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Background: Chemical exchange saturation transfer (CEST) is a promising method for the detection of 
biochemical alterations in cancers and neurological diseases. However, the sensitivity of the currently existing 
quantitative method for detecting ischemia needs further improvement.
Methods: To further improve the quantification of the CEST signal and enhance the CEST detection for 
ischemia, we used a quantitative analysis method that combines an inverse Z-spectrum analysis and a 5-pool 
Lorentzian fitting. Specifically, a 5-pool Lorentzian simulation was conducted with the following brain tissue 
parameters: water, amide (3.5 ppm), amine (2.2 ppm), magnetization transfer (MT), and nuclear Overhauser 
enhancement (NOE; –3.5 ppm). The parameters were first calculated offline and stored as the initial value of 
the Z-spectrum fitting. Then, the measured Z-spectrum with the peak value set to 0 was fitted via the stored 
initial value, which yielded the reference Z-spectrum. Finally, the difference between the inverse of the 
Z-spectrum and the inverse of the reference Z-spectrum was used as the CEST definite spectrum. 
Results: The simulation results demonstrated that the Z-spectra of the rat brain were well simulated by 
a 5-pool Lorentzian fitting. Further, the proposed method detected a larger difference than did either the 
saturation transfer difference or the 5-pool Lorentzian fitting, as demonstrated by simulations. According to 
the results of the cerebral ischemia rat model, the proposed method provided the highest contrast-to-noise 
ratio (CNR) between the contralateral and the ipsilateral striatum under various acquisition conditions. The 
results indicated that the difference of fitted amplitudes generated with a 5-pool Lorentzian fitting in amide 
at 3.5 ppm (6.04%±0.39%; 6.86%±0.39%) was decreased in a stroke lesion compared to the contralateral 
normal tissue. Moreover, the difference of the residual of inversed Z-spectra in which 5-pool Lorentzian 

fitting was used to calculate the reference Z-spectra ( 5L
RexMTR ) amplitudes in amide at 3.5 ppm (13.83%±2.20%, 

15.69%±1.99%) was reduced in a stroke lesion compared to the contralateral normal tissue. 

Conclusions: 5L
RexMTR  is predominantly pH-sensitive and is suitable for detecting tissue acidosis following 

an acute stroke.
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Introduction

Due to insufficient blood supply, ischemic brain tissue first 
experience changes in oxygen and glucose metabolism 
during a stroke. This leads to a decrease in the acidic 
microenvironment; that is, a decrease in the pH value. The 
chemical exchange saturation transfer (CEST) peak of 
the amide proton in ischemic cerebral tissue is lower than 
the peak in normal tissue (1). The classic definition of the 
ischemic penumbra is the area of tissue surrounding the 
ischemic core that is subject to abnormal perfusion and 
metabolism (2). The current clinical treatment only aims at 
the ischemic penumbra and has no therapeutic effect on the 
infarct area (3). It is possible to salvage tissue from acidosis 
after proper therapeutic interventions and reperfusion. 
Accordingly, finding imaging tools to accurately and 
promptly identify reversibly damaged tissue in the ischemic 
penumbra can assist in clinical decision-making and allow 
quick therapeutic interventions for improved outcomes.

Magnetic resonance spectroscopy (MRS) has been used 
to assess tissue pH values during stroke (4). However, its 
practical applicability is limited due to its low spatial and 
temporal resolutions (5). CEST offers a novel type of 
magnetic resonance imaging (MRI) contrast mechanism (6). 
CEST has received substantial attention in recent years 
because of its potential to detect low-concentration proteins 
and metabolites in vivo (7). In chemical exchange saturation 
transfer magnetic resonance imaging (CEST-MRI), pH-
weighted imaging has significantly higher pH sensitivity 
than do the conventional MRS techniques (8). Accordingly, 
this technique has been successfully used for the quantitative 
evaluation of dilute metabolites and pH values in metabolic 
disorders, such as stroke, in both preclinical (9-12)  
and clinical studies (13). In addition to predicting stroke 
outcomes, CEST provides additional metabolic information 
to differentiate between benign oligomers and metabolic 
penumbra. 

In previous amide proton transfer (APT) research, 
comparatively easy, relatively simple measurements of 
asymmetry analysis magnetization transfer ratio based on 

asymmetry (MTRasym) have been used for quantification (1).  
However, MTRasym may be interfered with by nuclear 
Overhauser  enhancement  (NOE)  and  semiso l id 
macromolecular magnetization transfer (MT) (14,15). 
Recently, other methods for analyzing CEST data have been 
introduced, including Lorentzian difference (LD) (16), three-
offsets (17), multiple-pool Lorentzian fitting (18-21), and 
spillover-corrected magnetization transfer ratio yielding rex 
(MTRRex) (11). A recent comparison study indicated that the 
multiple-pool Lorentzian fitting method can provide more 
accurate quantitative CEST and NOE effects than can LD 
and three-offsets, particularly at low irradiation powers (22).  
A voxel-wise optimization of the pseudo-Voigt profile 
(VOPVP) fitting algorithm has been reported, which uses a 
linear combination of Lorentzian and Gaussian functions as 
the reference spectra to improve the deficiencies of traditional 
LD analysis (15). Furthermore, it has been shown that 
the effects add up inversely to the Z-spectrum; therefore, 
an inverse Z transform was used to detect an ischemic  

stroke (11). Recently, a proposed method VOPVP
RexMTR  was used 

to determine the residual between the inverse experimental 
Z-spectra and the reference Z-spectra calculated by VOPVP 
methods (12). This method was proven to enhance the 
CEST detection for ischemia. However, which parameters 
may be used as a marker for detection of an acute ischemic 
stroke at an early stage has not yet been elucidated. 
Therefore, it is essential to identify these parameters to 
further improve pH value quantification.

Previous study also showed that a down-sampling 
expedited adaptive least-squares fitting could effectively 
quantify multi-pool contributions in adult male Wistar 
rats both before and after global cerebral ischemia (18). 
However, compared with the dip from the CEST signal of 
normal brain tissue, the dip from the CEST signal 2 hours 
after a transient ischemia caused through middle cerebral 
artery occlusion (MCAO) becomes less obvious. Research 
suggests that a novel NOE-mediated MT signal around 
–1.6 ppm could be identified credibly in rat brains through 
a method that combines a multi-pool Lorentzian fitting and 
an inverse, while the dip is not simply detected from the 
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Z-spectrum directly (23). 
In this work, a novel method using a combination of an 

inverse Z-spectrum analysis and a 5-pool Lorentzian fitting 

named 5L
RexMTR  is proposed. The effectiveness of 5L

RexMTR  was 
quantitatively compared to the detection of slight changes 
that occur in the early stage of stroke through CEST-
MRI. In addition, the parameters that could be used as a 
marker for the detection of an acute ischemic stroke at early 
stage were identified. The method was validated by a well-
established animal model.

Methods

Theory

CEST-MRI usually involves a range of images with 
saturation pulse sweeping through a series of frequency 
offsets, collecting offset changes with the signal, also known 
as the Z-spectra (24). Fitting individual contributors to the 
Z-spectrum may increase the accuracy the quantification of 

each component (22). 5L
RexMTR  completes the fitting in two 

steps. First, to eliminate the background MT and direct 
water saturation (DS) effects, a 5-pool Lorentzian fitting 
of Z-spectra through a nonlinear optimization algorithm is 
performed (25). The model of the 5-pool Lorentzian fitting 
method is shown in Eq. [1] and Eq. [2].
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Here, Ai, Γi, and δi represent the peak amplitude, peak full 
width at half maximum, and a Lorentzian line with a central 
frequency offset from the water of each pool, respectively. 
The CEST residual spectra (as shown by Eq. [4]) is gained 
using a subtraction of the reference Z-spectra (Zref,i, as 
defined by Eq. [3]), which consists of each Lorentzian 
(except that of pool i), from the Z-spectra of the experiment 
(Zexp). All starting points and boundaries of the fitting 
parameters for the rodent brain tissue of the 5-pool 
Lorentzian fitting are presented in Table 1 (19). 

Furthermore, it has been shown that the effects add up 
inversely to the Z-spectrum (11,19,26). To provide a more 
specific quantification, the fitted spectra were treated as a 

reference signal (Zref,i), which represented the background 
DS and the semisolid MT effects. This reference signal was 
subtracted as an inverse transform from the complete fitting 
of the Z-spectra (Zexp), which yielded 5L

RexMTR  (23) (as defined 
by Eq. [5]):
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After this first round of fitting, two peaks of NOE and 
CEST close to –3.6, 2, and 3.5 ppm were solved by a 
secondary fitting. 

Specifically, cest
exR  is independent of nonspecific tissue 

parameters (e.g., DS, T1w and semisolid MT effects), 
and depends only on the solute concentration (fs), solute 
transverse relaxation (R2s), solute–water exchange rate (ksw), 
and irradiation power , as shown in Eq. [6] (22):
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The MTRRex was given by Zaiss et al. using the 1/Z 
analysis, as defined by Eq. [7] (11):
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Specifically, the quantification was obtained as shown in 

Eq. [8] (12), 
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where Sref(Δω)/S0 is the reference Z-spectra (as evaluated 
by fitting the experimental Z-spectra using the anterior 
reported VOPVP) (15), and Sexp(Δω)/S0 is mean the 
experimental Z-spectra.

The obtained data were evaluated using the contrast-to-
noise ratio (CNR) (18), as shown in Eq. [9]:
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where S1 and S2 are are the mean values for the 2 regions 
of interest (ROIs), respectively. δ1 and δ2 are their standard 
deviations, respectively.

Simulation

The Z-spectrum of rat brain are determined using the 
tissue parameters listed in Table 1 (1,12,25). Numerical 
simulations were performed to evaluate the specificity of the 
parameters. The simulations had different exchange rates 
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and measurements of tissue homogenates with different pH 
values.

Animals

This study was approved by the ethics board of Weifang 
Medical University, which conforms to the institutional 
guidelines for the care and use of animals. Transient focal 
cerebral ischemia occurred in 5 adult male Sprague-Dawley 
rats weighing 240 to 270 g, as reported previously (12). The 
rats experienced MCAO for 2 hours via an intraluminal 
suture (27). A 4-0 nylon monofilament suture with a tip 
surrounded by wax entered the lumen from the external 
carotid artery until the suture was inserted into the internal 
carotid artery, blocking the bifurcation of the anterior and 
middle cerebral arteries. Two hours after the MCAO, the 
nylon suture was drawn out for reperfusion. Throughout 
the experiments, the body temperature of the animals was 
monitored and maintained at 37±0.5 ℃. Age- and sex-
matched rats were used as normal controls (n=5). The 
animals were anesthetized with 2–98% isoflurane for 
induction and surgery, and 2% for maintenance. 

MRI scanning

The MRI scans were collected from a 7 Tesla horizontal 
hole scanner with a diameter of 40 mm (Biospec, Bruker, 
Billerica, MA, USA) using a transmit-receiver volume coil. 
After obtaining the T2-weighted images for multiple slices, 
the coronal slice at the center of the striatum was scanned 
with the CEST-MRI. These scans used a continuous wave 
presaturation pulse with Tsat =2,500 ms. This was followed 
by a fast acquisition with a relaxation enhancement (RARE) 
readout with repetition time/time to echo (TR/TE)  
=5,000 ms/4 ms and RARE factor =32. A total of 51 

Z-spectrum images with saturation offsets (Δω) in increments 
between –10 and 10 ppm were obtained (B1-sat =0.7 and 1 μT), 
while a total of 35 Z-spectrum images with Δω increments 
between –10 and 10 ppm were collected (B1-sat =2 μT). 
Moreover, a water saturation shift referencing was collected 
with B1-sat =0.5 μT (frequency offsets between ±1 ppm with 
intervals of 0.1 ppm) (28). For signal normalization, the S0 of 
the unsaturated pulse was collected. The apparent diffusion 
coefficients (ADCs) were acquired by a pulsed gradient spin 
echo sequence, and the value of b was 2,000 s/mm2. All the 
images were acquired with a matrix size of 96×64, a field of 
view of 34×28 mm2, and a slice thickness 1 mm.

Statistics

The difference between the two groups was evaluated using 
the t test. All data and statistical analyses were calculated by 
MATLAB R2018 (MathWorks, Natick, MA, USA).

Results

Simulations

The simulations tested whether a 5-pool Lorentzian fitting 
could accurately describe the real Z-spectrum shape. To 
simulate the ischemic microenvironment, the simulations 
were carried out at two different exchange rate levels, 
which represented different pH values (Figure 1). The 
tissue parameters are listed in Table 1. The simulation 
code was downloaded from the CEST source (29). 
Figure 1 shows that the Z-spectra simulated by a 5-pool 
Lorentzian fitting were very similar to those of the in vivo 
acquisition. However, there was still an obvious difference 
at approximately –2 ppm between the Z-spectrum of 
simulation and the results from the in vivo acquisition.

To evaluate the performance of the proposed 5L
RexMTR  

Table 1 Parameters for the 5-pool numerical simulation: solute concentration (fs), solute-water exchange rate (ksw), longitudinal relaxation time (T1), 
transverse relaxation time (T2), and solute frequency offset (Δ)

Parameter Water Amide Amine NOE MT

fs 1 0.004 0.002 0.0033 0.04

ksw (s
−1) – 30 (contralateral), 18 (ipsilateral striatum) 1,000 20 20

T1 (s) 2 2 3 2 2

T2 (ms) 60 38 38 0.4 20×10−3

Δ (ppm) 0 3.5 2 –3.6 0

NOE, nuclear Overhauser enhancement, MT, magnetization transfer.
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method, a 5-pool model with the tissue parameters from the 
previous study was used based on the Bloch equation (12). In 
light of the 2 Z-spectra simulated using the different amide 
exchange rates, 2 CEST quantification spectra were plotted: 
5-pool Lorentzian fit and 5L

RexMTR  (Figure 2). Although 
5L
RexMTR  did not compensate for T1 [as the relaxation 

enhancement (AREX) did], it exhibited the most obvious 
difference in the 2 exchange rates among both of the tested 
quantitative methods. The results were 5L

RexMTR  =~9.06% 
and 5-pool Lorentzian fitting =~5.25%, which indicated 
that 5L

RexMTR  could more sensitively detect pH changes than 
could the 5-pool Lorentzian fit (Figure 2).

CEST-MRI assessment of stroke rats

Figure 3 demonstrates the ipsilateral striatum and the 
contralateral using a 5-pool Lorentzian fitting and 5L

RexMTR  at 
B1-sat =1 μT, respectively. The starting points and boundaries 
of the fitting were those used from the previous study (12).  
The peak amplitude of the amide did not appear to change 

in the ipsilateral striatum using a 5-pool Lorentzian 
fitting. Increased amide amplitudes were observed in the 
contralateral compared with the ipsilateral striatum using 

5L
RexMTR . The results were in accordance with those of 

previous studies (12). A decreased NOE amplitude was 
observed in the contralateral compared with the ipsilateral 
striatum using a 5-pool Lorentzian fitting and 5L

RexMTR . 
Furthermore, Figure 3E compares the original Z-spectra of 
the ipsilateral striatum and the contralateral. These original 
Z-spectra were subtracted by the fitted water and MT 
effects to quantify the CEST effects. Decreased signals were 
observed in the ipsilateral striatum in comparison to the 
contralateral. At the same time, apparent peaks were found 
at 3.5, 2, and –3.5 ppm of the Z-spectra corrected by water 
and MT. In addition, the ROIs on T2w values are shown in 
Figure 3F—the red lines on the right side represents the 
stroke lesion, and the green line on the left side represents 
the contralateral. Similar to other in vivo CEST studies 
(11,30-32). ROIs with similar sizes and shapes were used. 
Depicting ROIs according to the affected areas needs 
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further studies. Moreover, Figure S1 demonstrates the 
cortex and striatum of the contralateral using a 5-pool 
Lorentzian fitting at B1-sat =1 μT. Figure S1E compares 
the raw Z-spectra, subtracted by the fitted water and MT 
effects, of the cortex and striatum of the contralateral to 
quantify the CEST effects. Decreased signals were observed 
in the striatum in comparison to the cortex.

In addition, Figure 4 shows 8 maps in a representative 

normal rat brain and for all the 5 rats scanned 2 hours 
after the transient MCAO was induced. Figure S2 shows  
2 maps: T2w (Figure S2A) and ADC (Figure S2B). The map 
results indicate that there was contrast between the two 
hemispheres of the normal control rat in ADC, T2w, and 
the different quantification images, and that pixel-by-pixel 
fitted quantification images using the MTRasym and MTRRex 
also did not reveal a contrast between the lesion hemisphere 

https://cdn.amegroups.cn/static/public/QIMS-22-420-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-420-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-420-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-420-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-420-Supplementary.pdf
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Figure 4 The multiparametric maps used in this study. (A) T2-weighted images and contrast maps at 3.5 ppm using a pixel-by-pixel amplitude 
fitted by (B) MTRasym and (C) MTRRex. Contrast maps at 3.5 ppm using a pixel-by-pixel fitted (D) amplitude, (E) offset, (F) linewidth, and (G) 

integral using a 5-pool Lorentzian fitting. Pixel-by-pixel fitted amplitude maps of each pool using 5L
RexMTR  (H), at 3.5 ppm, in a representative 

normal rat brain (Rat0) and for all stroke rats (from Rat 1 to Rat 5). MTRasym, magnetization transfer ratio based on asymmetry; MTRRex, 

spillover-corrected magnetization transfer ratio yielding rex; 5L
RexMTR , combined 5-pool Lorentzian fitting and reciprocal of Z-spectra.

and contralateral hemisphere. The amplitude, integral 
using a 5-pool Lorentzian fitting, 5L

RexMTR , and the ADC, all 
exhibited obvious hypointensity at the lesion hemisphere. 
However, the amplitude and the integral using a 5-pool 
Lorentzian fitting exhibited unexpectedly high signals, as 
indicated by the white arrow. Moreover, as a comparison 

method, 5L
RexMTR  and VOPVP

RexMTR  have been added. The results 
are displayed in Figure S3.

Table 2 summarizes the data of the CNR of images of the 
individual rats (n=5) after 2 hours of the transient MCAO 
induction, in which the results of stroke lesion regions and 
the contralateral side are in a matrix of 4×4 pixels. A higher 

https://cdn.amegroups.cn/static/public/QIMS-22-420-Supplementary.pdf
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CNR was obtained by the 5L
RexMTR  method in comparison 

to both the VOPVP
RexMTR  and a 5-pool Lorentzian fitting (12). 

Notably, at 3.5 ppm, 5L
RexMTR  obtained the highest average 

CNR (~3.83); this exceeded the VOPVP
RexMTR  (~3.48) and 5-pool 

Lorentzian fitting (integral) (~3.40).
Figure 5 shows the fitted amplitude maps of each pool 

with a 5-pool Lorentzian fit in a representative normal rat 
(Figure 5A) and for all stroke rats (Figure 5B). The images of 
MT, water, and NOE did not reveal a contrast between the 
2 hemispheres in a normal control rat and all of the stroke 
rats. However, the amplitude using a 5-pool Lorentzian 
fitting at 2 ppm exhibited an obvious hypointensity at the 
lesion hemisphere for Rat 1, Rat 2, and Rat 5. These results 

are consistent with previous findings (21).
Figure 6, Figure S4, and Figure S5 show the images 

of a representative rat brain at the time points 2, 6, and 
24 hours after transient ischemia. As shown by the rat in 
Figure 4, T2w, ADC (Figure S5), and pixel-by-pixel fitted 
quantification images using the MTRasym and MTRRex did 
not reveal a contrast between the lesion hemisphere and 
contralateral hemisphere. In contrast, the pixel-by-pixel 
fitted amplitude and the integral using a 5-pool Lorentzian 
fitting exhibit unexpectedly high signals, as indicated by the 
white arrow (Figure 4). At later points in time, these high 
signals gradually became less apparent; in addition, the 
contrast involved over time.

The contribution of the composition from each pool 
observed in the VOPVP

RexMTR  was further evaluated. The 
fitted amplitude, offset, linewidth, and integral maps of 
each pool using a 5-pool Lorentzian fitting, and the fitted 
amplitude of each pool using 5L

RexMTR , were performed on 
each fitted pool. Figure 7 compares the signals between 
the contralateral and the stroke lesion regions of each 
pool with bar plots for 4 representative rat brains with 
stroke. The results indicated there were 2 cases without 
substantial differences between the 2 hemispheres in the 
fitted offset of each pool. The first case used offset maps 
of each pool using 5-pool Lorentzian fitting (Figure 7B), 
and the second used linewidth maps of each pool except 
with a fitted water pool using 5-pool Lorentzian fitting 
(Figure 7C). The results indicated there were 3 cases with 
more substantial differences. First, the amplitude of the 
fitted amplitude using a 5-pool Lorentzian fitting of MT 
at –2 ppm (23.25%±1.66%; 11.95%±2.06%) and amide 
at 3.5 ppm (6.04%±0.39%; 6.86%±0.39%) was decreased 
in a stroke lesion in comparison to the contralateral 
normal tissue (Figure 7A). Second, the difference of fitted 
integral amplitude using a 5-pool Lorentzian fitting of 
MT at –2 ppm (23.22%±4.10%; 11.952%±4.60%) and 
amide at 3.5 ppm (6.00%±0.98%; 6.82%±0.87%) was also 
decreased between a stroke lesion and the contralateral 
normal tissue (Figure 7D). Third, compared with the value 
of 15.69%±1.99% of the contralateral normal tissue, the 
amplitude of 5L

RexMTR  of amide at 3.5 ppm in a stroke lesion 
decreased to 13.83%±2.20% (Figure 7E).

Discussion

In this study, a CEST quantitative method, namely 5L
RexMTR ,  

was used by subtracting the inverse Z-spectra from the 
Z-spectra with the fitted reference spectrum using a 5-pool 

Table 2 Differences in CNR between a 5-pool Lorentzian fit and 
5L
RexMTR  of contralateral normal and stroke lesion tissue at B1-sat  =1 μT 

Rat # Method APT (3.5 ppm)

Rat 1 VOPVP
RexMTR 3.20

5-pool Lorentzian fit (integral) 3.05

5L
RexMTR 3.19

Rat 2 VOPVP
RexMTR 3.67

5-pool Lorentzian fit (integral) 3.31

5L
RexMTR 3.83

Rat 3 VOPVP
RexMTR 4.57

5-pool Lorentzian fit (integral) 3.32

5L
RexMTR 3.93

Rat 4 VOPVP
RexMTR 2.53

5-pool Lorentzian fit (integral) 2.98

5L
RexMTR 3.32

Rat 5 VOPVP
RexMTR 3.41

5-pool Lorentzian fit (integral) 4.32

5L
RexMTR 4.87

Average VOPVP
RexMTR 3.48

5-pool Lorentzian fit (integral) 3.40

5L
RexMTR 3.83

CNR, contrast-to-noise ratio; APT, amide proton transfer; 
5L
RexMTR , combined 5-pool Lorentzian fitting and reciprocal of 

Z-spectra; 
VOPVP
RexMTR , combined Voxel-wise optimization pseudo 

Voigt profile and reciprocal of Z-spectra.

https://cdn.amegroups.cn/static/public/QIMS-22-420-Supplementary.pdf
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Lorentzian fitting to detect tissue acidosis following an 
acute stroke. The fitted amplitude maps from the 5L

RexMTR  
approach revealed smaller amide effects in the ipsilateral 
striatum than those in the contralateral striatum. These results 
are similar to the previous findings using a 5-pool Lorentzian 
Z-spectral fitting (33) and the VOPVP

RexMTR  method (12). Previous 
studies have shown that the effect of APT may reduce owing 

to a drop in tissue pH values during MCAO (11). Research 
also indicates that the VOPVP

RexMTR  method, by subtracting 
the inverse Z-spectra from the Z-spectra with the fitted 
reference spectra using VOPVP, could detect an ischemic 
stroke (12). It another study, the changes in the MTRasym 
contrast were predominantly attributable to APT (3.5 ppm) 
effects during acute ischemia under a multi-pool Lorentzian 
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Figure 5 Fitted amplitude maps of each pool using a 5-pool Lorentzian fit (A) in a representative normal rat and (B) for all stroke rats (from 
Rat 1 to Rat 5). MT, magnetization transfer; NOE, nuclear Overhauser enhancement.
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fitting (21), which is consistent with previous findings (8). 
In our study, the fitted line width maps from the 5-pool 
Lorentzian fit approach revealed higher DS effects in the 
ipsilateral striatum than those in the contralateral striatum 
(Figure 7). The 5L

RexMTR  method permitted us to isolate 
these effects using pool modeling systems and enabled us 
to determine their specific contributions. Furthermore, 
at 3.5 ppm, 5L

RexMTR  obtained the highest average CNR in 
comparison to both VOPVP

RexMTR  and a 5-pool Lorentzian 
fitting. 

The inverse of the Z-spectrum and combinations of 
the inverse Z-spectrum with other quantization methods 
represent recently developed approaches. Reports show that 
a magnetization transfer ratio (MTRRex) based on the inverse 
Z-spectrum is helpful in the quantification of CEST-MRI 
evaluation of stroke lesions (11). Studies have used the 
three-offset (17) and the VOPVP as the reference signal (15). 
A study using a similar fitting method to the one proposed 
here demonstrated that a new NOE-mediated MT signal 
at approximately –1.6 ppm could be detected reliably. 
Both these fitting methods share a common feature: the 
–1.6 ppm dips and the dip after a stroke are very small. 
A recent comparative study reported that a multi-pool 
Lorentzian fitting offered a more accurate quantification 
of the CEST effects (22), especially at low irradiation, 

which may be underestimated by the three-offset method 
and overestimated by the LD. Traditionally, the difference 
between the Z-reference and the Z-spectrum (Z-residual) 
has been used to reduce the effects of DS (33). However, the 
Z-residual cannot completely eliminate the DS effect (23). 
There are two possible reasons for combining a multi-pool 
Lorentzian fitting and an inverse Z-spectra. First, it can 
eliminate all known competitive effects, comprising MT, 
NOE (–3.5 ppm), and DS. Second, it can amplify the small 
dips, which can enhance the sensitivity of the detection. 

It has been reported that there is a significant signal 
reduction in the CEST effect at 3.5 ppm for ischemia 
detection, which is consistent with previously reported 
results (12). Figure 1 shows that the Z-spectrum obtained 
from the experimental data was different from the 
simulation that used the tissue parameters listed in Table 1, 
especially when the frequency deviation was in the range 
of –1 to –2 ppm. The possible reason for this is that there 
is –1.6 ppm in the real Z-spectrum data, but this pool was 
not added in the simulation (23). As a result, the accuracy 
of the fitting and the number of fitting parameters were 
compromised. 

Evaluations of parameters that may be used as a marker 
for detecting an acute ischemic stroke were proposed in 
previous research (33). In this work, we demonstrated that 

Figure 7 The statistical analysis of the fitted parameters in this study. (A) Amplitude, (B) offset, (C) linewidth, and (D) integral maps of each pool 

using 5-pool Lorentzian fit, and (E) amplitude of each pool using 5L
RexMTR , in a representative rat brain with a stroke. ROI, region of interest; MT, 

magnetization transfer; NOE, nuclear Overhauser enhancement; 5L
RexMTR , combined 5-pool Lorentzian fitting and reciprocal of Z-spectra. 
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the fitted amplitude using a 5-pool Lorentzian fitting of 
MT at –2 ppm and amide at 3.5 ppm, the amplitude of the 
fitted integral using a 5-pool Lorentzian fitting of MT at  
–2 ppm and amide at 3.5 ppm, and the amplitude using 
amide at 3.5 ppm may be used as a marker for detection of 
acute ischemic stroke at an early stage. 

The CEST signal at 2 ppm is considered to be in the 
intermediate exchange regime. Thus, it is expected to 
increase with decreasing pH and show hyperintensity in 
stroke lesions. However, in our study, the Lorentzian fitting 
at 2 ppm showed hypointensity at the lesion for 3 rats, but 
not all rats (Figure 5), which is consistent with previously 
reported results (34). The reason for this conflicting result 
for the CEST signal at 2 ppm is that the multiple-pool 
Lorentzian fit of the amine CEST effect at 2 ppm has 
contributions from both the arginine amine and the fast 
exchanging pools, which change in the opposite direction 
during ischemic stroke. This leads to an insignificant 
correlation of the Lorentzian fit of amine CEST effects 
with APT and the varying results in different experimental 
conditions reported previously (34). 

Conclusions

In conclusion, CEST-MRI with a quantitative 5L
RexMTR  may 

enhance the detection of ischemic stroke.
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Figure S1 The spectra analysis between ipsilateral striatum (left column) and contralateral (right column). (A,B) A 5-pool Lorentzian fitting 
of Z-spectra from contralateral 1 and contralateral 2, the top panel, including saturation transfer from-3.5, 2, 3.5 ppm as direct saturation 

and MT contributions. (C,D) The bottom panels are 5L
RexMTR  from contralateral 1 (cortex) and contralateral 2 (striatum). (E) The fitted water 

and MT effects are subtracted from the raw Z-spectra, showing apparent CEST contrast between contralateral 1 and contralateral 2 tissues 
at amide (3.5 ppm) and guanidinium (2 ppm). (F) The T2w image marked with a contralateral 1ROI and contralateral 2 (striatum) ROI a for 
spectral analysis. NOE, nuclear Overhauser enhancement, MT, magnetization transfer; CEST, chemical exchange saturation transfer; ROI, 
region of interest.

Figure S2 Multi-parametric maps used in this study. (A) T2w (B) ADC, in a representative normal rat brain (Rat0) and for all stroke rats (from 
Rat1 to Rat5). ADC, apparent diffusion coefficient.
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Figure S3 Multi-parametric maps used in this study. (A) T2w as well as contrast maps at 3.5 ppm using a pixel-by-pixel fitted by (B) 5L
RexMTR ,  

(C) VOPVP
RexMTR , at 3.5 ppm, in a representative normal rat brain (Rat0) and for all stroke rats (from Rat1 to Rat5).

Figure S4 Multi-parametric maps used in this study. (A) T2w, pixel-by-pixel fitted using (B) 5L
RexMTR , (C) VOPVP

RexMTR , at 3.5 ppm at different 
times after a stroke from a representative rat.
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Figure S5 Multi-parametric maps used in this study. (A) T2w, (B) ADC at different times after a stroke from a representative rat. ADC, 
apparent diffusion coefficient.


