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Background: Deep learning (DL) has been suggested for the automated measurement of leg length 
discrepancy (LLD) on radiographs, which could free up time for pediatric radiologists to focus on value-
adding duties. The purpose of our study was to develop a unified solution using DL for both automated LLD 
measurements and comprehensive assessments in a large and comprehensive radiographic dataset covering 
children at all stages, from infancy to adolescence, and with a wide range of diagnoses.
Methods: The bilateral femurs and tibias were segmented by a cascaded convolutional neural network 
(CNN), referred to as LLDNet. Each LLDNet was conducted through use of residual blocks to learn more 
abundant features, a residual convolutional block attention module (Res-CBAM) to integrate both spatial 
and channel attention mechanisms, and an attention gate structure to alleviate the semantic gap. The leg 
length was calculated by localizing anatomical landmarks and computing the distances between them. A 
comprehensive assessment based on 9 indices (5 similarity indices and 4 stability indices) and the paired 
Wilcoxon signed-rank test was undertaken to demonstrate the superiority of the cascaded LLDNet for 
segmenting pediatric legs through comparison with alternative DL models, including ResUNet, TransUNet, 
and the single LLDNet. Furthermore, the consistency between the ground truth and the DL-calculated 
measurements of leg length was also comprehensively evaluated, based on 5 indices and a Bland-Altman 
analysis. The sensitivity and specificity of LLD >5 mm were also calculated.
Results: A total of 976 children were identified (0–19 years old; male/female 522/454; 520 children between 0 
and 2 years, 456 children older than 2 years, 4 children excluded). Experiments demonstrated that the proposed 
cascaded LLDNet achieved the best pediatric leg segmentation in both similarity indices (0.5–1% increase; P<0.05) 
and stability indices (13–47% percentage decrease; P<0.05) compared with the alternative DL methods. A high 
consistency of LLD measurements between DL and the ground truth was also observed using Bland-Altman analysis 
[Pearson correlation coefficient (PCC) =0.94; mean bias =0.003 cm]. The sensitivity and specificity established for 
LLD >5 mm were 0.792 and 0.962, respectively, while those for LLD >10 mm were 0.938 and 0.992, respectively.
Conclusions: The cascaded LLDNet was able to achieve promising pediatric leg segmentation and LLD 
measurement on radiography. A comprehensive assessment in terms of similarity, stability, and measurement 
consistency is essential in computer-aided LLD measurement of pediatric patients. 
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Introduction

Leg length discrepancy (LLD) is an orthopedic problem 
that frequently causes musculoskeletal disorders in 
children, such as gait deviations, scoliosis, low back pain, 
osteoarthritis, and postural control (1). Particularly, children 
with an LLD greater than 5 mm could have an increased 
risk of hip, knee, or back problems (2,3). Therefore, 
accurate and reliable LLD measurement is crucial for 
planning appropriate treatment (4-6).

Radiography of bilateral lower limbs is considered a 
standard approach to measuring LLD (1,7,8). Pediatric 
radiologists used to manually measure the LLD on 
radiographs from the upper edge of the femoral head to 
the distal tibia; however, while cognitively simple, this 
task is labor-intensive. A previous study (9) demonstrated 
that radiology technologists can be rapidly trained to 
measure LLD as precisely as can a board-certified pediatric 
radiologist. Therefore, the delegation of this time-
consuming task to artificial intelligence (AI)-powered 
assistants is becoming increasingly important.

Deep learning (DL) is a powerful tool and, due to its 
successful application in a range of settings, it is expected that 
DL will be able to perform the simple but labor-intensive 
measurement component of radiologic examinations (10,11). 
In prior studies, DL was adopted for the automated and 
rapid measurement of LLD, including leg segmentation-
based measurement (12) and anatomical landmark 
localization-based measurement (13). In these studies, both 
approaches employed convolutional neural networks (CNNs) 
from different perspectives and achieved promising accuracy. 
However, these studies were only performed on children 
from a preschool stage and of a relatively small cohort. 
Children with LLD, particularly, infants and toddlers, pose 
challenges in completing clinical routines.

Children will experience many remarkable changes in 
terms of both the structure and alignment of legs during 
their development (14). For instance, approximately 90% 
of cases of capital femoral epiphysis can be observed on 
radiographs as early as 200 days after birth (15). Sugawara  
et al. (16) and Garn et al. (17) reported that the 50th percentile 
of age at the appearance of the femoral head was 6 months 
in children with normal flexion and 8 months in children 
who had developmental dysplasia of the hip. Ossification of 

the trochanteric apophysis begins at approximately 4 years 
of age in both girls and boys, but that of the distal femoral 
epiphysis can occur prior to birth (18). Furthermore, the 
knee joint space of infants is demonstrated on radiographs 
to be wider than that observed in older children on 
radiographs due to the relatively small ossification center of 
the distal femoral epiphysis and proximal tibial epiphysis, 
as well as the surrounding epiphyseal cartilage, which is not 
visible on X-ray plain film. Figure 1 demonstrates a series of 
radiographs covering children at different stages. 

Upon the success of a previous study (12), the present 
study adopted the leg segmentation-based strategy 
for automated LLD measurement. First, a cascaded 
CNN (referred to as “cascaded LLDNet”) was devised 
for the accurate pediatric leg segmentation. Second, a 
comprehensive assessment was performed; however, the 
limited spatial overlap was insufficient for evaluating 
the improper segmentation for LLD measurement. 
Our hypothesis was that the cascaded LLDNet could 
achieve promising pediatric leg segmentation and LLD 
measurement based on a comprehensive assessment of a 
large and comprehensive radiographic dataset comprising 
children at all stages, from infancy to adolescence, and 
with a wide range of diagnoses. We present the following 
article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-282/rc).

Methods

Study participants 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by institutional ethics board of Xiamen Children’s 
Hospital, and individual consent for this retrospective 
analysis was waived. A total of 976 children who underwent 
full-length radiography of their lower limbs from the hips 
to the ankles filmed under anteroposterior single exposure 
were identified between January 2020 and December 
2020 from the database of a local children’s hospital. The 
inclusion criteria were as follows: (I) adequate technical 
quality of radiograph; and (II) imaging field of view (FOV) 
that covered the entire bilateral femurs and tibias. The 
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exclusion criteria were as follows: imaging FOV that did 
not include the entire bilateral femurs and tibias. We had 
3 patients with internal fixation devices, and those patients 
were excluded. One radiograph did not include the distal 
tibias bilaterally in the imaging FOV, and thus it was 
excluded. Ultimately, there were 4 radiographs excluded 
based on the exclusion criteria (4/976, 0.41%), and 972 
children were included in our study (520 children between 
0–2 years and 456 children older than 2 years). The 
radiographs with leg deformities or skeletal dysplasias were 
not excluded because we wanted to establish a dataset with a 
broad spectrum of clinically common diseases.

The full-length radiography was acquired by 2 
imaging acquisition systems, the DigitalDiagnost 3 digital 
radiography (DR) scanning unit (Philips Healthcare, 
Andover, MA, USA) and the SONIALVISION Plus 
multipurpose digital radiography/fluoroscopy (R/F) system 
(Shimadzu Corporation, Kyoto, Japan). For children under 
2 years, we used the DR scanning unit because the FOV 
was sufficiently large to scan the entirety of the lower limbs 
in a single exposure. For older children over 2 years, we 
used the multipurpose R/F system perform full-length 
radiography of both lower limbs. This system determined 
the acquisition start point and end point under fluoroscopy, 
which was followed by acquisition of the images and then 
stitching of the images to generate full-length radiographs 
with a postprocessing workstation.

In our study, some patients had no clinical diseases 
but were observed to have an abnormal appearance or 
trauma in both lower limbs [referred to as “children with 
no clinical disease (NCD) group”]. The other patients in 

the radiographic dataset carried a wide range of diagnoses 
[referred as “children with various clinical diseases (VCD) 
group”], including orthopedic hardware, Beckwith-
Wiedemann syndrome,  bow legs ,  cerebral  palsy, 
developmental dysplasia of the hip, fibrous dysplasia, 
fibrous cortical defect, foot tumor, growth and intellectual 
disability, knock knees, Langerhans cell histiocytosis, 
neurofibromatosis type 1, osteochondroma, scoliosis, 
Shwachman-Diamond syndrome, hip synovitis, tethered 
cord syndrome, and venous malformation. 

The demographic information is summarized in Table 1.  
There were no significant differences between the NCD 
and VCD groups regarding femoral length, tibial length, 
or full leg length (P>0.05, t-test), but the LLD was 
significantly different between the NCD and VCD groups 
(P<0.05, t-test). This demonstrated that clinical disease in 
the VCD group was associated with pediatric LLD.

Ground truth

Since the present study adopted the leg segmentation–based 
strategy for automatic LLD measurement, the ground truth 
consisting of manual segmentation served as the standard 
masks and leg length measurement to validate the accuracy 
of the computer-aided approach.

Manual segmentation was performed by a senior 
attending pediatric radiologist with more than 5 years’ 
working experience using ITK-SNAP v3.8.0 software 
(http://www.itksnap.org/pmwiki/pmwiki.php). The leg 
length was measured according to the anatomical landmarks 
adopted by Zheng et al. (12).

Figure 1 Radiographs covering children at all stages. The red circles show regions including capital femoral epiphysis, the distal femoral 
epiphysis, the proximal and distal tibial epiphysis, which will experience remarkable changes in terms of structure and alignment of legs 
during childhood development. R, right; y, year.

0.43 y 0.52 y 1.25 y 2.67 y 5.25 y 8 y 11 y 19 y
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DL-based measurement of LLD 

The proposed leg segmentation-based strategy typically 
comprised 4 stages: segmentation of pediatric legs by a 
cascaded LLDNet, postprocessing of segmentation masks, 
identification of anatomical landmarks, and measurements 
of the distances between them. 

In the first stage of pediatric leg segmentation, we 
established a cascaded LLDNet to perform bilateral 
segmentation of the femurs and tibias in each radiograph 
(Figure 2). Specifically, the CNN model cascaded 2 
identical, U-shaped network structures (each referred to as 
an LLDNet), with the first LLDNet being able to generate 
a probability matrix for the bilateral femur and tibia, and 
the second LLDNet being fed the probability matrix to 

segment the bilateral femurs and tibia in each radiograph. 
Each cascaded LLDNet was conducted under the 

popular framework of U-Net but was improved via 
adoption of residual blocks (Figure 3A). The benefits of 
employing residual blocks included learning more features 
and accelerating convergence. The first residual block 
was followed by a residual convolutional block attention 
module (Res-CBAM), as shown in Figure 3B. The Res-
CBAM consisted of a convolutional layer, CBAM, batch 
normalization, and rectified linear unit, in which the CBAM 
integrated both spatial and channel attention mechanisms to 
enhance discriminating feature maps (19). Additionally, the 
attention gate structure, as seen in Figure 3C, was added to 
skip connections to alleviate the semantic gap and highlight 
the target area in segmentation.

Table 1 Demographic information 

Age Groups Number (N=972) Age (years) Sex (M/F)
Femoral length 

(cm)
Tibial length 

(cm)
Full leg length 

(cm)
Full LLD 

(cm)

0–2 years NCD group 292 1.39±0.37 143/149 18.2±1.9  
(7.2–21.8)

16.0±1.6  
(8.2–19.3)

34.2±3.5  
(15.9–40.5)

0.17±0.15  
(0–0.83)

VCD group 226 1.34±0.39 120/106 17.9±1.9  
(7.8–23.8)

16.0±1.6  
(7.9–20.9)

34.0±3.6  
(15.8–44.7)

0.29±0.35  
(0–2.4)

>2 years NCD group 199 5.20±2.46 100/99 26.9±5.8  
(18.5–47.4)

22.7±4.4  
(15.8–37.6)

49.7±10.3  
(34.3–84.7)

0.25±0.19  
(0–0.9)

VCD group 255 5.01±2.81 157/98 26.0±6.0  
(15.6–45.6)

21.9±4.5  
(13.9–38.0)

48.0±10.5  
(29.5–83.7)

0.47±0.73  
(0–4.4)

The NCD group includes children with no clinical disease, while the VCD group includes children with various clinical disease. No 
significant difference was observed in age, sex, femoral length, tibial length, or full leg length between the NCD and VCD groups, but a 
significant difference was observed in full LLD (chi-squared test for sex and t-test for others). Data are shown as mean ± SD and (ranges). 
NCD, children with no clinical disease; VCD, children with various clinical diseases; M, male; F, female; LLD, leg length discrepancy.

Cascaded LLDNet

A B C D

Figure 2 Schematic diagram of the cascaded LLDNet to accomplish simultaneous bilateral segmentation of femurs and tibias. (A) Image of 
area to be segmented. (B) The cascaded LLDNet model. (C) Segmentation of femurs and tibias. (D) Anatomical landmarks and leg length 
measurement. LLD, leg length discrepancy.
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To assess  the  genera l izat ion of  the  automat ic 
measurement of leg length difference, a 5-fold cross-
validation was adopted in our study. Specifically, the 
participants were split into a training set (60% of the data, 
3 groups), a validation set (20% of the data, 1 group), and a 
testing set (20% of the data, 1 group) with even distribution 
of age and presence or absence of clinical disease. The 
procedure was performed 5 times to ensure each participant 
could be tested.

PyTorch deployed on the Nvidia GeForce Ray Tracing 
Texel eXtreme (RTX) 2080 graphics processing unit (GPU; 
NVIDIA Corp, Santa Clara, CA, USA) was used to train 
the CNN model in an end-to-end mode with the input 
images resized to 448×160 pixels, scaled to [0, 1], and 
normalized with a max–min standardized method. The Dice 
loss function DiceLoss=1–2|A∩B|⁄(|A|+|B|) was employed, 
where A and B were manual and automatic segmentations, 
and |∙| was the volume of the corresponding segmentation 
mask. The batch size was 5, and the training time was  

100 epochs. The initial learning rate was 1×10−4 and decayed 
by 10% every 30 epochs.

In the second stage of the postprocessing of segmentation 
masks, a maximum connected component analysis was 
performed to detect the pediatric legs in the segmentation 
label images. Specifically, given the 4 segmentation labels 
of left femur, left tibia, right femur, and right tibia in an 
image (referred to as a “4-label image”), we generated 4 
new separate images, in which each image only contained 
on1e label (referred to as a “1-label image”). Then, the 
maximum connected region was recognized and reserved 
in each 1-label image, after which it was remerged into a 
4-label image, which was treated as the final pediatric leg 
segmentation map.

In the third stage of the identification of anatomical 
landmarks, the same 3 landmarks used in a previous study (12)  
were determined for each limb: the apex of the femoral head 
(AFH; defined as the uppermost point of the femoral head, 
and if the femoral head of an infant less than 6 months 
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Figure 3 The LLDNet network. (A) The structure of the LLDNet network. Both the Maxpool and ConvTranspose were performed with 
the kernels of 2×2 and a stride of 2. (B) The Res-CBAM consisted of a convolutional layer, CBAM, BN, and ReLU. (C) AtteBlock: XR 
indicates the feature map generated by ResBlock, XC indicates the feature map generated by the ConvTranspose, Λ indicates the weight 
matrix, and * indicates voxel-wise multiplication for the feature maps. LLD, leg length discrepancy; Res-CBAM, residual convolutional 
block attention module; BN, batch normalization; ReLU, rectified linear unit. 
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old was not ossified completely, the ossified upper femoral 
apex was used to replace the AFH for measurement), the 
convexity of the medial femoral condyle (CMFC; defined 
as the bony protrusion on the inside edge of the bottom of 
the femur bone), and the center of the tibial plafond (CTP; 
defined as the center of the distal end of the tibia). The full 
leg length was defined as the sum of the femoral and tibial 
bone lengths, and the LLD was defined as the difference 
between the right and left full leg lengths. The femoral 
length was defined as the vertical distance between the AFH 
and the CMFC, and the tibial length was defined as the 
vertical distance between the CMFC and the CTP (Figure 4). 

In the fourth stage of the measurement of the distance 
between landmarks, the length of the femurs, tibias, 
and full legs were calculated between corresponding 
anatomical landmarks (Figure 2D). Specifically, the femoral 
and tibial lengths were defined as the vertical distances 
between the AFH and CMFC and between the CMFC 

and TP, respectively. The full limb length was the sum of 
the femoral and tibial lengths. LLD was defined as the 
difference in the length between the right and left limbs.

Comprehensive assessment and statistical analysis

The comprehensive assessment in this study included 
the evaluation of the following: (I) the accuracy of the 
segmentation of pediatric legs based on 9 indices and (II) 
the consistency of the measurement of leg length between 
DL and ground truth based on 5 indices. Using the 
comprehensive indices above, we compared the proposed 
cascaded LLDNet with alternative DL models, including 
ResUNet (12), TransUNet (20), and the single LLDNet to 
demonstrate the superiority of the cascaded LLDNet. 

To assess the accuracy of the segmentation of the 
pediatric leg, 9 indices were employed (21), including Dice, 
Jaccard, precision, recall, mean distance (MD), Harsdorff 

Figure 4 Full-length anteroposterior radiographs of 2 children. (A) Full-length anteroposterior radiograph of a 4-year-old girl. The femoral 
length is defined as the vertical distance from the AFH to the CMFC. The tibial length is defined as the vertical distance from the CMFC 
to the CTP. The full leg length is defined as the sum of the femoral and tibial lengths. LLD is defined as the length difference between 
the right and left limbs. (B) Full-length anteroposterior radiograph of a 3-month-old girl. Different with (A), the femoral heads were not 
ossified. The femoral length is defined as the vertical distance from the ossified upper femoral apex instead of the AFH to the CMFC. The 
tibial length is defined as the vertical distance from the CMFC to the CTP. AFH, apex of the femoral head; CMFC, convexity of the medial 
femoral condyle; CTP, center of the tibial plafond; LLD, leg length discrepancy. 
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distance (HD), HD95, average symmetric surface distance 
(ASSD), and root mean square deviation (RMSD). The 
above metrics comprehensively measured the segmentation 
in terms of similarity (Dice, Jaccard, precision, and recall) 
and stability (MD, HD, HD95, ASSD, and RMSD). 
Additionally, the paired Wilcoxon signed-rank test 
(MATLABR2018b; MathWorks, Natick, MA, USA) was 
also employed to statistically compare the accuracy of the 
segmentation between different DL models. A value of 
P<0.05 indicated a significant improvement of the proposed 
cascaded LLDNet over alternative DL models in terms of 
the 9 indices. Given manual segmentation A and automatic 
segmentation B, the above 9 indices were defined as follows:

( )
( ) ( )

( )
( )

2 ,
V A B V A B
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V A V B V A B

= =
+
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HD95 is similar to HD, expect that 5% data points with 
the largest distance are removed before the calculation, as 
follows: 

( )( ) ( )( ), ,
2
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+
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D D
RMSD D d e f

card A card B  [6]

To assess the consistency of the measurement of leg 
length between DL and ground truth, 5 indices, including 
the Pearson correlation coefficient (PCC), mean squared 
error (MSE), mean absolute error (MAE), maximum 
absolute error (MaxAE), and concordance correlation 
coefficient (CCC), were employed. Given the ground truth 
y and the predicted measurement y  by DL, the MSE and 
MAE were defined as follows:

( )2

1

1
=

= −∑
n

i i
i

Mean Squared Error y y
n  [7]



2

1

1
=

= −∑
n

i i
i

Mean Absolute Error y y
n  [8]

Additionally, the Bland-Altman plot was adopted to 

visualize the differences in the measurements of leg length 
between the manual and automatic measurements. The 
mean bias and the coefficient of repeatability (RPC) from 
the Bland-Altman analysis were calculated. Given the 2 
measurements, y2 and y1, the RPC was defined as follows:

( )2
2 11.96

y y
RPC

n
−

= × ∑
 [9]

Since an LLD >5 mm could be associated with an 
increased risk of osteoarthritis of the knee or hip, the 
sensitivity and specificity defined below were also calculated 
to evaluate automatic LLD measurement:

sensitivity
True Positive

True Positive False Negative
=

+  [10]

specificity
True Negative

True Positive False Negative
=

+  [11]

Results

Comparison of segmentation with alternative DL models

The comparison of segmentation between the proposed 
cascaded LLDNet and the alternative DL models of ResUNet 
(12), TransUNet (20), and the single LLDNet is summarized 
in Table 2. Experimental results demonstrated that the cascaded 
LLDNet achieved the best segmentation accuracy in terms of 
similarity and stability indices. The visualized comparison of 
the segmentation results is also displayed in Figure 5, which 
further demonstrates that the cascaded LLDNet could greatly 
decrease segmentation errors.

Furthermore, although the similarity indices achieved 
by the cascaded LLDNet were only slightly improved in 
quantity (0.5–1% percentage increase of indices; P<0.05; 
paired Wilcoxon signed-rank test), the stability indices 
improved dramatically between the different DL models 
under comparison (13–47% percentage decrease of indices: 
P<0.05, paired Wilcoxon signed-rank test), as shown in 
Table 2. The percentage improvement in terms of similarity 
and stability indices shown in Table 2 not only demonstrate 
the superiority of the cascaded LLDNet in segmenting 
pediatric legs, but also emphasize the necessity of the 
comprehensive assessment in the LLD study.

Comparison with radiology reports

Other than the evaluation of segmentation accuracy, the 
consistency in the measurement of leg length between DL 
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Table 2 Comprehensive evaluation of pediatric leg segmentation by 4 similarity indices and 5 stability indices (mean ± SD) 

Deep learning 

model

Similarity indices Stability indices

Dice Jaccard Precision Recall MD HD HD95 ASSD RMSD

ResUNet 0.9754±0.01* 0.9523±0.02* 0.9735±0.02* 0.9776±0.01 0.2693±0.22* 5.7778±8.90* 1.2044±1.52* 0.2561±0.14* 0.6634±0.62*

TransUNet 0.9720±0.01* 0.9458±0.02* 0.9679±0.02* 0.9763±0.01 0.2708±0.14* 3.8934±4.03* 1.1963±1.36* 0.2790±0.12* 0.6120±0.40*

Single LLDNet 0.9759±0.01* 0.9530±0.02* 0.9747±0.01* 0.9772±0.01 0.2554±0.25* 4.3214±6.70* 1.2048±1.90* 0.2483±0.15* 0.6097±0.62*

Cascaded LLDNet 0.9772±0.01 0.9555±0.01 0.9783±0.01 0.9762±0.01 0.2195±0.07 3.0277±2.81* 1.0455±0.28* 0.2255±0.07 0.5119±0.19

The maximum 

percentage 

improvement

↑0.5% ↑1.0% ↑1.0% ↓18% ↓47% ↓13% ↓19% ↓22%

The ResUNet, TransUNet, single LLDNet, and proposed cascaded LLDNet were compared. *, the cascaded LLDNet significantly improved the performance 

according to paired Wilcoxon signed-rank test. SD, standard deviation; MD, mean distance; HD, Hausdorff  distance; ASSD, average symmetric surface 

distance; RMSD, root mean square deviation; LLD, leg length discrepancy. 

Patient A Patient B

ResUNet TransUNet LLDNet Cascaded LLDNet ResUNet TransUNet LLDNet Cascaded LLDNet

Figure 5 Comparison of segmentation between different deep learning models on patients A and B, including the ResUNet, TransUNet, 
single LLDNet, and cascaded LLDNet. 

and ground truth was also comprehensively assessed by the 
5 metrics of PCC, MSE, MAE, MaxAE, and CCC. The  
5 metrics were also compared between the proposed cascaded 
LLDNet with the alternative DL models of the ResUNet (12), 
TransUNet (20), and the single LLDNet (Table 3).

Regarding the comparison of the measurement of 
the length of the femur, tibia, and full leg, as shown in 
Table 3, the proposed cascaded LLDNet achieved better 
performance in the measurement of consistency over 
alterative DL models under comparison. Regarding the 
LLD measurement, the cascaded LLDNet also obtained 
the best consistency with ground truth (PCC =0.94, P<0.05; 
MSE =0.02, MAE =0.09, MaxAE =1.85, CCC =0.94) over 
the other methods.

In addition, Figure 6 exhibits the incidence of different 
anatomic LLD magnitudes among the participants, where 
LLDs of 0–2 and 8–10 mm had the highest and lowest 
incidence in the population in our study, respectively. 
With respect to the incidence of different anatomic LLD 
magnitudes among the participants, the scatter plots (with 
PCC, CCC, MSE, MAE, and MaxAE) of the comparison 
between the radiology report and DL models (Figure 7), 
indicated that the best measurement consistency of femoral 
length, tibial length, leg length, and LLD was achieved by 
the cascaded LLDNet. The Bland-Altman plot (Figure 8) 
was also used to assess the agreement between the manual 
measurement and the leg length calculated by the cascaded 
LLDNet. Regarding the LLD difference between the 
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manual and automatic measurements, the Bland-Altman 

analysis showed a mean bias ± SD of 0.003±0.15 cm and 

RPC of 0.29.

Using the results of the manual measurement of LLD 

as the gold standard, we computed the sensitivity and 

specificity of the automatic LLD measurements of all cases 

with LLD >5 mm and LLD >10 mm. The sensitivity and 
specificity established for LLD >5 mm were 0.792 and 
0.962, respectively, while those for LLD >10 mm were 0.938 
and 0.992, respectively. 

Discussion

In the present study, we developed a cascaded LLDNet for 
automatic LLD measurement and then comprehensively 
assessed its performance on a radiographic dataset covering 
children at all stages from infancy to adolescence and with a 
wide range of diagnoses. The LLDNet performed better in 
the LLD study in terms of similarity and stability compared 
to the other models (Table 2 and Figure 5). Experiments 
comprehensively employing a variety of metrics and 
statistical analyses demonstrated the superiority of the 
cascaded LLDNet in the LLD study over ResUNet (12), 
TransUNet (20), and the single LLDNet (Figure 3A). 

Previous research on this subject has only been carried 
out on children from a preschool stage (13) and in a 

Table 3 Comparison between the radiology reports and the automated measurements in terms of Pearson correlation coefficient, mean squared 
error, mean absolute error, maximum absolute error, and concordance correlation coefficient

Anatomical 
structure

Deep learning model
Pearson correlation 

coefficient
Mean squared 

error (cm)
Mean absolute 

error (cm)
Maximum absolute 

error (cm)
Concordance 

correlation coefficient

Femur ResUNet 0.93* 6.09 0.57 35.9 0.92

TransUNet 0.91* 7.46 0.68 27.4 0.90

Single LLDNet 0.95* 3.99 0.42 28.3 0.94

Cascaded LLDNet 0.99* 0.07 0.19 1.21 0.99

Tibia ResUNet 0.89* 4.89 0.49 34.4 0.89

TransUNet 0.89* 5.89 0.59 22.5 0.88

Single LLDNet 0.91* 3.84 0.41 28.4 0.91

Cascaded LLDNet 0.99* 0.06 0.18 1.59 0.99

Full leg 
length

ResUNet 0.99* 0.50 0.22 8.91 0.99

TransUNet 0.99* 0.63 0.24 14.3 0.99

Single LLDNet 0.99* 0.16 0.14 6.13 0.99

Cascaded LLDNet 0.99* 0.02 0.10 1.71 0.99

LLD ResUNet 0.59* 0.31 0.19 6.14 0.53

TransUNet 0.50* 0.49 0.23 7.08 0.41

Single LLDNet 0.70* 0.18 0.15 4.62 0.67

Cascaded LLDNet 0.94* 0.02 0.09 1.85 0.94

The ResUNet, TransUNet, single LLDNet, and proposed cascaded LLDNet were compared. *, significant correlation with P<0.05 between 
radiology reports and the automated measurements. LLD, leg length discrepancy.

≥10 mm

8–10 mm

6–8 mm

4–6 mm

2–4 mm

0–2 mm

0.00% 10.00%  20.00% 30.00% 40.00% 50.00% 60.00%

% of population with LLD

Figure 6 Incidence of anatomic LLD magnitude. LLD, leg length 
discrepancy.
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relatively small cohort (12); however, children with LLD 
at infant and toddler stages represent a particular challenge 
in clinical routines. Children experience many remarkable 
changes in terms of both the structure and alignment of 
their legs during development (14), as displayed in Figure 1.  
Therefore, a unified solution using DL on a large and 
comprehensive radiographic dataset covering children at 
all stages, from infancy to adolescence, and with a wide 
range of diagnoses, is desirable. Therefore, the present 
study employed a large sample number of 972 cases of 
pediatric bilateral lower limb radiographs to develop a 
unified solution for the LLD study and to avoid statistical 

deviations. Although a variety of different types of samples 
were enrolled, the metrics (Table 3) achieved by the cascaded 
LLDNet demonstrated a better consistency compared to 
those reported in previous radiology studies (12) and (13) 
when measuring the full leg length and LLD.

A comprehensive assessment is essential in an LLD 
study. The previous study (12) which used the same-leg 
segmentation-based strategy, only adopted the spatial 
overlap of the Dice similarity coefficient to evaluate 
segmentation accuracy. However, the Dice values only 
changed slightly between different DL models, as displayed 
in Table 2, indicating an insufficient ability to assess the 
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Figure 7 Scatter plots of the radiology report and deep learning models. The first to fourth rows represent results achieved by the ResUNet, 
TransUNet, single LLDNet, and cascaded LLDNet, respectively. The first to fourth rows columns represent the femora, tibiae, full leg 
length, and LLD, respectively. PCC, Pearson correlation coefficient; CCC, concordance correlation coefficient; MSE, mean squared error; 
MAE, mean absolute error; MaxAE, maximum absolute error; LLD, leg length discrepancy.
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segmentation. Figure 5 further demonstrates the limitation 
of the Dice index in measuring different segmentations. 
Our present study employed a comprehensive assessment 
strategy, including Dice, Jaccard, Precision, Recall, 
MD, HD, HD95, ASSD, and RMSD in terms of both 
segmentation similarity and stability, and we could 
comprehensively evaluate the improvement of different 
segmentation models. For clarity, the maximum percentage 
improvement of the cascaded LLDNet over other DL 
methods is summarized in the last line of Table 2. Although 
there was only a slight improvement in the similarity 
indices (0.5–1% in percentage increase), a dramatic 
improvement in the stability indices was observed (13–47% 
percentage decrease), which demonstrates the necessity of a 
comprehensive assessment in LLD study.

Knutson et al. (22) reported that only 10% of the 
average population has exactly equal leg length, 90% of 
patients have at least a 1 mm LLD, approximately 50% of 
the population has a 4 mm LLD, and approximately 90% 
of the population has an LLD of 10 mm or less. There is 
evidence that an LLD of >5 mm may be associated with 

a high risk of hip, knee, or back problems (2,3). These 
patients tend to adapt to the LLD over a long period and 
temporarily experience a reprieve of symptoms because of 
the body’s compensatory ability, but the LLD gradually 
increases with age, which is especially obvious in children 
(23,24). Thus, in our study, we compared the sensitivity and 
specificity of automatic LLD measurements of LLD >5 mm 
in all of these cases, resulting in a sensitivity of 0.792 and a 
specificity of 0.962. For comparison, we also calculated the 
sensitivity and specificity of the automatic measurement of 
LLD >10 mm, achieving a higher sensitivity of 0.938 and 
specificity of 0.992 as compared to the sensitivity of 0.88 
and specificity of 0.97 reported in a study (13).

Some limitations to our study should be noted. First, 
this research was not grouped by children’s age and did 
not evaluate the degree of ossification of each ossification 
center according to the different growth stages, which 
might have introduced errors in automatic segmentation. 
In our follow-up research, we will conduct a study of details 
more relevant to the age group of the children and further 
evaluate whether the different degrees of ossification in 
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Figure 8 Bland-Altman plot to assess the agreement between the reference leg lengths and the leg length that was calculated through the 
cascaded LLDNet. RPC, coefficient of repeatability; SD, standard deviation; LLD, leg length discrepancy. 
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the ossification center affect the automatic segmentation 
and measurement results. Second, the data included in the 
present study were only collected from 2 locally limited 
devices, the DigitalDiagnost 3 and the SONIALVISION 
Plus, and did not include other machines and sites, such 
as the ultra-low dose X-ray imaging system (EOS), 
which performs full-length, lower-extremity radiographs 
of the upright position (13,25) and may generate more 
accurate results. However, the EOS imaging system was 
not equipped for use due to the limitation of the practical 
conditions of the study. As a result, we used 2 existing 
photography systems for acquiring full-length, lower-
extremity radiographs of the supine position (patients with 
internal/external fixation devices were excluded). Thus, 
the effectiveness and robustness of our method should be 
further validated in future studies with external, multisite 
data for higher clinical applicability. Third, although the 
algorithm we used to measure the femur and tibia was 
accurate, slight errors are unavoidable. The calculation of 
the full leg length was based on the sum of the length of the 
femur and tibia, while the calculation of LLD was based on 
the result of the full leg length, which could have generated 
a quadratic error and results with a relatively low prediction 
accuracy of LLD. Finally, an independent remeasurement 
of leg length was not performed.

We conducted a comprehensive study of LLD in a large 
sample comprising a diversity of case types. The LLD study 
consisted of 4 stages of implementation: cascaded LLDNet 
for leg segmentation, postprocessing of segmentation 
masks, anatomical landmark identification, and leg length 
measurement. Experimental results demonstrated that, 
compared with other LLD studies, our method was able to 
achieve a superior performance based on a comprehensive 
evaluation in terms of similarity, stability, and consistency 
with radiology reports.
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