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Background: The infrapatellar fat pad (IPFP) plays an important role in the incidence of knee 
osteoarthritis (OA). Magnetic resonance (MR) signal heterogeneity of the IPFP is related to pathologic 
changes. In this study, we aimed to investigate whether the IPFP radiomic features have predictive value for 
incident radiographic knee OA (iROA) 1 year prior to iROA diagnosis.
Methods: Data used in this work were obtained from the osteoarthritis initiative (OAI). In this study, iROA 
was defined as a knee with a baseline Kellgren-Lawrence grade (KLG) of 0 or 1 that further progressed to 
KLG ≥2 during the follow-up visit. Intermediate-weighted turbo spin-echo knee MR images at the time of 
iROA diagnosis and 1 year prior were obtained. Five clinical characteristics—age, sex, body mass index, knee 
injury history, and knee surgery history—were obtained. A total of 604 knees were selected and matched  
(302 cases and 302 controls). A U-Net segmentation model was independently trained to automatically segment 
the IPFP. The prediction models were established in the training set (60%). Three main models were generated 
using (I) clinical characteristics; (II) radiomic features; (III) combined (clinical plus radiomic) features. Model 
performance was evaluated in an independent testing set (remaining 40%) using the area under the curve (AUC). 
Two secondary models were also generated using Hoffa-synovitis scores and clinical characteristics. 
Results: The comparison between the automated and manual segmentations of the IPFP achieved a Dice 
coefficient of 0.900 (95% CI: 0.891–0.908), which was comparable to that of experienced radiologists. The 
radiomic features model and the combined model yielded superior AUCs of 0.700 (95% CI: 0.630–0.763) 
and 0.702 (95% CI: 0.635–0.763), respectively. The DeLong test found no statistically significant difference 
between the receiver operating curves of the radiomic and combined models (P=0.831); however, both 
models outperformed the clinical model (P=0.014 and 0.004, respectively).
Conclusions: Our results demonstrated that radiomic features of the IPFP are predictive of iROA 1 year 
prior to the diagnosis, suggesting that IPFP radiomic features can serve as an early quantitative prediction 
biomarker of iROA. 
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Introduction

Knee osteoarthritis (OA) is a degenerative joint disease in 
which mechanical, biochemical, and biological processes can 
deteriorate articular cartilage. Knee OA initially manifests 
as the interaction between the cartilage matrix degradation 
products and proinflammatory mediators and the synovium 
tissue, which causes increasing proinflammatory reaction 
and further leads to cartilage degradation, bone remodeling, 
osteophyte formation, joint inflammation, and a loss of 
normal joint function (1). This disorder is one of the 
leading causes of chronic pain and disability (2). A validation 
study from Sweden predicted that clinically diagnosed 
knee OA in adults over 45 years old will increase from 
13.8% to 15.7% by 2032 (3). Further, a 12.5% increase in 
disease-related claims for knee OA was observed among 
Medicare beneficiaries across the United States in 2014 
compared to that in 2009 (4). Current trends in prevalence 
and healthcare expense escalation require medical and 
technical innovation that promotes knee OA prediction and 
prevention at an early stage.

The infrapatellar fat pad (IPFP) is an intraarticular 
adipose tissue located inferior to the patella. It actively 
interacts with periarticular tissues, such as cartilage, 
subchondral bone, and synovial membrane (5). Recent 
publications have shown that the IPFP changes the articular 
microenvironment and contributes to knee OA by secreting 
cytokines, adipokines, and lipid mediators (5,6). Currently, 
magnetic resonance (MR) imaging is the state-of-the-
art modality used to evaluate IPFP abnormalities, such as 
edema, inflammation, synovial proliferation, and fibrosis 
(7,8). Research findings have revealed that alterations of MR 
signal intensity, shape, and volume in the IPFP are related 
to the incidence, development, and prognosis of knee OA  
(9-13). In current clinical practice, MR signal intensity 
changes in the IPFP are most commonly assessed 
semiquantitatively with the MR Imaging Osteoarthritis Knee 
Score (MOAKS) system using Hoffa-synovitis score, which 
grades the size of the diffuse hyperintense signal from 0 to 
3 (0= normal/no hyperintensity, 1= mild, 2= moderate, and 
3= severe) (14). By using radiography and MR imaging, the 
association between IPFP semiquantitative assessments (e.g., 

Hoffa-synovitis) and incident radiographic knee OA (iROA) 
has been established (15,16). However, this semiquantitative 
scoring system can suffer from inter-rater variability, and 
there is very limited evidence to prove that the IPFP can 
serve as an independent predictor for iROA.

Radiomics is a quantitative approach to medical image 
analysis that converts digital medical images into mineable, 
high-dimensional features, including signal intensity, 
geometric shape, and texture features. These features can 
provide a comprehensive description of the image and could 
subsequently be used in prediction model development to 
investigate disease diagnosis and prognosis (17-19). Using 
MR imaging, Hirvasniemi et al. (20) demonstrated that 
the radiomic features of the tibia bone can discriminate 
between knees with and without iROA. However, iROA 
development has yet to be predicted by a radiomics method. 
Moreover, accurate and effective segmentation is a practical 
challenge in model development. Recent studies have 
shown that deep learning methods, such as convolutional 
neural network (CNN), can automatically delineate 
regions of interest (ROIs) and achieve reliable and accurate 
segmentation of large amounts of data (21-24).

In this study, we aimed to investigate the predictive value 
of MR-based radiomic features of the IPFP in iROA with the 
aid of a fully automated segmentation method and to develop 
a prediction model using data obtained 1 year prior to 
clinical diagnosis. We would like to emphasize that the goal 
of this study was not to demonstrate a superior prediction 
performance of using IPFP compared to previously published 
models using other knee regions. Instead, the purpose is 
to determine whether IPFP radiomic features can be used 
as independent imaging markers for iROA, as this has not 
been well explored in the existing literature. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-368/rc).

Methods

The osteoarthritis initiative (OAI)

The study was conducted in accordance with the 
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Declaration of Helsinki (as revised in 2013). All data used 
in this study were retrieved from the OAI (https://nda.nih.
gov/oai/), which is an open-access public-domain research 
resource supported by the National Institute of Arthritis 
and Musculoskeletal and Skin Diseases. The OAI is a 
multicenter, longitudinal, prospective, and observational 
cohort study that aims to identify risk factors associated 
with the incidence and progression of knee OA. A total of 
4,796 individuals aged 45–79 years were enrolled in this 
initiative, with detailed inclusion and exclusion criteria 
described on the designated website. This database contains 
(I) clinical characteristics; (II) biospecimen information; and 
(III) bilateral fixed-flexion radiographs and 3 T MR images 
at enrollment (baseline), and at 12, 24, 36, and 48 months. 
Radiographs of enrolled participants were read by central 
readers using standard protocols, including Kellgren-
Lawrence grade (KLG) and the Osteoarthritis Research 

Society International classification systems. Hoffa-synovitis 
scores assessed using the MOAKS were obtained from the 
OAI. Figure 1 shows the representative IPFP MR images 
with different severities of Hoffa-synovitis.

MR imaging

As part of the OAI image acquisitions, 3 T MR scanners 
(Siemens Magnetom Trio, Siemens, Erlangen, Germany) 
were used to acquire MR data. This study only used images 
acquired with the intermediate-weighted 2D turbo spin-
echo sequence as suggested in (13) with the following 
parameters (25): field of view =160 mm, slice thickness  
=3 mm, interslice gap =0 mm, slice number =35–47 (variated 
by knee size), flip angle =180°, echo time =30 ms, recovery 
time =3,200 ms, matrix =313×448, and in-plane spatial 
resolution =0.357 mm × 0.511 mm.

Figure 1 IPFP MR images obtained on sagittal intermediate-weighted turbo spin-echo from the iROA dataset. The red line delineates the 
IPFP for each case. The Hoffa-synovitis score was determined to be 0 = normal/no hyperintensity, 1= mild, 2= moderate, and 3= severe for (A) 
to (D), respectively. IPFP, infrapatellar fat pad; MR, magnetic resonance; iROA, incident radiographic knee osteoarthritis.
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All OAI knees at enrollment (n=9,592 in 
4,796 participants)

• 671 knees w/o useable centralized reading of 
radiographs at baseline and at least one time 
point at 12/24/36/48 mos follow-up visit

• 3,890 knees with prevalent OA (KLG ≥2)
• 4,582 knees remaining KLG <2 through 48 mos

• 28 knees w/o MR at the time when radiographic OA 
was diagnosed or at the preceding visit

• 68 knees with baseline KLG =1, incident radiographic 
OA before the 12 mos follow-up, and prevalent OA in 
the other knee

• 90 knees (45 pairs) w/o complete clinical information

• 12 knees missing MR images or identifiers

449 incident radiographic knee OA 
(KLG <2 at baseline and KLG ≥2 by  

48 mos)

353 matched control knees (KLG <2 by 48M)
• Radiograph status of both knees
• Gender
• Age ±5 years

353 incident radiographic OA

706 matched case-control knees

616 matched case-control knees

604 knees (302 case and 302 control 
knees, matched cohort)

Figure 2 A flowchart showing participant inclusion and exclusion. OAI, Osteoarthritis Initiative; KLG, Kellgren-Lawrence grade; OA, 
osteoarthritis; w/o, without; MR, magnetic resonance.

iROA dataset

The iROA dataset was created for radiomic analysis 
using eligible participants from the OAI. Details of 
participant inclusion and exclusion criteria are shown in 
Figure 2. iROA was considered to be the first occurrence 
of radiographic findings compatible with OA and a knee 
with a baseline KLG of 0 or 1 that further progressed to 
KLG ≥2 during the designated 48-month follow-up visit. 
The time point for the diagnosis of iROA was defined 
as P0, and the time point for 1 year before iROA was 
defined as P-1. Cases included knees diagnosed with iROA 

during the 48-month period in the absence of iROA at 
baseline. Controls were knees that maintained a KLG of 
0 or 1 during the same period. Case and control knees 
were matched by well-established risk factors of knee OA 
including age (within 5 years), sex, and contralateral knee 
status (i.e., KLG status in the other knee) (26,27). As a 
result, 113 of 302 case knees and 113 of 302 control knees 
had contralateral knees with KLG ≥2. Knees with missing 
radiographic or MR images from baseline to P0 or with 
missing clinical characteristics were excluded. Finally,  
302 case knees and 302 control knees were selected, 
resulting in a total of 604 knees.
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Clinical characteristics 

Five clinical characteristics—age, sex, body mass index 
(BMI), knee injury history, and knee surgery history—were 
collected from the OAI. As mentioned previously, age and 
sex were used as the matching parameters, while the latter 
3 characteristics were chosen as the clinical predictors for 
model optimization based on previous studies (28,29). 
Injury history was defined as a positive response to the 
question: “Have you had knee injury severe enough to 
limit the ability to walk for at least 2 days?” at baseline, 
or “Have you had knee injury severe enough to limit the 
ability to walk for at least 2 days since the last visit about 
12 months ago?” at the follow-up visit on or before P-1. 
Surgical history was defined as a positive response to the 
question: “Have you ever had knee surgery or arthroscopy” 
at baseline or at the follow-up visit on or before P-1. Knee 
pain was not included in this study due to the following 
considerations: (I) given that the maximum score was 20, 
all enrolled participants had very low knee pain scores 
with a median of 0–1 at P-1 and baseline; (II) a previous 
study indicated that knee pain scores showed no predictive 
value to iROA (28); and (III) the knee pain rating scale is 
cumbersome and highly subjective.

Automated prediction model 

IPFP segmentation: 2-and-a-half-dimensional U-Net 
model
Before initiation of the prediction model, a deep learning 
segmentat ion method,  2-and-a-hal f-dimensional 
(2.5D) U-Net, was implemented based on the U-Net  
architecture (30) to automatically segment the region of 
interest (ROI; i.e., the entire IPFP volume). The 2.5D 
U-Net was developed using 196 knee MR scans from the 
OAI. These scans were excluded from the dataset used 
for radiomic analysis (iROA dataset). Data were randomly 
split into training, validation, and testing (testing set 1) 
subsets at a ratio of 70:15:15. ROIs were manually drawn 
by radiologist 1 with 3 years of experience. An additional 
dataset (testing set 2) containing 20 participants from the 
iROA dataset was used to evaluate the results further. 

Preprocessing 

All right knees were flipped horizontally to match the 
left knees. Images were normalized using min-max 
normalization. To remove excessive and unimportant 

slices, a median filter was first applied to the normalized 
image to mitigate noise. Next, each slice’s Shannon entropy 
representing the complicity of the image (31) was calculated 
using the following formula:

( ) ( ) ( )2
0

log
L
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E x p k p k

=

= − ∗∑
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where x is the original image slice, p(k) is the count of 
occurrence of the value k in slices x, and L represents the 
total number of bins. The normalized histogram count with 
256 bins was calculated for each slice. Slices at both ends of 
the image have lower entropy as they contain less structural 
information compared to middle slices. To remove excessive 
image background, slices with entropy less than 5 were 
removed where the threshold of 5 was conservatively chosen 
based on the training set. As a result, at least 2 slices were 
kept around the ROI. The resultant slices for each patient 
ranged from 22 to 31 (mean=39), depending on the knee 
size of the patient.

U-Net development

The network structure is shown in Figure 3. In the 2.5D 
technique, the neighboring 4 slices of each target slice 
were used as the input. The manual ROI of the target slice 
was used as ground truth for the training. The model was 
trained using Adam optimizer (32) with a learning rate of 
0.001, a first-moment exponential decay rate of 0.900, and 
a second-moment exponential decay rate of 0.999. The 
weights of the kernels were initialized using the Glorot 
uniform method (33), and the initial biases were set to 0. 
The network was trained in batches that were randomly 
selected from the training subset. The sparse categorical 
cross-entropy was used as the loss function, which was 
computed using the following equation:
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−
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[2]

where N is the number of neurons in a layer, w refers 
to the model parameters, yi is the true label, and iy  is the 
predicted label. The model with the best validation sparse 
categorical accuracy was saved.

Postprocessing and evaluation

The output of the CNN layers ranged from 0 to 1 and 
indicated the possibility that the pixel belongs to the ROI. 
The optimal threshold was chosen using the training set, 
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Figure 3 Architecture of 2.5D U-Net for IPFP segmentation. IPFP, infrapatellar fat pad; MR, magnetic resonance.

which was the one that achieved the best average Dice 
coefficient (DC) at the subject level rather than at the 
slice level. The model performance was assessed using the 
DC by comparing the automated ROIs with the manual 
ROIs drawn by radiologist 1 for both testing sets. To 
assess the inter-rater reliability, with testing set 2, another  
2 versions of ROIs were manually drawn by radiologist 2 
(12 years’ experience) and radiologist 3 (1 year’s experience) 
independently, without prior knowledge from radiologist 1.  
The DC was used to evaluate the inter-rater reliability by 
comparing different versions of the manual ROIs at the 
subject level. 

Feature extraction
After obtaining the ROIs using the above-described U-Net 
model, an intensity normalization step was performed to 
remove outliers and improve reproducibility (34,35). This 
step was needed because the intensity of the MR image 
changes from scan to scan, even within the same MR 
imaging protocol. The following formula (36) was used: 

( )
( )

min
99 min

x x
C

percentile of x x
−

×
−

  
[3]

where x is the image data, and C is a constant. In this 
study, C was empirically set to 5,000, which covered the 
intensity range of the original scan. Wavelet transformations 
(i.e., HHH, HHL, HLH, HLL, LLL, LLH, LHL, and 
LHH) were implemented using the Python package 

PyWavelets (https://github.com/PyWavelets/pywt) (23,37). 
Laws filters were applied to the normalized data. This 
transformation was used to extract energy, skewness, and 
kurtosis features only. See Supplementary Table S1 for a 
detailed list of the extracted features. Three-dimensional 
(3D) shape features were extracted from the ROI using 
MATLAB R2020a (MathWorks, Natick, MA, USA). 
All other features were extracted from both normalized 
data and transformed data using LIFEx v6.44 (https://
www.lifexsoft.org) (38). For histogram-based features, 
the maximum bound for gray-level resampling was set to 
the 99th percentile of the ROI, and the minimum bound 
was set to the minimum value of the data. A total of 699 
features, including first-order, shape, and texture features, 
were extracted from each IPFP. 

Dataset splitting
The iROA dataset was randomly divided into a training 
set (~60%, 362 knees with case:control =181:181) and a 
testing set (~40%, 242 knees with case:control =121:121), 
as performed similarly in previous studies (39-41). The 
training set was used for feature selection and prediction 
model generation, while the testing set was reserved for 
model assessment.

Feature selection and prediction model development 
(training set)
The Mann-Whitney U test was performed to identify 

https://github.com/PyWavelets/pywt
https://cdn.amegroups.cn/static/public/QIMS-22-368-supplementary.pdf
https://www.lifexsoft.org
https://www.lifexsoft.org
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Figure 4 The prediction model development flowchart. Three models were generated to predict iROA diagnosis (P0) using features 
collected 1 year before the diagnosis (P-1). The following features were included in the models: (I) clinical characteristics, (II) radiomic 
features, and (III) clinical plus radiomic features. iROA, incident radiographic knee osteoarthritis. IPFP, infrapatellar fat pad; iROA, incident 
radiographic knee osteoarthritis.

features with a significant difference between the cases and 
controls in the training set (P<0.05). The identified features 
that exhibited a high Spearman correlation coefficient (|ρ| 
≥0.8) were replaced by the one with the highest area under 
the receiver operating characteristic (ROC) curve (AUC). 
The final candidate radiomic features were then combined 
with the 3 clinical characteristics as input of the feature 
selection step. A least absolute shrinkage selection operator 
(LASSO) regression model with 3-fold cross-validation 
was applied to select the most important predictors (both 
clinical and radiomic). The cross-validation was performed 
using the training set. To avoid overfitting, the LASSO 
was restricted to a maximum of 10 features. These features 
were then used to generate logistic regression models to 
predict OA 1 year before iROA. The optimal threshold of 
the ROC prediction analysis was determined by maximizing 
the Youden index (sensitivity + specificity – 1). Additionally, 
AUC, sensitivity, specificity, and accuracy were compared 
to evaluate the performance of the model. The model that 
achieved the highest accuracy in the training set was selected 
as the prediction model for further assessment. Three main 
models were generated using (I) clinical characteristics, (II) 
radiomic features, and (III) combined (clinical plus radiomic) 
features, respectively, as illustrated in Figure 4. Moreover, 
we constructed 2 secondary models using (I) Hoffa-synovitis 
alone and (II) Hoffa-synovitis plus clinical characteristics for 
comparison purposes. All the analyses in this section were 
conducted in MATLAB R2020a. 

Prediction performance evaluation (testing set)
The prediction performance of the generated models 
was further assessed in the independent testing set using 
the same threshold determined in the training set. The 
corresponding AUC, sensitivity, specificity, and accuracy 
were evaluated in MATLAB R2020a.

Statistical analysis

Continuous variables were assessed with a t test and 1-way 
analysis of variance, as appropriate. Categorical variables 
were compared with either the chi-squared test or Fisher 
exact test. All features that were included in the final 
prediction models were evaluated using univariate analysis. 
The analyses used for prediction model assessment were 
described above. The results were further visualized using 
the t-distributed stochastic neighbor embedding (t-SNE) 
algorithm (42). Finally, the DeLong test was applied to 
compare the AUCs across different models. The confidence 
interval (CI) was set at 95%.

Results

Demographic 

In the iROA dataset, the average age was 61.54±8.50 years, 
predominantly female (68%), and obese (average BMI 
=28.30±4.64). Other population characteristics are presented 
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Table 1 Populational characteristics of the iROA dataset

Characteristics Total (n=604) Case (n=302) Control (n=302) P value

Age, year 61.54±8.50 61.68±8.61 61.40±8.40 0.691

BMI, kg/m2 28.30±4.64 29.14±4.59 27.46±4.54 <0.001

Normal 150 (24.8) 52 (17.2) 98 (32.5) <0.001

Overweight 244 (40.4) 126 (41.7) 118 (39.1)

Obesity 210 (34.8) 124 (41.1) 86 (28.5)

Sex

Male 194 (32.1) 99 (32.8) 95 (31.5) 0.727

Female 410 (67.9) 203 (67.2) 207 (68.5)

Baseline KLG status‡

0/0 111 (18.4) 55 (18.2) 56 (18.5) 1.000

0/1 135 (22.4) 67 (22.2) 68 (22.5)

1/1 131 (21.7) 66 (21.9) 65 (21.5)

0/≥2 101 (16.7) 51 (16.9) 50 (16.6)

1/≥2 126 (20.9) 63 (20.9) 63 (20.9)

Injury history§

0 470 (77.8) 218 (72.2) 252 (83.4) 0.006

1 106 (17.5) 64 (21.2) 42 (13.9)

2 19 (3.1) 14 (4.6) 5 (1.7)

3 9 (1.5) 6 (2.0) 3 (1.0)

Total injured 134 (22.2) 84 (27.8) 50 (16.6) 0.001

Surgical history 38 (6.3) 21 (7.0) 17 (5.6) 0.503

Hoffa-synovitis score

0 302 (50.0) 120 (39.7) 182 (60.3) <0.001

1 264 (43.7) 154 (51.0) 110 (36.4)

2 36 (6.0) 26 (8.6) 10 (3.3)

3 2 (0.3) 2 (0.7) 0 (0.0)

Data were presented as mean ± SD and n (%). BMI <25 kg/m2; overweight, 25 kg/m2 ≤ BMI <30 kg/m2; obese, BMI ≥30 kg/m2; ‡, KLG 
status: “-/-” represents “ipsilateral knee KLG/contralateral knee KLG”; §, injury history: “0, 1, 2, or 3” refers to the amount of knee injury in 
the past medical history that resulted in limited movement for at least 2 days. iROA, incident radiographic knee osteoarthritis; BMI, body 
mass index; KLG, Kellgren-Lawrence grade; SD, standard deviation.

in Table 1. No statistical discrepancies in age, sex, or surgical 
history were observed between cases and controls. BMI 
(P<0.001) and the presence of knee injury history (P=0.001) 
were significantly higher in the case group. 

Segmentation performance

The DC between the manual ROIs drawn by the  

2 experienced radiologists (radiologist 1 vs. 2) was 0.900 
(95% CI: 0.874–0.939), while the DCs between the more 
experienced and less experienced radiologists were 0.798 
(95% CI: 0.782–0.815; radiologist 1 vs. 3) and 0.728 (95% 
CI: 0.638–0.820; radiologist 2 vs. 3). The DC between 
the automated and manual ROIs (radiologist 1) achieved 
0.900 (95% CI: 0.891–0.908). More details of the deep 
learning segmentation performance are shown in Table 2.  
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A comparison between the ROIs obtained manually 
and automatically is shown in Figure 5. The ROIs of  
4 representative knees generated using the deep learning 
model are shown in Figure 6.

Prediction models performance

Using the training set, 256 out of 699 radiomic features 
survived after the Mann-Whitney U test and redundant 
removal. A total of 3 models were optimized afterward. 
The prediction performances of each model were further 

validated in the testing set. The outcomes are summarized 
in Table 3 and are visualized in Figure 7 and Figure 8. Among 
the 3 prediction models, the radiomic and combined models 
yielded superior AUCs of 0.700 (95% CI: 0.630–0.763) and 
0.702 (95% CI: 0.635–0.763), respectively, when compared 
to the clinical model (AUC =0.591; 95% CI: 0.519–0.663). 
The selected predictive features of each model are shown in 
Table 4. The DeLong test showed no statistical difference 
between the AUCs of the radiomic and combined models 
(P=0.831). However, a significant difference was observed 
when comparing the radiomic (P=0.014) and combined 

Table 2 Performance of the 2.5D U-Net segmentation

Training set Validation set Testing set 1 Testing set 2

DC 0.966 0.902 0.898 0.900

95% CI 0.965–0.969 0.895–0.909 0.890–0.906 0.891–0.908

DC, dice coefficient; CI, confidence interval.

Figure 5 Comparison of manual and automated IPFP segmentations of the same knee. The red line delineates (A) manual segmentation 
by radiologist 1, (B) manual segmentation by radiologist 2, (C) manual segmentation by radiologist 3, and (D) 2.5D U-Net model. IPFP, 
infrapatellar fat pad.

Figure 6 2.5D U-Net model generated IPFP segmentations of 4 representative participants. The red line indicates the segmentation results. 
IPFP, infrapatellar fat pad.
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Table 3 Prediction performance in the training and testing sets for the main models

Model
Training set Testing set

Accuracy Sensitivity Specificity AUC (95% CI) Accuracy Sensitivity Specificity AUC (95% CI)

Clinical 0.621 0.801 0.442 0.650 (0.596–0.717) 0.531 0.639 0.421 0.591 (0.519–0.663)

Radiomic 0.668 0.580 0.790 0.744 (0.684–0.788) 0.663 0.525 0.802 0.700 (0.630–0.763)

Combined 0.682 0.652 0.746 0.747 (0.692–0.792) 0.671 0.639 0.702 0.702 (0.635–0.763)

AUC, area under the receiver operating characteristic curve; CI, confidence interval.
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Figure 7 ROC curves of the training and testing sets for the 3 different models. The red points on the ROC curves of the training set 
are the optimal cutoff points (threshold) determined by maximizing the Youden index using the training set. ROC, receiver operating 
characteristic; AUC, area under the curve.

0
−1
−2
−3
−4
−5
−6

7

6

5

4

3

Tr
ai

ni
ng

 s
et

t-
S

N
E

 2
 (a

.u
.)

Te
st

in
g 

se
t

t-
S

N
E

 2
 (a

.u
.)

−37 −36 −35 −34 −33 −32 −31 −30

0.5 1.0 1.5 2.0 2.5 3.0 3.5

t-SNE 1 (a.u.)

Clinical model

t-SNE 1 (a.u.)

10
9
8
7
6
5
4

t-
S

N
E

 2
 (a

.u
.)

7.5 8.0 8.5 9.0 9.5

−5 −4 −3 −2 −1

10.0 10.5 11.0

0 1

Radiomic model

t-SNE 1 (a.u.)

t-SNE 1 (a.u.)

−12

−13

−14

−15

−16

t-
S

N
E

 2
 (a

.u
.)

5
4
3
2
1
0

−1

t-
S

N
E

 2
 (a

.u
.)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

−4 −3 −2 −1 0 1 2

Combined model

t-SNE 1 (a.u.)

t-SNE 1 (a.u.)

Non-iROA
iROA

−16.0
−16.5
−17.0
−17.5
−18.0
−18.5
−19.0

t-
S

N
E

 2
 (a

.u
.)

Figure 8 t-SNE visualization for the training and testing sets of all 3 models. t-SNE, t-distributed stochastic neighbor embedding; iROA, 
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Table 4 Selected predictive features for the 3 main prediction models

Model Selected predictive features

Clinical BMI

Knee injury history

Knee surgery history

Radiomic Entropy_log10_ER_RE

DISCRETIZED_peakSphere1mL_HHH

CONVENTIONAL_max_HLH

CONVENTIONAL_std_LHL

DISCRETIZED_peakSphere0.5mL_LLH

GLCM_Correlation

GLCM_Energy[=AngularSecondMoment]_LLL GLCM_Contrast[=Variance]_LLL

GLZLM_SZE_LHL

GLZLM_SZHGE_LLL

Combined BMI

Entropy_log10_ER_RE

DISCRETIZED_peakSphere1mL_HHH

CONVENTIONAL_max_HLH

CONVENTIONAL_std_LHL

GLCM_Correlation

GLCM_Energy[=AngularSecondMoment]_LLL

GLCM_Contrast[=Variance]_LLL

GLZLM_SZHGE_LLL

BMI, body mass index; GLCM, gray-level co-occurrence matrix; GLZLM, gray-level zone length matrix.

(P=0.004) models with the clinical characteristics model. 
Moreover, for quick comparison, the Hoffa-synovitis alone 
model and Hoffa-synovitis plus clinical characteristics 
model showed AUCs of 0.598 (95% CI: 0.535–0.663) and 
0.651 (95% CI: 0.587–0.719), respectively (Table 5). Both of 
them were inferior to the radiomic model.

Discussion

This study establishes iROA prediction models using MR-
based radiomic features from the IPFP and corresponding 
clinical characteristics. Our work demonstrates that 
radiomic features of IPFP are indeed predictive of iROA  

Table 5 Prediction performance in the training and testing sets for the secondary models

Model
Training set Testing set

Accuracy Sensitivity Specificity AUC (95% CI) Accuracy Sensitivity Specificity AUC (95% CI)

Hoffa-synovitis alone 0.611 0.591 0.630 0.618 (0.570–0.668) 0.588 0.615 0.562 0.598 (0.535–0.663)

Hoffa-synovitis plus 
clinical

0.652 0.635 0.696 0.697 (0.638–0.747) 0.621 0.574 0.669 0.651 (0.587–0.719)

AUC, area under the receiver operating characteristic curve; CI, confidence interval.
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1 year in advance of the radiographic diagnosis. 
The model combining the clinical and radiomic features 

yielded the best performance (AUC =0.702, sensitivity 
=0.639, and specificity =0.702). The model derived only 
from radiomic features was also promising. Its performance 
(AUC =0.700, sensitivity =0.525, and specificity =0.802) 
was very similar to the combined model, and the seemingly 
slightly lower prediction performance difference was not 
found to be statistically significant (P=0.831). Moreover, 
the radiomic model was superior to both the Hoffa-
synovitis alone model (AUC =0.598, sensitivity =0.615, 
and specificity =0.562) and the Hoffa-synovitis plus clinical 
characteristics model (AUC =0.651, sensitivity =0.574, and 
specificity =0.669) in iROA prediction. The above evidence 
demonstrates that MR-based radiomics of the IPFP is a 
meaningful tool in prediction model development. 

The IPFP is an adipose tissue in the knee that can 
secrete numerous inflammatory mediators associated with 
the pathological process of knee OA (43). The induced 
inflammation can interact with other structures in the knee. 
The association between knee OA and IPFP morphology 
has  long been controvers ia l  due to the observed 
discrepancies between studies and the difficulty in evaluating 
IPFP. Han et al. (43) suggested that increased IPFP volume 
plays a protective role in knee OA by reducing cartilage 
loss and defect. However, Masaki et al. (10) reported that 
IPFP volume is associated with cartilage degeneration. 
Cowan et al. (44) further demonstrated that the enlarged 
IPFP volume correlates with patellofemoral joint OA and 
contributes to knee pain. Nonetheless, these discrepancies 
could be a consequence of inaccurate IPFP measurement. 
For signal intensity assessment, semiquantitative tools, 
such as effusion-synovitis and Hoffa-synovitis scores, are 
subjective and only reflect information in hyperintense 
regions of the IPFP (15,16). Quantitative assessments have 
demonstrated that the intensity alterations agree with the 
semiquantitative scores (9). However, the intensity measures 
applied here were mostly basic statistics, such as mean, 
standard deviation, and median. To reflect more detailed 
and comprehensive information of the IPFP, additional 
methods for calculating the statistical inter-relationships 
between neighboring voxels (e.g., textural information) are 
needed. Therefore, we applied radiomics analysis to capture 
the total signal change and precise morphology of the IPFP, 
which improved the reproducibility of our study. Moreover, 
different from the association studies, we took a step further 
and explored the predictive validity of IPFP radiomic 
features in iROA. 

In our study, 10 out of the 699 radiomic features, 
including 5 first-order features and 5 texture features, 
were selected in radiomic model construction. These 
features are difficult to perceive by the naked eye; however, 
they may contain important information about the 
IPFP. Interestingly, all radiomic predictors selected by 
the regression model are signal intensity heterogeneity 
features rather than shape features. For instance, several 
gray-level co-occurrence matrix (GLCM) features were 
selected: GLCM_correlation measures the joint probability 
occurrence of the specified pixel pairs, GLCM_energy 
provides the sum of squared elements in the GLCM 
which is also known as uniformity or the angular second 
moment, and GLCM_contrast indicates a measure of local 
variations in the GLCM. As shown in Figure 9, the patterns 
of GLCM texture maps of case and control knees differed. 
An increased bone marrow heterogeneity can be observed 
in the case (iROA) patients. GLCM analysis has been found 
to be a powerful tool for investigating symptomatic OA 
(45,46), cartilage lesions (46,47), and those at high risk for 
OA (47,48). Moreover, a few gray-level zone length matrix 
(GLZLM)–related features (i.e., GLZLM_SZHGE) have 
shown significant value and were selected in the model. 
These hyperintense signal alterations may be associated 
with inflammation, edema, fibrosis, and acute hemorrhage 
(7,49). Even though prior research has revealed that IPFP 
shape alteration is associated with structural change and 
pain in knee OA (10,44), more commonly, patients are 
usually asymptomatic before being diagnosed with iROA 
because only minor deterioration has developed in the knee 
joints. Thus, shape features, at that time, would not be as 
prominent in the image and would carry less weight than 
signal intensity in the predictive model. Radiomics can 
provide readily mineable features, and our results indicate 
that a radiomic model can perform promisingly in this 
prediction task. 

Previous studies have presented predictive models that 
used clinical and medical imaging information, as well as 
other regions of the knee. Janvier et al. (50) proposed a 
model that combined subchondral tibial bone texture, joint 
space narrowing, and clinical covariates. These features 
were found to be useful in predicting knee OA progression 
(AUC =0.77). Morales Martinez et al. (51) implemented 
a deep learning model to predict iROA from 1 to 8 years 
using the last healthy 3D MR images of the femur, tibia, 
and patella prior to the patients’ diagnosis of OA. Garriga 
et al. (52) developed a model to predict iROA after 4 years 
based on clinical and radiographic risk factors obtained 
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Figure 9 GLCM texture maps of representative participants. The top and bottom are from a case and a control, respectively. GLCM, gray-
level cooccurrence-matrix.

from 649 middle-aged women (AUC =0.797). Sharma 
et al. (28) proposed an iROA prediction model using 
the MOAKS of cartilage, meniscus, and bone marrow 
lesions and preselected clinical predictors from high-risk 
individuals (AUC =0.84). However, there are a limited 
number of publications investigating the utility of IPFP as 
an independent biomarker for iROA. There is increasing 
interest in using IPFP-targeted interventions, particularly 
for the determination of IPFP preservation or resection 
during total knee arthroplasty (53,54). The current clinical 
standard using semiquantitative assessment can introduce 
intra- and inter-rater variability, which is not reliable to 
support such interventions. Very few studies are conducting 
research on fully automated, quantitative analyses of IPFP 
signal heterogeneity regarding the predictive value of iROA. 

Given the fact that knee OA is a multifactorial inflammatory 
disease of the whole joint with a complex pathomechanism 
involving interactions across multiple joint tissues, we did 
not aim to develop a superior iROA prediction model using 
IPFP; instead, the main goal of our study was to explore its 
predictive validity in iROA using radiomic analysis on both 
genders across a relatively wide age range. 

Additionally, to accurately and efficiently segment the 
IPFP, a deep learning automated model was developed. 
The DCs between the automated segmentation and 
the manual segmentations obtained from experienced 
radiologists achieved 0.900 (CNN vs. radiologist 1). For 
the inter-rater reliability analysis, the DC calculated using 
the ROIs drawn by the 2 experienced radiologists achieved 
0.900 (radiologist 1 vs. 2), while a lower DC was shown 
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between the ROIs drawn by the more experienced and 
less experienced radiologist (0.798; radiologist 1 vs. 3).  
This indicates that the CNN generated ROIs with an 
accuracy comparable to that of an experienced radiologist 
while taking much less time compared to the manual ROI 
segmentation (75 s of a desktop computer vs. 15 min of a 
radiologist per case). A study conducted by Zhou et al. (55)  
implemented an approach to segment 12 tissue types of 
the knee joint (e.g., IPFP) using deep CNN, 3D fully 
connected conditional random field, and 3D simplex 
deformable modeling; 3D fast spin-echo image data from 
20 participants were used to train the model and a leave-
one-out cross-validation was performed. Their study used 
a smaller sample size. For the IPFP segmentation, the 
DC achieved 0.882, which was slightly lower than our 
result. More importantly, our deep learning approach is 
specifically designed for IPFP segmentation, which further 
supports our radiomic analysis.

The aforementioned studies also suggested that including 
clinical characteristics, such as age, gender, BMI, injury 
history, and surgical history, could have a notable impact on 
model simulation since knee OA is a multifactorial disease. 
These characteristics are well-established risk factors for 
iROA (26) and can be obtained during clinical visits; thus, 
we considered including these in the model development, 
along with the radiomic features. Our combined model 
only selected BMI, and this is consistent with previous 
publications which present evidence that weight gain 
increases the risk of knee OA by aggravating mechanical 
load, resulting in knee medial cartilage volume loss (56,57). 
Other demographic characteristics, such as age, gender, and 
knee surgery history, were not selected. This could be due 
to the risk factors being well-balanced between the case and 
control groups. In addition, knee injury, as a known risk 
factor of OA (58), was selected in the clinical-only model 
but not in the combined (clinical plus radiomic) model in 
this study. To further investigate this finding, we added 
knee injury into the combined model and reperformed 
model regression. The result showed that the AUC slightly 
increased to 0.705 (vs. 0.702) in the testing set; however, the 
DeLong test showed no statistically significant difference 
between the new model and the combined model (P=0.316). 
This result indicates that knee injury history provides 
little additional information to the radiomic model, likely 
because the radiomic features can capture knee injuries. 
Similarly, when all the unselected clinical characteristics (i.e., 
age, sex, knee injury history, and knee surgery history) were 
added manually to the combined model and the regression 

analysis was reperformed, no statistically significant 
difference in the predictive accuracy of the model was noted 
(AUC =0.701; P=0.835, DeLong test). Moreover, Felson 
et al. (15) suggested that synovitis is an independent risk 
factor of iROA and that the association between cartilage 
and meniscal damage and iROA is mediated by synovitis. 
Therefore, our study also constructed 2 secondary models 
that included Hoffa-synovitis. The results showed that the 
model using IPFP radiomic features (AUC =0.700) was 
superior to both the Hoffa-synovitis alone model (AUC 
=0.598) and the Hoffa-synovitis plus clinical characteristics 
model (AUC =0.651) in iROA prediction. Further, during 
the revision of this manuscript, another study using  
20 IPFP texture features also indicated that the MR-based 
texture analysis of the IPFP could help predict iROA  
1 year before iROA diagnosis (59). This study and our 
own both found that IPFP texture features were predictive 
in iROA and outperformed clinical characteristics and/or 
traditional semiquantitative assessment (i.e., Hoffa-synovitis 
scoring system). In addition to the texture features, we also 
extracted and included shape features (e.g., volume and 
sphericity) of the IPFP when building the model. Even 
though the shape features were not selected in the final 
model, this revealed that the morphological characteristics 
of the IPFP were not meaningful for iROA prediction, 
suggesting that the inflammatory responses and metabolic 
functions of the IPFP play a more important role in iROA 
than does the structural information. Furthermore, in their 
study, the ROIs (i.e., IPFPs) were manually segmented, 
which is burdensome and clinically impractical. In contrast, 
we developed and used a deep learning-based automated 
segmentation method that enabled our model to be useful 
in clinical practice.

This study has some limitations. First, although the 
prediction models demonstrated the association between 
knee OA and the IPFP, the prediction accuracy using 
IPFP alone is not sufficient to be clinically useful. This is 
expected due to the fact that the poly-pathogenic process 
of cartilage, bone, meniscus, and synovium can contribute 
to the development of knee OA (16,28). A more predictive 
model could possibly be developed by combining other 
prediction factors. Second, our models have not yet been 
validated outside the OAI dataset, but given that OAI 
has a good representative population, the generalizability 
of this work is expected to be high. In addition, power 
analysis was not performed before the data analysis for our 
study. Moreover, post hoc power analysis was not carried 
out, as it has been well-documented that post hoc power 
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calculations are not informative and should be avoided 
(60-62). Moreover, BMI and the presence of knee injury 
history were significantly higher in the case group than 
in the control group, which might have influenced the 
prediction outcome; however, 2 simple regression models 
conducted using BMI only and knee injury only yielded 
AUCs of less than 0.575 (0.574 for the BMI-only model 
and 0.564 for the knee injury–only model). Thus, there was 
no material difference in terms of the  interpretation of our 
results. Lastly, the time frame between P-1 and confirmed 
iROA was relatively short for effective lifestyle and clinical 
interventions. Although it would be interesting for a future 
study, this work did not use data with a longer follow-up 
period because these data are limited and are more difficult 
to match due to lack of imaging data, loss to follow-up, 
and other factors, which could affect the effectiveness and 
accuracy of the study. Whether radiomic analysis of the 
IPFP is useful in identifying high-risk patients earlier than 
1 year before iROA certainly is worth further investigation. 
Examining the predictive value of radiographic features in 
predicting frequent knee pain may also be another fruitful 
avenue of future research.

Conclusions

This study presents a radiomic knee iROA prediction model 
1 year before diagnosis using IPFP radiomic features on MR 
images, with fully automated deep learning segmentation. 
Our findings indicate that IPFP radiomic features may 
potentially serve as an independent imaging biomarker for 
iROA development.
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Table S1 List of the extracted features

Category (Settings) Features

First-order

Intensity-based statistics Mean, variance, skewness, kurtosis, median, minimum grey level, maximum grey level, energy, kurtosis, 
excess kurtosis, maximum intensity, minimum intensity, mean intensity, intensity quartiles, intensity skewness, 
intensity standard deviation, and peak intensity

Intensity histogram Discretized kurtosis, discretized excess kurtosis, discretized maximum intensity, discretized minimum intensity, 
discretized mean intensity, discretized intensity quartiles, discretized intensity skewness, discretized intensity 
standard deviation, discretized peak intensity, discretized intensity entropy, and discretized intensity uniformity 
(energy)

Shape

2D Mesh surface, pixel area, perimeter, perimeter to surface ratio, sphericity, spherical disproportion, maximum 
2D diameter, major axis length, minor axis length, and elongation

3D Volume, solidity, eccentricity, equivalent diameter, extent, and surface area

Texture

GLCM Autocorrelation, cluster prominence, cluster shade, cluster tendency, contrast, correlation, difference entropy, 
dissimilarity, energy, joint entropy, inverse difference, homogeneity, informational measure of correlation 1, 
informational measure of correlation 2, inverse difference moment normalized, inverse difference normalized, 
inverse variance, joint maximum, sum entropy, sum variance, and joint variance

GLRLM Short-run emphasis, long-run emphasis, low gray-level run emphasis, high gray-level run emphasis, short-run 
low gray-level emphasis, short-run high gray-level emphasis, long-run low gray-level emphasis, long-run high 
gray-level emphasis, gray-level non-uniformity for run, run length non-uniformity, and run percentage

NGLDM Coarseness, contrast, and busyness

GLZLM Short-zone emphasis, long-zone emphasis, low gray-level zone emphasis, high gray-level zone emphasis, 
short-zone low gray-level emphasis, short-zone high gray-level emphasis, long-zone low gray-level emphasis, 
long-zone high gray-level emphasis, gray-level non-uniformity for zone, zone length non-uniformity, and zone 
percentage

GLCM, grey-level co-occurrence matrix; GLRLM, grey-level run length matrix; NGLDM, neighborhood grey-level difference matrix; 
GLZLM, grey-level zone length matrix.
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