, further exacerbating the deterioration of the existing 
health conditions (3,4). Chest X-ray (CXR) is a commonly 
used first-line medical imaging modality that can be 
used to diagnose lung disease. Compared with computed 
tomography (CT), a CXR has the advantages of a low 
radiation dose, a low inspection price, and high universality. 
It has become one of the most commonly used methods of 
COVID-19 detection (5,6).

However, the conventional CXR diagnostic method has 
some limitations in detecting and assessing COVID-19 
lung disease. In clinical applications, doctors need to read 
the images manually. The workload is enormous, and the 
diagnosis results often depend on each doctor’s clinical 
experience. The overly mechanical and repetitive work 
makes doctors prone to fatigue, which leads to misdiagnosis 
and missed diagnoses (7). Based on the increase of medical 
image data and the development of artificial intelligence (AI) 
technology, AI-powered enhanced images can effectively 
improve the efficiency of doctors’ diagnoses (8-12). 
However, CXR is a projected 2-dimensional image obtained 
by X-ray irradiation of human tissue structures. The 
overlapping clavicle and rib in CXR have strong signals in 
the imaging region, which interferes with the imaging of the 
lung’s soft tissue structures and increases the misdiagnosis 
rate of manual diagnosis or deep learning–based diagnosis 
models (13). Therefore, enhancing the imaging quality of 
images by suppressing bone signals in the CXR imaging 
region has important clinical significance because it can 
improve the accuracy of COVID-19 diagnosis.

Currently, the bone-suppression function in a CXR 

mainly includes hardware-based and software-based 
methods. Hardware-based methods primarily use dual-
energy subtraction equipment to simultaneously expose 
patients to different energies to generate soft tissue CXR 
images that eliminate bone signals. However, this method 
increases the patient’s radiation dose, and the patient’s 
respiration and heartbeat produce motion artifacts during 
the second exposure process. The quality of the acquired 
bone-suppressed CXR images is also unstable (14,15). 
Software-based methods use image processing technology 
to suppress bone signals. The various algorithms are 
categorized as traditional machine learning and deep 
learning methods (16-20). The more commonly used 
machine learning bone signal suppression methods include 
artificial neural networks (21-23), K-nearest neighbor 
regression (24), principal component analysis (PCA) (25), 
and segmentation-based unsupervised methods (26,27). 
Although these methods can suppress the clavicle and rib 
signals to a certain extent, the resultant CXR image still 
has prominent residual bone images. The effectiveness of 
the process depends on the accuracy of the regression or 
segmentation algorithm. In recent years, deep learning 
models have made significant progress in medical image 
processing tasks. They have also been gradually applied 
to the study of bone signal suppression in CXR (28-33). 
Gusarev et al. (34) used a multilayer convolution network 
model with a self-encoder to suppress bone signals as 
noise signals to obtain CXR images without bone signals. 
Oh et al. proposed using the wavelet domain information 
as a guide. A conditional generative adversarial network 
model was used to learn the mapping relationship between 
the original and dual-energy subtraction CXR (35). CXR 
images containing only soft tissue structures could be directly 
obtained through this model. Rajaraman et al. (36) used 
a residual net (ResNet) model with 16 layers of residual 
blocks and introduced a short-circuit connection of residual 
cascades to eliminate the model convergence problem 
caused by the disappearance of gradients. Doing so enabled 

Conclusions: The multistrategy enhanced CXR images can help to classify COVID-19 more accurately 
than the other existing methods.
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the model to thoroughly learn the feature association 
between the original domain (CXR images) and the 
target domain (bone-suppressed CXR images), effectively 
suppressing bone signals in authentic CXR images.

The above AI-based image processing methods can 
suppress the CXR bone signal. However, they are all 
processed based on the global CXR images, and the 
resolution of the CXR images used for classification tasks 
is relatively low (37,38). A low-resolution (LR) CXR 
loses part of the image feature information, impacting the 
accuracy with which COVID-19 can be detected. Currently, 
the methods of super-resolution reconstruction mainly 
include interpolation (39), reconstruction (40), and deep 
learning (41). Interpolation is the process of estimating 
unknown intermediate pixel values using known discrete 
pixel points. The commonly used interpolation methods 
include the nearest neighbor and bicubic types. These 
methods are relatively simple, less robust, and inaccurate in 
reconstructing details. The reconstruction-based method 
extracts high-frequency information from multiple frames 
of LR images in the same scene and fuses them to generate 
high-resolution (HR) images. It mainly includes an iterative 
back projection, projection onto convex sets, and the 
maximum posterior probability method (42,43). However, 
these methods are relatively complicated to calculate, and 
the complexity of the CXR imaging content affects the 
accuracy, which is difficult to guarantee. The learning-
based method uses the convolutional neural network 
(CNN) to establish a nonlinear mapping relationship 
between LR and HR images. In the past 2 years, super-
resolution reconstruction methods based on deep learning 
models have also been gradually applied to the task of HR 
CXR image acquisition (44-46). The models include deep 
recursive neural network (DRCN) (47), HR Network 
(HRNet) (48), and super-resolution generative adversarial 
network (SRGAN) (49). The super-resolution CXR 
image reconstructed based on the model can obtain more 
accurate detailed information on CXR images and has a 
lower radiation dose exposure to patients than do these 
other methods. Considering the complexity of network 
parameters, the computational efficiency, and the robustness 
of the model, we decided to use a relatively lightweight 
CNN model to reconstruct HR CXR images.

When classifying COVID-19, a CXR has a certain 
application proportion. As the primary imaging mode of 
diagnosis, CXR is mainly combined with deep learning 
models to detect COVID-19. COVID-19 detection 
research can be divided into binary and multiclass 

classification tasks (50-52). However, most scholars in 
these fields focus on improving the classification model 
to enhance the classification accuracy of COVID-19 
or only focus on the analysis of a single field in the 
image processing task (53,54). Without multiple image 
enhancement mechanisms, the classification accuracy of 
COVID-19 CXR images could be affected. There are 
differences in the scanning parameters used by CXR 
machines in different hospitals or medical institutions, 
which are reflected in the differences in the signal intensity 
distribution of various organs and tissues in CXR images. 
There is a limited CXR image data set; therefore, the 
performance of training accuracy and robustness of the 
classification model in external testing is worthy of further 
research. In addition, there is a contradiction between 
bone suppression and super-resolution tasks. For the bone 
suppression task, it is better to use a skip connection to fuse 
the interpolated input and the convolved feature map so 
that the obtained HR CXR image can have better imaging 
quality (55). However, for the super-resolution task, the 
purpose is to suppress the bone signals in the original CXR 
images; retention of shallow feature information affects the 
final performance of bone suppression. The comparative 
experiments have shown that a single deep learning network 
model is insufficient for effectively processing CXR images 
enhanced by multitasking.

Considering the above problems and referring to 
the idea of Stacked Generative Adversarial Networks 
(stackGAN), we propose a multistrategy enhanced 
method based on the combination of segmentation, 
bone suppression, and super-resolution to obtain lung-
only bone-suppressed CXR images with HR (56). The 
enhanced CXR images can be used for the classification 
of COVID-19 and normal cases. This study makes 3 
major contributions. (I) A bone-suppressed model based 
on a multidilated-rate strategy is proposed to improve the 
texture feature performance of the lung region in CXR 
images. (II) A step-by-step model training strategy is used 
to simplify the image processing mode of complex tasks. 
(III) The new method is used in the internal and external 
classification tasks to verify the application value of the 
enhanced CXR images in COVID-19 detection. This 
study sheds light on the prospect of further improving the 
performance of deep learning–based classifiers through 
multienhanced CXR images. We present the following 
article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-610/rc).

https://qims.amegroups.com/article/view/10.21037/qims-22-610/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-610/rc
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Methods 

Overview

This study proposes an AI-assisted multistrategy enhancement 
technique to obtain lung-only bone-suppressed CXR images 
with HR. The process contained 3 stages. In the first stage, 
histogram equalization is performed on the CXR images to 
enhance the contrast of the images, and the improved U-Net 
model with variable encoder (VAE) is used to segment the 
lung region in the CXR images. In the second stage, the 
nonlinear mapping relationship between the CXR images with 
and without the bone region is established through the ResNet 
model with the multidilated rates to eliminate the bone signal 
in the original CXR images. In the third stage, the CNN 
model with residual cascade is used to improve the resolution 
of bone suppression CXR images containing only lung regions. 
In addition, the improved visual geometry group (VGG)-
16 and ResNet-18 models are adopted to classify the CXR 
images based on the above multienhancement operations. 
The accuracy of the enhanced CXR images obtained based on 
this study used for COVID-19 detection was verified by the 
comparative experiments of various enhancement schemes. 

The specific acquisition steps of multistrategy enhanced CXR 
images are shown in Figure 1.

Data and image preprocessing

The CXR images included in the experiment belonged to 
public data sets or clinical retrospective cases. The public data 
set for the bone suppression task was the Japanese Society 
of Radiological Technology (JSRT) (57), and the size of the 
images in the data set was 2,048×2,048. The pixel size was 
0.175×0.175 mm2. Bone-suppressed CXR images acquired 
using the method proposed by Juhász et al. (58). were used 
as the ground truth for this task. For use in subsequent 
image processing tasks, the CXR and ground truth images 
were downsampled using ImageJ software (National Institutes 
of Health, Bethesda), the size of the processed images was 
256×256, and the pixel size was 1×1 mm2. This study 
randomly selected the data of 1,300 CXRs of normal and viral 
pneumonia classes in the public data set of the Radiological 
Society of North America (RSNA) for the super-resolution 
task (59). Similarly, ImageJ software was used to reduce the 
resolution of the original data, and the resulting LR image 
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Figure 1 An overview of the acquisition of multistrategy enhanced CXR images and their application to COVID-19 detection. LR CXR, low-
resolution chest X-ray; HR CXR, high-resolution chest X-ray; COVID-19, coronavirus disease 2019; Conv2d, convolutional layers contained 
two-dimensional convolution; ReLU, rectified linear units; ConvBlock, convolutional blcok; BN, batch normalization; FC, fully connected.
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size was 256×256. The original 1,024×1,024 size data were 
used as the ground truth for this task. In the COVID-19 
classification task, the COVID-19 and normal CXR image 
data in the training and testing stages came from different 
public data sets or medical institutions. We also selected 1,047 
normal CXR images in the RSNA data set as one class of data 
in the training set of the classification task, and we selected 
the data of 1,000 cases of COVID-19 in the COVID-QU-Ex 
data set as another class (60). Data from 356 COVID-19 cases 
from the Medical Imaging Data Resource Center (MIDRC)-
RSNA International COVID-19 Open Radiology Database 
(RICORD) Release 1c-CXR COVID+ (MIDRC-RICORD-
1C) and 364 normal CXRs from Pamela Youde Nethersole 
Eastern Hospital (PYNEH) in Hong Kong were used as 
the 2 classes of data in the testing stage for the classification 
task (61). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the ethics committee of the Hong Kong East 
Cluster Research (No. HKECREC-2020-119), and informed 
consent was obtained from all the patients. A summary of the 
various types of data sets used in this study is shown in Table 1.

Before the above models were trained to solve the problem 
of limited data, this study adopted the data augmentation 
method of geometric transformation, which increased the 
size of the training data set and enabled the enhanced data 
to build better deep learning models. In addition, since the 
lesions of COVID-19 are mainly concentrated in the lung 
regions of the human body, to avoid the interference of 
redundant pixel information on image processing tasks, the 
lung VAE model was used to segment the lung regions in 
the data set. Segmented lung-only CXR images were used in 
the subsequent tasks of bone suppression, super-resolution, 
and COVID-19 classification. Interested readers can refer to 
the paper by Selvan et al. (62) on the detailed design of the 
segmentation model with a variational autoencoder.

Bone suppression

CXR images containing only lung imaging were acquired 
in the preprocessing stage, which was followed by bone 
suppression. The bone suppression task aimed to use 
a deep learning model to fit the feature distribution 
between normal and no-bone CXR images to eliminate 
the overlapping bone components in the CXR images and 
ensure that the lung structural information was precise 
and accurate. Figure 2 shows the acquisition of bone-
suppressed CXR images. The mainframe of the proposed 
network consisted of 16 convolutional blocks, each of which 
contained 3 convolutional layers with different dilation 
convolution rates and 2 rectified linear units (ReLU). The 
output of each convolution block was the element-wise 
residual concatenation result between the current input and 
the feature map obtained after convolution according to the 
weight ratio. The sigmoid layer activated the final feature 
map to obtain the bone-suppressed CXR images. The 
size of the convolution kernel of each convolutional layer 
in the network was 3×3, the number of filters was 64, the 
stride was 1, and the padding was SAME. Figure 3 shows 
the schematic diagram of the distribution of the receptive 
fields of different network layers based on the multidilated-
rate strategy. This study selected the “3-2-1” dilation rate 
variation mode to fill the convolution block’s receptive 
field for the dilated convolutional layer group. Figure 3 
shows that an element in the feature map of the Nth layer 
corresponds to the 13×13 feature map in the N-3 layer; 
that is, it contains the shallow feature information in the 
above feature map, avoiding the spacing effect caused by the 
traditional “2-2-2” dilation rate variation mode. The feature 
information between network layers can be fully used in the 
new model, and the model has better robustness than the 
traditional dilation rate variation model.

Table 1 The data sets used for training, validation, and testing based on different image tasks

Image task Training and validation stage Testing stage

Bone suppression JSRT [177] JSRT [40]

Super-resolution RSNA [1,200] RSNA [100]

Classification RSNA [Normal] [1,047] PYNEH [Normal] [364]

COVID-QU-Ex [COVID-19] [1,000] MIDRC-RICORD-1C [COVID-19] [356]

The numbers in parentheses represent the size of the data sets. JSRT, Japanese Society of Radiological Technology; RSNA, Radiological 
Society of North America; PYNEH, Pamela Youde Nethersole Eastern Hospital; MIDRC-RICORD-1C, Medical Imaging Data Resource 
Center (MIDRC)-RSNA International COVID-19 Open Radiology Database (RICORD) Release 1c-chest X-ray COVID+; COVID-19, 
coronavirus disease 2019.
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Super-resolution

The acquisition of super-resolution CXR images involves 

upgrading LR CXR images to HR images through a 

particular algorithm or model. After super-resolution 
processing, the CXR image has more pixels and anatomical 
structure details than it had before processing, which is 
conducive to the extraction of image feature information 
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Figure 2 Flowchart of bone-suppressed CXR image acquisition. CXR, chest X-ray; Conv2d, convolutional layers contained two-
dimensional convolution; ReLU, rectified linear units; ConvBlock, convolutional blcok.
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Figure 3 The schematic diagram of the distribution of the receptive fields of different network layers. The first row is the receptive 
field distribution based on the traditional dilation rate variation model. The second row is the receptive field distribution based on the 
multidilated-rate strategy. The numbers in the image indicate how many times the field of view used that position element. N means the 
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and facilitates the diagnosis of COVID-19 by clinicians (63). 
This study chose to use a CNN model with 8 convolutional 
layers for super-resolution reconstruction of bone-
suppressed CXR images. The LR CXR images with a size 
of 256×256 were used as the input for training. The first 7 
convolutional layers contained two-dimensional convolution 
(Conv2d) and ReLU operations, and the last layer only had 
Conv2d operations. To reduce the training difficulty of the 
model, we performed bicubic interpolation on LR CXR 
images to change their dimensions to 1,024×1,024. The 
interpolated CXR images were connected with the feature 
maps after the eighth convolution layer by a long skip 
connection on element-wise. Finally, the HR CXR images 
with the size of 1,024×1,024 were output. The kernel size 
of each convolutional layer in the model was 5×5, the stride 
was 1, the padding was 2, and the number of feature maps 
was 16, 32, 64, 64, 64, 64, 64, and 1, respectively. The 
specific model architecture of the super-resolution task is 
shown in Figure 4.

Classification

After acquiring the multienhanced CXR image data, 
to verify the accuracy of the new data for COVID-19 
detection, this study applied the data to the 2 classification 
tasks for COVID-19. The selected classification models 
were the VGG-16 and ResNet-18 models, with high 
universality in computer vision. Since the data sets used for 

classification task training consisted of CXR images with 
a size of 1,024×1,024, they could not be directly used as 
the input of the classical network model for training. To 
solve this problem, we improved the architecture of the 
2 classification models. In terms of preprocessing, for the 
control group of CXR images obtained without the super-
resolution model, we performed traditional cubic spline 
interpolation operations on them, and the up-sampled 
images had the same size as the other HR CXR image data. 
To ensure the uniformity of the feature maps in each layer 
of the network layer of the classic model and reduce the 
interference of redundant pixels in the image background, 
the resize operation was performed on the HR CXR image, 
and the new image data 896×896 in size that was obtained 
was used as the input of the classification model. In terms 
of model architecture improvement, for the VGG-16 
model, 2 additional convolution and pooling layers were 
added to the beginning of the original model, and the rest 
of the architecture remained unchanged. The convolution 
layers included conv, batch normalization (BN), and 
ReLU operations. The kernel size was 3×3, the stride and 
padding were both 1, and the pooling layer was maximum 
pooling. We also replaced the fully connected layers in 
VGG-16 with an adaptive average pooling layer to avoid 
the overfitting problem by reducing the model training 
parameters. For the ResNet-18 model, this study modified 
the convolutional layer with a kernel size of 7×7 in the 
original model into 3 convolutional layers with a kernel size 

Conv2d (kernal: 5*5*5, padding: 2, stride: 1)

Direct connection

ReLU

Skip connection

LR CXR HR CXR

8 Conv + 8 ReLU

Figure 4 Flowchart of super-resolution CXR image acquisition. LR CXR, low-resolution chest X-ray; HR CXR, high-resolution chest X-ray; 
Conv, convolution; ReLU, rectified linear units; Conv2d, convolutional layers contained two-dimensional convolution.
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of 3×3. The convolutional layers included conv, BN, and 
ReLU operations, and the maximum pooling layer was used 
for dimension reduction after each convolutional layer. To 
ensure the regular training of the model, we set the stride 
of the first residual block in ResNet-18 to 2, and the rest 
of the network layers of the model remained unchanged. 
Please refer to the relevant literature for a more detailed 
description of the 2 classical model architectures applied 
to classification tasks, the details of which are not repeated 
here (64,65).

The loss functions of different models

The loss functions in the image enhancement tasks involved 
in this study were optimized based on the difference in pixel 
information between the original domain and target domain 
images. For the bone suppression task, the loss function LBS 
of the model included 2 parts: LMSE and LSSIM. LMSE was the 
ratio of the squared sum of the pixel deviations between 
the ground truth CXR image Xg and the model-based 
bone-suppressed CXR image Xp to the number of pixels 
N of the total input image, and its function expression is  
shown in Eq. [1]:

( ) ( )2

, ,
1

1,
N

MSE g p p i g i
i

L X X X X
N =

= −∑  [1]

LSSIM was based on the original structure similarity index 
(SSIM) function by calculating the SSIM values in the 
local patches under the corresponding M sliding windows 
in the Xg and Xp images and then averaging the numerical 
calculation results LMSSIM. The specific mathematical 
formula is as follows:
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In summary, the total loss function of the bone 
suppression task is shown in Eq. [4], and the value is 0.84.

( ) ( ) ( ) ( ), 1 , ,BS g p MSE g p MSSIM g pL X X L X X L X Xα α= − +   [4]

For super-resolution tasks, the loss functions LSR of the 
model also includes LMSE and LSSIM. In addition, in this 
study, the Huber loss function was added to ensure the 
stability of HR image data training. The loss function has 
the advantages of using the mean absolute error and mean 
square error, which weakens the oversensitivity problem 

of discrete group points in training and is derivable 
everywhere. While having a faster convergence speed, 
the change of the model training gradient was relatively 
more minor, avoiding the problem of gradient explosion or 
disappearance. The specific expressions of LSR and LHuber are 
shown in Eq. [5] and Eq. [6], where β is 0.7.

( ) ( ) ( ) ( )
( )

, 1 , ,

,

SR g p MSE g p Huber g p
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L X X L X X L X X

L X X

β
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 = − + 
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    [5]
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( )21 , 1

2,
1 , 1
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X X X X
L X X

X X X X
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 − − − ≥


 [6]

For the COVID-19 classification task, the loss functions 
of both classification models involved in the study were 
binary cross-entropy. The cross-entropy describes the 
distance between the predicted probability and the actual 
label. The smaller the numerical result of the cross-
entropy, the higher the accuracy of the classification model 
prediction. The cross-entropy mainly uses negative log-
likelihood to solve the classification problem. The value of 
the loss item LC of the current category can be calculated 
through the softmax function, and the logarithmic 
evaluation and its specific expression are as follows:

( )
[ ]

[ ], log
x class

C x k
k

eL x class
e

 
 = −
 
 ∑

 [7]

The target category adopts one-hot encoding. The class 
represents the index corresponding to the current sample 
category in one-hot encoding, in which x[k] is the kth 
output predicted by the model.

Training details

The model network frameworks involved in this study were 
built by the Pytorch library. The computing platform used 
for training was NVIDIA GeForce RTX 3090 GPU with 
24 GB video memory, AMD Ryzen 9 5900X 12-Core CPU, 
and 32 GB RAM, which could meet the requirements for 
the calculation of network models. In terms of the details 
of hyperparameter selection, for the network model of the 
bone suppression task, the batch size was 10, the epochs 
were 200, the initial learning rate was set to 10−3, and the 
learning rate of the model was 0.75 times the original 
every 50 epochs. The proportions of the deep and shallow 
feature maps in the residual cascade of ResNet were 0.9 and 
0.1, respectively, and the optimizer of the network model 
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was Adam. For the super-resolution task, the batch size of 
the network model was set to 5, the epochs were 50, the 
learning rate was 10−4, and the optimizer also used Adam. 
The training curves of the models are shown in Figure 5. 
Figure 5A and Figure 5B are the optimized results of bone 
suppression and super-resolution, respectively. The loss 
value of the model gradually decreased and tended to be 
stable within the specified epoch. For the improved VGG-
16 and ResNet-18 models in the classification task, the 
batch size was set to 10, the epochs were 80 and 50, and 
the learning rates were 10−5 and 5×10−6, respectively. The 
optimizers used in the 2 models were stochastic gradient 
descent (SGD) and Adam. The weight decay of the former 
was set to 0.01, and the momentum decay factors of the 
latter were the default values of 0.9 and 0.999, respectively.

Evaluation

This study mainly used peak signal-to-noise ratio (PSNR), 
SSIM, and root mean square error (RMSE) to evaluate the 
similarity between the CXR images synthesized by deep 
learning models and ground truth CXR images (66,67).

For the quantization index PSNR, the formula is as 
follows:

( ) ( )

2

1 1 2

0 0

10log
1 , ,

I
X Y

gt ps
x y

MAXPSNR
I x y I x y

XY

− −

= =

 
 
 =  
 − 
 

∑∑
 [8]

In Eq. [8], Igt and Ips represent the ground truth and the 
pseudo-CXR images obtained based on the deep learning 
model, respectively. X and Y represent the size of the 
image, and MAXI represents the maximum gray value in 

the CXR images. The higher the PSNR value is, the closer 
the synthesized pseudo CXR image is to the ground truth. 
The remaining 2 quantitative indicators, SSIM and RMSE, 
are described in the previous section. In addition, compared 
with the super-resolution task, the original image of the 
data set used in the bone suppression task was more minor. 
To avoid the randomness of training, we used 8-fold cross-
validation to train the bone suppression model. The CXR 
image data were randomly divided into 8 groups: 7 groups 
were selected for training in each experiment, and the 
remaining group of data was used for interesting.

For the COVID-19 classification task, a visual confusion 
matrix was often used to represent the prediction results of 
the classification model. In terms of quantitative evaluation, 
the indicators mainly included accuracy, precision, recall, 
F1-score value, and area under the curve (AUC). Their 
corresponding mathematical expressions are as follows:

TP TNaccuracy
TP FN FP TN

+
=

+ + +
 [9]

21 precision recallF score
precision recall
⋅ ⋅

− =
+

 [10]

TPprecision
TP FP

=
+

 [11]

TPrecall
TP FN

=
+

 [12]

TP is the number of normal data samples that the model 
predicts as normal, TN is the number of CXR data samples 
predicted to be COVID-19, and FP represents the number 
of COVID-19 data samples falsely predicted to be normal 
by the model. FN represents the number of normal CXR 
data samples falsely predicted to be COVID-19. Therefore, 
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Figure 5 Training curves of the bone suppression and super-resolution task. (A) Bone suppression. (B) Super-resolution.
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based on the above 4 values, it can be determined that TP 
+ FN + FP + TN is the total number of all samples, TP + 
FN is the number of CXR data samples of all true normal 
classes, FP + TN is the number of CXR data samples of all 
true COVID-19 classes, TP + FP is the number of samples 
with all predicted values of the normal class, and TN + FN 
is the number of samples with all predicted values of the 
COVID-19 class.

For the above indicators, the larger the value is, the 
better the model’s performance. Suppose the recall obtained 
by the classification model is low. In that case, there are 
more false-negative patients in the predicted value, which 
affects the diagnosis of COVID-19 cases and causes missed 
diagnoses.

Gradient-weighted class activation mapping (Grad-
CAM++) was also used in this study to provide a visual 
display of the predictive performance of the classification 
models (68). Grad-CAM++ fuses the class discriminative 
property of the class activation mapping (CAM) with 
existing pixel-space gradient visualization techniques, 
which highlight fine-grained details in the image. Grad-
CAM++ can localize the predicted class more accurately 

than can Grad-CAM. The generated heatmaps better 
explain the performance of the classification model when 
multiple instances of a single class are present in the image. 
The redder the region in the heatmap is, the greater the 
contribution of the corresponding region in the CXR 
image to the classification model. The detected COVID-19 
regions are framed by the bounding boxes.

Results

Qualitative evaluation results of multistrategy enhanced 
CXR images

Figure 6 shows the visualization results of bone-suppressed 
CXR images obtained based on different deep learning 
models. Figure 6 shows that the image results obtained 
based on the model proposed in this study could better 
suppress the bone regions in the CXR images in terms of 
details. The rib and clavicle signals in the lung imaging 
region could be removed well. The contrastive difference 
map shows relatively small anatomical differences between 
the bone-suppressed CXR images proposed in this study 

A B C D E F G H

Figure 6 The random-selected bone-suppressed lung-only CXR images obtained based on different deep learning models. The second and 
fourth rows show the difference comparison maps. The closer the color is to black, the more significant the difference. (A) Original CXR. 
(B) CXR obtained based on the 5-layer CNN model. (C) CXR obtained based on the 6-layer CNN model. (D) CXR obtained based on the 
autoencoder model. (E) CXR obtained based on the ResNet model. (F) CXR obtained based on the DecGAN model. (G) CXR obtained 
based on the proposed model. (H) Ground truth bone-suppressed CXR. CXR, chest X-ray; CNN, convolutional neural network; DecGAN, 
decoupling generative adversarial network.
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and the ground truth. Table 2 shows the quantitative 
measurement results between the target CXR images and 
the bone-suppressed CXR images obtained by different 
deep learning models. The numerical results in the Table 2  
show that the similarity between the CXR images 
obtained based on the model proposed in this study and 
the target CXR was relatively high. Compared with the  
ResNet (36), Autoencoder (34), 6-layer CNN, 5-layer 
CNN, and decoupling generative adversarial network 
(DecGAN) (30), the proposed model had an average 
increase of about 1.7, 6.0, 2.9, 4.7, and 10.3 dB for the 
PSNR metric. The values for the RMSE metric were 
reduced by an average of 0.0006, 0.0065, 0.0027, 0.0050, 
and 0.154, respectively. After addition of a multidilated-rate 
convolutional layer to the ResNet model, the visualization 
and numerical results showed that the nonlinear mapping 
relationship between the original and the enhanced CXR 
image could be better established. The bone signals in 
the enhanced CXR images obtained by the proposed 
model were suppressed while retaining more accurate 
feature information of soft tissues. The fold with the best 
performance in the 8-fold cross-validation was selected as 
the model for the bone suppression task, which had better 
numerical measurement results of PSNR and RMSE.

Figure 7 shows the visualization results of the synthesized 
super-resolution CXR image based on the improved CNN 
model and the bicubic interpolation algorithm. Figure 7 
shows that the CNN model used in this study obtained not 
only HR CXR images with bone signals but was also suitable 
for super-resolution reconstruction of CXR images after 
bone suppression. Further, the numerical results of PSNR, 
SSIM, and RMSE of CXR images obtained by the CNN 

model were better than those of traditional interpolation 
algorithms, and HR CXR images met the image quality 
requirements of the next-order classification task. Table 
3 shows the quantitative results of the super-resolution 
CXR images obtained based on the traditional cubic spline 
interpolation and CNN model. For the CXR images with 
bone, compared with the interpolation algorithm, the super-
resolution method based on the CNN model increased 
the PSNR and SSIM values by about 9.5 dB and 2.1%, 
respectively, and reduced the RMSE values by about 0.0196. 
For the bone-suppressed CXR images, the PSNR and SSIM 
values increased by about 11.0 dB and 2.2%, respectively, 
and the RMSE value decreased by about 0.0265.

Accuracy evaluation of COVID-19 classification

Figure 8 shows the example explanation heatmaps and 
COVID-19 detection results for original and multienhanced 
CXR images. The first 2 lines are the original CXR images 
and their corresponding visual analysis results, and the last 
2 lines are the results of multienhanced CXR images. Figure 
8A shows COVID-19 CXR images, and the first and third 
rows correspond to the original and multienhanced CXR 
images of the same COVID-19 patient, respectively, as do 
the second and fourth rows. Figure 8B,8D are the heatmaps 
generated by Grad-CAM++ based on the improved VGG-
16 classification model and the corresponding COVID-19 
region detection maps. Figure 8C,8E are the visual results 
based on the improved ResNet-18 classification model. As 
shown in the Figure 8, the performance of the classification 
models could be improved based on the multienhanced 
CXR so that the models could more accurately predict 
COVID-19 than could the other models.

Figure 9A,9B are the confusion matrix results of internal 
and external testing of the improved VGG-16 model based 
on CXR image data obtained by different enhancement 
methods. Figure 10A,10B are the confusion matrices of the 
internal and external testing of the improved ResNet-18 
model, respectively. The closer the color in the confusion 
matrix image is to the darker color, the greater the amount 
of data the model predicts for this class, and vice versa. It 
can be seen from the Figures 9,10 that, for the internal and 
external test data sets, the classification results trained on 
the CXR image data based on any enhancement method 
had an improved ability to recognize the 2 classes of data. 
This shows that the training model based on the enhanced 
CXR image proposed in this study had relatively good 
accuracy in recognizing the 2 categories of images.

Table 2 The average numerical results of PSNR (dB) and RMSE 
under different deep learning models in the bone suppression task

Methods PSNR (dB) RMSE

DecGAN 32.89±0.87 0.0228±0.0023

5-layer CNN 38.46±2.13 0.0124±0.0033

6-layer CNN 40.27±2.42 0.0101±0.0030

Autoencoder 37.17±1.33 0.0139±0.0023

ResNet 41.55±2.68 0.0080±0.0030

Propose 43.21±3.14* 0.0074±0.0029*

The values are presented as mean ± standard deviation. *, the best 
performance. PSNR, peak signal-to-noise ratio; RMSE, root mean 
square error; DecGAN, decoupling generative adversarial network; 
CNN, convolutional neural network; ResNet, residual net.
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PSNR (dB): 30.50
SSIM (%): 97.18
RMSE: 0.0303

PSNR (dB): 39.70
SSIM (%): 99.26
RMSE: 0.0105

PSNR (dB): 28.51
SSIM (%): 97.46
RMSE: 0.0376

PSNR (dB): 39.47
SSIM (%): 99.67
RMSE: 0.0106

A B C D

Figure 7 The visual and quantitative l results between the synthesized super-resolution CXR image based on the improved CNN model 
and the bicubic interpolation algorithm. (A) LR CXR images. (B) HR CXR images obtained by bicubic interpolation. (C) HR CXR images 
obtained based on an improved CNN model. (D) Ground truth CXR images. PSNR, peak signal-to-noise ratio; SSIM, structure similarity 
index; RMSE, root mean square error; CNN, convolutional neural network; LR CXR, low-resolution chest X-ray; HR CXR, high-
resolution chest X-ray.

Table 3 The quantitative results of the super-resolution task with bone or bone suppression obtained based on the bicubic interpolation and 
improved CNN model 

CXR images Methods PSNR (dB) SSIM (%) RMSE

With bone Bicubic 30.25±1.00 97.13±0.49 0.0300±0.0034

CNN 39.71±0.96 99.21±0.24 0.,0104±0.0012

Bone-suppressed Bicubic 28.50±0.47 97.48±0.27 0.0371±0.0020

CNN 39.51±0.43 99.66±0.07 0.0105±0.0005

The values are presented as mean ± standard deviation. CNN, convolutional neural network; CXR, chest X-ray; PSNR, peak signal-to-
noise ratio; SSIM, structure similarity index; RMSE, root mean square error.
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Figure 11 show the different metrics of the VGG-16 
model for classifying 2 CXR image data categories on the 
internal and external testing data sets, respectively. Figure 
12 show the various metrics of the ResNet-18 model for 
classifying 2 CXR image data categories on the internal and 
external test data sets. The quantitative analysis showed that 
the accuracy of the 2 classification models after training 
based on the multistrategy enhanced CXR image data 
obtained in this study was the highest. The accuracy rates of 
internal and external testing based on the VGG-16 model 

were 92.97% and 83.06%, respectively. The accuracy rates 
of the internal and external tests based on the ResNet-18 
model were 90.23% and 78.89%, respectively. Based on 
the CXR images obtained by the enhancement method 
proposed in this study, the paired t-test was performed 
with the comparison experiment. The difference between 
the accuracy rates was statistically significant (P<0.05). In 
addition, for the VGG-16 model, compared with several 
other comparison methods, the F1-score values based on 
the multienhanced CXR classification were the highest 

A B C D E

Figure 8 Example explanation heatmaps and COVID-19 detection results for CXR images. The first 2 lines are the original CXR images 
and their corresponding visual analysis results, and the last 2 lines are the results of multienhanced CXR images. (A) COVID-19 images. 
(B) The heatmaps generated by Grad-CAM++ based on the improved VGG-16 classification model. (C) The heatmaps generated by Grad-
CAM++ based on the improved ResNet-18 classification model. (D) COVID-19 region detection maps based on the improved VGG-16 
model. (E) COVID-19 region detection maps based on the improved ResNet-18. model. COVID-19, coronavirus disease 2019; CXR, chest 
X-ray; Grad-CAM++, gradient-weighted class activation mapping; VGG, visual geometry group.
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Figure 9 The confusion matrix results of the improved VGG-16 model based on different CXR images. (A) The confusion matrix results of 
internal testing of the improved VGG-16 model. (B) The confusion matrix results of external testing of the improved VGG-16 model. Proposed, 
CXR images obtained based on the multienhancement for the classification; No_SR, CXR images without super-resolution enhancement for 
the classification task; No_BS, CXR images without bone suppression enhancement for the classification task; No_Seg, CXR images without 
segmentation enhancement for the classification task; No_BS_SR, CXR images without bone suppression and super-resolution enhancement for 
the classification task; No_Seg_BS, CXR images without segmentation and bone suppression enhancement for the classification task; No_Seg_
SR, CXR images without segmentation and super-resolution enhancement for the classification task; No_enhance, original CXR images for the 
classification task; CXR, chest X-ray; COVID, coronavirus disease; CM, confusion matrix; VGG, visual geometry group.
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Figure 10 The confusion matrix results of the improved ResNet-18 model based on different CXR images. (A) The confusion matrix results of 
internal testing of the improved ResNet-18 model based on CXR image data obtained by different enhancement methods. (B) The confusion 
matrix results of external testing of the improved ResNet-18 model based on CXR image data obtained by different enhancement methods. 
Proposed, CXR images obtained based on the multienhancement for the classification; No_SR, CXR images without super-resolution 
enhancement for the classification task; No_BS, CXR images without bone suppression enhancement for the classification task; No_Seg, 
CXR images without segmentation enhancement for the classification task; No_BS_SR, CXR images without bone suppression and super-
resolution enhancement for the classification task; No_Seg_BS, CXR images without segmentation and bone suppression enhancement for the 
classification task; No_Seg_SR, CXR images without segmentation and super-resolution enhancement for the classification task; No_enhance, 
original CXR images for the classification task; CXR, chest X-ray; COVID, coronavirus disease; ResNet, residual net; CM, confusion matrix.
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in both the internal and external tests, and their values 
were 92.80% and 82.52%, respectively. Similarly, the F1-
score values based on multienhanced CXR classification 
were also the highest in the internal and external tests of 
the ResNet-18 model, with values of 89.63% and 80.05%, 
respectively. The classification stability and robustness of 
the models were also relatively good. For the evaluation 
index of AUC, the numerical results of the internal and 
external tests of the VGG-16 model were 0.930 and 0.830, 
and the numerical results of the ResNet18 model were 0.902 
and 0.790, respectively. The AUC numerical results of the 
2 classification models based on different enhanced CXR 
images are shown in Table 4.

Discussion

In this study, multistrategy enhanced CXR images were 

used to improve the accuracy of classifying COVID-19. 
It can be seen from the experimental results that the 
multistrategy enhanced CXR images could better represent 
the characteristic information of COVID-19 than the other 
enhanced CXR images. Compared with the baseline CXR 
images, the multistrategy enhanced CXR images used in 
the internal COVID-19 classification testing increased 
accuracy by approximately 3–5%. The accuracy rates in the 
external testing e increased by approximately 12–18%. For 
the F1-score metric, the numerical results based on internal 
and external tests increased by about 2.5–6% and 9–21%, 
respectively. These findings have significance for the 
auxiliary diagnosis of patients with COVID-19 in clinical 
practice.

As mentioned above, this study adopted the ResNet 
network with dilated convolutional layers to build the 
framework of the bone suppression training model. 
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Figure 11 The performance metrics of the VGG-16 model for classifying 2 CXR image data categories on the internal and external testing 
data sets. (A) The accuracy values for the internal testing data sets. (B) The accuracy values for the external testing data sets. (C) The F1-
score values for the internal testing data sets. (D) The F1-score values for the external testing data sets. Proposed, CXR images obtained 
based on the multienhancement for the classification; No_SR, CXR images without super-resolution enhancement for the classification 
task; No_BS, CXR images without bone suppression enhancement for the classification task; No_Seg, CXR images without segmentation 
enhancement for the classification task; No_BS_SR, CXR images without bone suppression and super-resolution enhancement for the 
classification task; No_Seg_BS, CXR images without segmentation and bone suppression enhancement for the classification task; No_Seg_
SR, CXR images without segmentation and super-resolution enhancement for the classification task; No_enhance, original CXR images for 
the classification task; CXR, chest X-ray; VGG, visual geometry group.
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Compared with traditional convolution layers, the dilated 
convolution has 2 advantages. First, it increases the 
receptive field so that each convolution output contains a 

more extensive range of information. The receptive field 
is the region in the input space at which a particular CNN 
feature looks. Its central location and size can describe a 

Pro
pos

ed

Pro
pos

ed

Pro
pos

ed

Pro
pos

ed

No_
SR

No_
SR

No_
SR

No_
SR

No_
BS

No_
BS

No_
BS

No_
BS

No_
Seg

No_
Seg

No_
Seg

No_
Seg

No_
BS_S

R

No_
BS_S

R

No_
BS_S

R

No_
BS_S

R

No_
Seg

_B
S

No_
Seg

_B
S

No_
Seg

_B
S

No_
Seg

_B
S

No_
Seg

_S
R

No_
Seg

_S
R

No_
Seg

_S
R

No_
Seg

_S
R

No_
en

ha
nc

e

No_
en

ha
nc

e

No_
en

ha
nc

e

No_
en

ha
nc

e

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

100

90

80

70

60

50

78.89

80.05

90.23

89.63

67.08

73.10

88.67

88.17

71.25

75.96

87.50

87.94

69.72

62.54

87.11

86.64

67.22

73.00

86.72

87.85

73.47

76.04

89.06

88.43

63.75

66.93

88.67

88.89

60.69

70.85

86.72

87.02

A
cc

ur
ac

y,
 %

F1
-s

co
re

, %

A
cc

ur
ac

y,
 %

F1
-s

co
re

, %

A B

C D

Figure 12 The performance metrics of the ResNet-18 model for classifying 2 CXR image data categories on the external testing data sets. 
(A) The accuracy values for the internal testing data sets. (B) The accuracy values for the external testing data sets. (C) The F1-score values 
for the internal testing data sets. (D) The F1-score values for the external testing data sets. Proposed, CXR images obtained based on the 
multienhancement for the classification; No_SR, CXR images without super-resolution enhancement for the classification task; No_BS, 
CXR images without bone suppression enhancement for the classification task; No_Seg, CXR images without segmentation enhancement 
for the classification task; No_BS_SR, CXR images without bone suppression and super-resolution enhancement for the classification task; 
No_Seg_BS, CXR images without segmentation and bone suppression enhancement for the classification task; No_Seg_SR, CXR images 
without segmentation and super-resolution enhancement for the classification task; No_enhance, original CXR images for the classification 
task; CXR, chest X-ray images; ResNet, residual net.

Table 4 The numerical AUC results of classification models of the VGG-16 and ResNet-18 models based on different enhanced CXR images

Model
Testing  

type
Proposed 

CXR
No_SR  
CXR

No_BS  
CXR

No_Seg  
CXR

No_BS _SR 
CXR

No_Seg_BS 
CXR

No_Seg_SR 
CXR

No_enhance 
CXR

VGG-16 Internal 0.930 0.922 0.895 0.902 0.879 0.918 0.891 0.879

External 0.830 0.756 0.784 0.799 0.737 0.700 0.788 0.710

ResNet-18 Internal 0.902 0.887 0.875 0.871 0.867 0.891 0.887 0.867

External 0.790 0.673 0.715 0.695 0.675 0.736 0.639 0.611

The values are presented as mean ± standard deviation. AUC, area under curve; VGG, visual geometry group; ResNet, residual net; CXR, 
chest X-ray; Proposed, multistrategy enhanced; No_SR, no super resolution; No_BS, no bone suppression; No_Seg, no segmentation; 
No_BS_SR, no bone suppression and super resolution; No_Seg_BS, no segmentation and bone suppression; No_SR, no super resolution; 
No_enhance, no enhancement.
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receptive field of an element. In a deep net, downsampling 
(pooling or Conv2d with 2 strides) is always carried out 
to increase the receptive field and reduce the amount of 
calculation. Although the receptive field can be improved, 
the spatial resolution is reduced. In order not to lose 
resolution and still expand the receptive field, dilated 
convolution can be used. Second, dilated convolution 
can capture multiscale context information. Dilated 
convolution has a parameter that can set the dilation rate, 
and the specific meaning is how many zeros are filled in the 
convolution kernel. Therefore, the receptive fields differ 
when different dilation rates are set. That is, multiscale 
information is obtained. However, the model cannot fully 
use the pixel information if the same dilated rate-based 
kernel is adopted. Some features are used many times, and 
some feature information is not used at all. Here, in the 
improved model, the receptive fields of convolutional layers 
with different dilated rates are inconsistent. All feature 
points in the feature map can be obtained in crosswise 
fashion, which avoids the loss of feature information 
and better distinguishes the foreground (soft tissue) and 
background (bone) regions to suppress the bone signal in 
the CXR images, making the lung texture imaging clearer. 
Therefore, its quantitative and qualitative results for the 
bone suppression task of CXR were better than those of 
ResNet. For the autoencoder and CNN models, the results 
of bone suppression were inferior to those of the proposed 
method. Both models do not contain skip connections; 
therefore, they cannot fully combine the shallow and deep 
feature information of the CXR images, and the fitting 
ability of the models is insufficient, resulting in the loss of 
the detailed structural information of the CXR images. For 
the DecGAN model, the numerical results obtained in the 
bone suppression task were relatively stable. However, the 
model was trained based on unsupervised learning. The 
obtained bone-suppressed images still retained the edge 
contours of some bone regions. The enhanced images 
still retained the edge contours of some bone regions, 
resulting in a mutation in the grayscale information of the 
soft tissues. In terms of quantitative and qualitative results, 
the DecGAN model also exhibited relatively significant 
differences with the ground truth images.

In acquiring HR CXR images of bone suppression, this 
study used a step-by-step strategy to divide the total task 
into the LR CXR image bone suppression task and HR 
CXR image reconstruction task to replace the direct bone 
suppression processing of HR CXR images with bone 
signals. The reason for this was that the training of deep 

learning models based on HR image data often requires a 
long time for iteration and optimization, which depends 
on the computer’s video memory, virtual memory storage 
space, and GPU computing power. The iterative training 
cycles are also not conducive to timely adjustment of the 
hyperparameters in the network model, and the model 
training efficiency is significantly reduced. In addition, LR 
CXR images with bone signals could not directly establish a 
nonlinear mapping relationship with HR bone-suppressed 
CXR images. For the bone suppression task, the aim of 
the network training was to eliminate the bone signal on 
the original input CXR image data as much as possible and 
preserve the anatomical structure information of the soft 
tissue. The LR image first went through an interpolation 
process for the super-resolution task. The skip connection 
established the relationship between the interpolated 
image before inputting the network and the convoluted 
feature map. Throughout the literature consulted, this 
is an essential step in super-resolution. Omitting this 
step makes obtaining HR images difficult. If the super-
resolution reconstruction task is performed, the shallow 
feature information of the image should be preserved as 
much as possible. In contrast, the bone suppression task 
must suppress the bone signal component in the shallow 
feature information of the CXR image. The 2 training tasks 
are incompatible. In summary, the step-by-step training 
strategy can adjust the hyperparameters in the network 
model in time to reduce the computer operating load and 
avoid conflict between the multitask training models to 
obtain accurate lung-only bone-suppressed CXR images 
with HR. In addition, through experiments, we also found 
that the super-resolution model trained on images with the 
bone signal can also be applied well to LR bone-suppressed 
CXR images. Since the network model learns the 
nonlinear mapping relationship based on the image feature 
information and whether bones or soft tissues are reflected 
by pixel information, the strength of different signals in the 
image has little impact on the reconstruction task.

In the COVID-19 classification task, this study adopted 
the improved VGG-16 and ResNet-18 models to detect the 
categories of HR bone-suppressed CXR image data that 
only contained lung imaging regions. To our knowledge, 
this study is the first to examine the application of CXR 
images to a COVID-19 classification task. Compared with 
the original CXR images without enhancement, the feature 
information in the image-enhanced CXR data based on 
deep learning can be more easily learned by the classification 
model. The predicted results are more precise than the 
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other enhanced CXR images. Moreover, in this study, the 
CXR images obtained based on the proposed technique are 
more suitable than the compared deep learning methods 
for the task of detecting COVID-19. It can also be seen 
from the AUC values that, compared with the nonenhanced 
CXR images for the VGG-16 and ResNet-18 models, 
the numerical results based on the proposed technique 
increased by 0.051 and 0.035 in the internal test, and 0.120 
and 0.179 in the external test, respectively. This is because 
the nonenhanced CXR images have more interfering 
pixel information, which makes the classification model 
unable to judge the focus regions of COVID-19 accurately. 
For the overall imaging region, the proportion of the 
lung generally does not exceed 50%. A large amount of 
redundant information makes the loss function of the 
classification model unable to converge well during the 
training process. In contrast, the enhanced CXR images 
can provide higher quality and accurate pixel information 
for the classification model. In addition, compared with 
single- or multienhanced CXR images, the new technique 
can obtain stable detection results. The model’s accuracy 
on the internal and external testing data sets was relatively 
higher, and the model’s generalization ability was somewhat 
better. The synergy of multiple enhancement methods 
can leverage the advantages of each component. For the 
enhanced CXR image after lung segmentation, since the 
COVID-19 virus mainly invades the patient’s lung tissue, 
it has no apparent impact on the rest of the tissues and 
organs, and the imaging of COVID-19 features on the 
CXR image is also mainly concentrated in the lungs. The 
segmentation of the lungs can prevent the classification 
model from additionally learning the pixel information 
features of other regions, resulting in a decrease in the 
accuracy of the classification task. After the segmentation 
operation, the whole CXR image only contains the lung 
imaging region, which not only improves the accuracy of 
subsequent bone suppression and super-resolution tasks but 
also ensures that the filtered pixel information can make it 
easier for the classification model to distinguish COVID-19 
and normal CXR images in the training process. After 
bone suppression, the enhanced CXR image can effectively 
reduce the imaging interference of the bone signals in the 
lungs to the COVID-19 lesion region. The classification 
model can focus more accurately on the image features 
of COVID-19. In addition, compared with the LR CXR 
image, the enhanced HR image has more pixel information 
so that the classification network model can fully extract the 
image feature information in the lung imaging area under 

different CXR categories. The robustness and accuracy of 
the classification model have been improved to a certain 
extent. This study mainly used the measures of accuracy and 
F1-score instead of precision and recall. In the classification 
task, the higher the precision of a certain category is, the 
lower the misdiagnosis rate of the category, while the higher 
the recall of a category is, the lower the missed diagnosis 
rate of the category. Usually, precision and recall contradict 
each other, leading to a higher value of one measure and a 
lower value of the other. The clinical reference significance 
of a separate measure of the two is questionable. The F1-
score is the comprehensive quantity of precision and recall. 
It is a commonly used indicator for evaluating classification 
models, which can solve the limitations of precision and 
recall indicators in evaluation.

There  are  some l imita t ions  in  compar ing the 
classification accuracy of the recently existing methods with 
the proposed method. The former is based on the relatively 
small size of CXR images for classification tasks, while the 
latter is based on images with a size of 1,024×1,024 (69,70). 
For comparison, 1 of the following 2 options is required. 
The first method is to reduce the dimensionality of the 
1,024×1,024 image to a suitable size for the input without 
changing the network structure of the classification model. 
The second method is to modify the network structure 
of the classification model to meet the input data size of 
1,024×1,024. However, both methods would change the 
originality of their experiments, and the accuracy of the 
classification based on the existing methods can be affected 
when they are modified. Therefore, only the improved 
VGG-16 and ResNet-18 models were used in this study to 
verify the accuracy of COVID-19 classification based on the 
multienhanced CXR images.

In addition, there is no clear rule for improving 
COVID-19 classification tasks based on single-enhanced 
or double-enhanced CXR images. It is impossible to 
determine which of the single or double enhancement 
method has the most significant impact on classification 
accuracy. Since this is a preliminary study on applying CXR 
image under multistrategy enhancement in COVID-19 
classification, we will continue to search for the correlation 
between different enhancement schemes and COVID-19 
classification accuracy in subsequent experiments. By 
building a more accurate image enhancement model, 
the robustness of the classification model can be further 
improved, and increasingly accurate classification results 
can be obtained. In addition, this study was only based on 
COVID-19 binary classification data for training. We will 
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continue to add other pneumonia categories in the future to 
verify the ability of multistrategy enhanced CXR images to 
detect various categories of pneumonia.

Conclusions

This study developed a novel COVID-19 classification 
technique based on the multistrategy enhanced step-by-
step CXR image acquisition method. The new technique 
was applied to the COVID-19 classification task. In terms 
of quantitative verification, the bone-suppressed model with 
multidilated-rate convolution could better eliminate bone 
signals in CXR images than the other existing methods. The 
HR CXR images of bone suppression based on the CNN 
model were also less different from the ground truth CXR 
images. In terms of classification accuracy evaluation, the 
2 classification models trained based on the multistrategy 
enhanced CXR images could accurately predict the normal 
and COVID-19 data categories at the internal and external 
testing stage. The CXR images synthesized by the new 
technique based on deep learning have good application 
prospects in diagnosing COVID-19.
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