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Background: Thyroid cancer is the most common endocrine cancer in the world. Accurately 
distinguishing between benign and malignant thyroid nodules is particularly important for the early diagnosis 
and treatment of thyroid cancer. This study aimed to investigate the best possible optimization strategies for 
an already-trained artificial intelligence (AI)-based automated diagnostic system for thyroid nodule screening 
and, in addition, to scrutinize the clinically relevant limitations using stratified analysis to better standardize 
the application in clinical workflows. 
Methods: We retrospectively reviewed a total of 1,092 ultrasound images associated with 397 thyroid 
nodules collected from 287 patients between April 2019 and January 2021, applying postoperative pathology 
as the gold standard. We applied different statistical approaches, including averages, maximums, and 
percentiles, to estimate per-nodule-based malignancy scores from the malignancy scores per image predicted 
by AI-SONIC Thyroid v. 5.3.0.2 (Demetics Medical Technology Ltd., Hangzhou, China) system, and we 
assessed its diagnostic efficacy on nodules of different sizes or tumor types with per-nodule analysis using 
performance metrics.
Results: Of the 397 thyroid nodules, 272 thyroid nodules were overrepresented by malignant nodules 
according to the results of the surgical pathological examinations. Taking the median of the malignancy 
scores per image to estimate the nodule-based score with a cutoff value of 0.56 optimized for the means of 
sensitivity and specificity, the AI-based automated detection system demonstrated slightly lower sensitivity, 
significantly higher specificity (almost independent of nodule size), and similar accuracy to that of the senior 
radiologist. Both the AI system and the senior radiologist demonstrated higher sensitivity in diagnosing smaller 
nodules (≤25 mm) and comparable diagnostic performances for larger nodules. The mean diagnostic time per 
nodule of the AI system was 0.146 s, which was in sharp contrast to the 2.8 to 4.5 min of the radiologists. 
Conclusions: Using our optimization strategy to achieve nodule-based diagnosis, the AI-SONIC Thyroid 
automated diagnostic system demonstrated an overall diagnostic accuracy equivalent to that of senior 
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Introduction

Thyroid cancer is the most common endocrine cancer 
in the world (1). Over the past few decades, published 
studies have shown that the incidence of thyroid cancer 
has been on the rise (2). The incidence of thyroid cancer 
in the United States has nearly doubled since 2000, and 
it is now the most common cancer among women (3-5). 
Accurately distinguishing benign and malignant thyroid 
nodules is particularly important for the early diagnosis and 
treatment of thyroid cancer. High-frequency ultrasound 
has been widely used in thyroid nodule examinations 
due to its noninvasiveness, convenience, and accuracy. 
However, due to the overlap of some features of benign 
and malignant thyroid nodules, the interpretation of 
image features is susceptible to the subjective biases of 
radiologists with different experiences (6). These factors 
may lead to misdiagnosis or even overdiagnosis, resulting 
in irreversible negative consequences (7). In May 2017, 
the American College of Radiology (ACR) released a 
standard guide for the diagnostic classification of thyroid 
nodules on ultrasound, the Thyroid Imaging Reporting and 
Data System (TI-RADS) (8). In this system, 5 categories 
of thyroid nodular features—composition, echogenicity, 
shape, margin, and echogenic foci—are assessed, and risk 
classification is determined according to a sum of scores (9). 
Despite offering a more standardized approach to diagnosis, 
the TI-RADS is still not able to objectify subjective human 
assessments.

As emerging and innovative technology, artificial 
intelligence (AI)-based automated diagnostic systems have 
great potential for overcoming the subjective limitations 
of human interpretation and have attracted the significant 
attention of researchers (10). Several studies have shown 
that, in terms of sensitivity, the AI-based automated 
diagnostic systems for thyroid nodules provide comparable 
diagnoses to those of senior radiologists (11-16). However, 
while in clinical practice, diagnoses are made for individual 
nodules, an AI system outputs a malignancy probability 

for each ultrasound image. In the studies where AI 
systems were used to discriminate benign from malignant 
nodules, most of the authors (14-17) made no mention 
of the concept of per-nodule–based diagnosis or of any 
postprocessing of returned malignancy probabilities for 
multiple images associated with the same nodule by an AI 
system. One exception was a study (11) in which the authors 
simply took the maximum probability value and used a naïve 
cutoff value of 0.5. To our knowledge, there has been no 
study that investigates the best possible way to convert per-
image–based to per-nodule–based malignancy diagnosis. 
Additionally, tests of nodule-size stratification are often 
ignored during evaluation of AI systems (16-19). However, 
there have been numerous studies showing size-dependent 
diagnostic difficulty for thyroid nodules by radiologists 
using conventional B-mode ultrasound-based TI-RADS 
criteria (20-22). It is important for radiologists to know the 
limitation of an AI system for certain categories of cases, 
such that they need to exercise more caution if an AI system 
shows considerably worse diagnostic accuracy than that 
achieved by the radiologists themselves. Furthermore, the 
assessment of the efficiency of such a system to aid clinical 
examinations has been overlooked, especially for busy 
consultation periods when radiologists experience pressure 
to examine an overabundance of patients. 

In this study, we evaluated an AI-based automated 
diagnostic system, the AI-SONIC Thyroid v. 5.3.0.2 
(Demetics Medical Technology Ltd., Hangzhou, China) 
by inspecting not only typical cases but also nodules of 
different sizes, thyroid tumors of uncertain malignant 
potential, and actively growing nodules at a quantitatively 
optimized malignancy probability cutoff value. We then 
compared the diagnostic results reported by radiologists of 
different levels of experience. In total, ultrasound imaging 
data of 397 thyroid nodules were acquired from the 287 
surgical patients recruited for this study, with postoperative 
pathological diagnosis being taken as the gold standard. We 
present the following article in accordance with the STARD 

radiologists. Thus, it is expected that it can be used as a reliable auxiliary diagnostic method by radiologists 
for the screening and preoperative evaluation of malignant thyroid nodules.
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reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-22-85/rc).

Methods

Ethics and consent

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Ethics Committee of the Changzheng 
Hospital of Naval Medical University, and the requirement 
for informed consent was waived due to the retrospective 
nature of this study. 

Database

A total of 287 patients with thyroid nodules (397 nodules 
in total) who underwent surgeries at the Department of 
General Surgery, Second Affiliated Hospital (Changzheng 
Hospita l )  of  Naval  Medical  Univers i ty,  between 
April 2019 and January 2021 were selected. Patients 
with complete clinical information who underwent 
preoperative ultrasonography and complete examinations 
were consecutively included in the study. Patients with 
ultrasound images not of standard quality were excluded. 
The histopathological diagnoses of all thyroid nodules were 
determined surgically. Our study fulfilled the statistical 
requirements for sample size in diagnostic test evaluations 
conducted in the field of biomedical informatics (23). In 

summary, our study included 272 malignant nodules and 
125 benign nodules. The flow of the inclusion and exclusion 
criteria in data collection is shown in Figure 1.

Instruments and methods

The thyroid (bilateral lobes, isthmus, and conical 
lobes)  of  preoperative patients  was scanned by 2 
radiologists: a senior radiologist who had been engaged 
in thyroid ultrasonography for more than 10 years and 
a junior radiologist who had been engaged in thyroid 
ultrasonography for fewer than 5 years. All patients were 
placed in the supine position, the neck was fully exposed, the 
high-frequency linear array probe was placed in the anterior 
cervical area, and the scans were performed in the order 
of right first and then left. The vertical section along the 
long diameter of the thyroid gland from outside to inside 
or from inside to outside was scanned in a series of vertical 
slide scans. The transverse section was scanned from top to 
bottom until the lower pole of the thyroid disappeared. If 
nodules were found during the examination, it was necessary 
to focus on repeated scanning, and the acoustic characteristics 
of the detected thyroid nodules were evaluated according to 
the following ACR TI-RADS classification criteria: solid, 
hypoechoic or extremely hypoechoic, and irregular borders; 
aspect ratio >1; small margin lobulation; and 5 features of 
microcalcification defined as suspicious malignant features. 
The TI-RADS 1–3 categories were suggestive of benign 
nodules, and the TI-RADS 4–5 categories were suggestive 

573 thyroid nodules and 1,651 ultrasound images from 453 patients
(From April 2019 to January 2021)

Inclusion criteria Exclusion criteria

a. With ultrasound examination
b. With AI automatic diagnosis 
c. With postoperative pathology
d. Consent for clinical study

a. Image storage incompleted
b. Fine needle aspiration biopsy
c. With thyroid surgery history
d. With thyroid nodule ablation history
e. Unqualified image for risk stratification

Input group
287 patients, 397 thyroid nodules 
and 1,092 ultrasound images

Output group
166 patients, 176 thyroid nodules and 
559 ultrasound images

Benign nodules (n=125)
Malignant nodules (n=272)

Image quality is not standard
a. Too blurry for nodule assessment
b. Presence of assessment-interfering imaging 

artifacts
c. Presence of assessment-interfering texts or 

measurement markers
d. Images with large zoom-in factor

Figure 1 The flowchart of the inclusion criteria and exclusion criteria for data collection. AI, artificial intelligence.

https://qims.amegroups.com/article/view/10.21037/qims-22-85/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-85/rc
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of malignant nodules.
The AI-SONIC Thyroid is an AI-based automated 

diagnostic system for thyroid nodules. The procedure using 
the AI-SONIC Thyroid is the same as that of conventional 
ultrasonography, and during the examination, ultrasound 
imaging features, such as size, boundary, shape, internal echo, 
and nodule calcification, are observed. Using its AI algorithm, 
the AI-SONIC Thyroid system carries out automatic labeling, 
processing, and analysis, and automatically quantifies and 
identifies the following 5 types of characteristics of thyroid 
nodules: boundary, internal echo, morphology, calcification, 
and morphology. The AI-SONIC Thyroid records the 
highest risk probability based on its automatic interpretation 
of the nodule using the TI-RADS classification and the 
probability values of benign and malignant nodules in the 
probability value range of 0–1 (0–0.4, benign; 0.4–0.6, 
requires further examination; 0.6–1, malignant).

Acquisition of ultrasound images and radiology analysis

Routine ultrasound examination was performed using an 
ultrasound imaging device (Hi Vision Preirus; Hitachi, 
Tokyo, Japan) with a 7.5 MHz linear-array probe 
(EUP-L74M). The following system parameters were 
maintained: gain, 30 dB; gain compensation, intermediate 
(zero compensation); depth of focus, 2.0–3.75 cm; tissue 
heat index, <0.4; and mechanical index, 1.2. One senior 
radiologist (with 13 years of working experience) and one 
junior radiologist (with 4 years of working experience) 
performed the clinical ultrasound examinations on patients 
with preoperative thyroid glands (on both sides of the lobes 
and isthmus) according to the ACR TI-RADS without 
being exposed to patients’ pathological data. Nodule sizes 
were manually recorded in terms of lengths in the major 
and minor axes of the thyroid nodules in the ultrasound 
images with the largest cross-sectional areas. To evaluate the 
diagnostic performances on different nodule sizes, original 
lengths in the major and minor axes were converted into 
single values by simply computing their Euclidean norms.

The ultrasound images of each nodule were acquired at 
different cross-sectional planes including the vertical and 
transverse sections, stored in real time, and transferred 
to the AI-SONIC Thyroid system. It generated a 
malignancy score from each individually detected nodule 
in an ultrasound image ranging from 0 to 1, indicating 
the malignancy risk probability. The higher the score was, 
the higher the probability of the detected nodule being 
malignant. The score for the TI-RADS classification 

calculated by the radiologists and the malignancy probability 
value returned by the system were recorded. The system was 
configured with an Intel Core i5-7500T (4×2.7–3.3 GHz)  
CPU (Intel Corp., Santa Clara, CA, USA), with 16 GB 
RAM, 256 GB SSD, and 2 TB hard disk drive (HDD) as 
well as a NVIDIA GeForce GTX1060/6GB GPU (NVIDIA 
Corp., Santa Clara, CA, USA). The runtime of the AI 
system for analyzing each inputted ultrasound image was 
recorded using the Software Development Kit v. 2.3.1.5 
(Demetics Medical Technology Ltd.). The grouping of 
ultrasound images to their corresponding thyroid nodules 
was performed on annotation software provided by the 
same supplier. The runtime per nodule by the AI system 
was estimated by multiplying the average image processing 
time with the average number of images per nodule. 
The retrospective diagnostic time per nodule by the 
radiologists was estimated based on diagnoses performed 
on 117 nodules acquired within a half-year interval by 
recording the total diagnostic time divided by the number 
of assessed nodules. All images included during this time of 
diagnostic assessment went through the same preprocessing 
procedures, including the inclusion and exclusion criteria, 
and were provided in the same way to the AI system.

Cut-off value optimization strategy

It has been common to maximize the Youden index = 
sensitivity + specificity − 1 (24) to optimize the cutoff value 
that defines the sensitivity and specificity of diagnostic 
systems. By definition, the Youden index is always lower 
than both the sensitivity and specificity at the corresponding 
threshold because subtracting 1 from either of them will 
lead to a negative number, making its absolute value less 
interpretable. Instead, the average value of sensitivity and 
specificity allows for quick estimation of the approximate 
ranges of sensitivity and specificity around the optimal 
cutoff value, while following the same trend as the Youden 
index with its maximum value locating at an identical 
threshold position. We therefore proposed to use the 
average of sensitivity and specificity for optimizing the cut-
off value to differentiate malignant from benign nodules. 

From each nodule detected in an image, a malignancy 
score per image was computed by the AI system. 
Methodologically, the malignancy of a nodule was 
evaluated on a per-nodule basis. To compute the nodule-
specific malignancy score from the malignancy scores 
of individual images associated with the same nodule, 
arbitrary percentiles including their median values and the 
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average values were evaluated. To choose a threshold as 
close to 0.5 as possible while maintaining a relatively high 
diagnostic efficacy, we took the median value as the nodule-
specific malignancy score. In such a case, the cutoff value for 
differentiating malignant from benign nodules was set to 0.56.

Statistical analysis

The results were analyzed and plotted using Python v. 3.8 
(Python Software Foundation, Wilmington, DE, USA). 
The areas under the receiver operating characteristic 

(ROC) curves (25) were compared using the DeLong 
test via the Python rpy2 package. A P value less than 
0.05 was considered statistically significant. Taking into 
consideration the pathological results, the sensitivity, 
specificity, and accuracy of the AI-based diagnostic system 
were calculated. The diagnostic performance of nodule size 
was compared to the pathology as defined by the 2022 World 
Health Organization (WHO) Classification of Thyroid 
Neoplasms (26), using the Kappa (κ) test. The final P value 
was calculated according to the 2-tail pairwise t-test based 
on 5 independent tests on randomly subdivided datasets. 

Results

Patient data

A total of 287 patients with 397 thyroid nodules were 
included in this study (Table 1). There were 272 cases 
(68.5%) of malignant tumors, including 254 cases of 
papillary carcinoma, 10 cases of follicular carcinoma, 6 cases 
of thyroid tumors of uncertain malignant potential, and 
2 cases of medullary thyroid carcinoma. There were 125 
benign cases (31.5%), including 75 cases of thyroid follicular 
nodular disease (of which 22 cases were accompanied by 
other lesions) and 50 cases of thyroid adenoma (of which 47 
cases were follicular adenoma and 3 cases were oncocytic 
adenoma of the thyroid). Determined pathological types of 
fewer than 5 cases are not specified here (Table 2). 

AI-based automated diagnostic system malignancy score 
threshold for predicting the nature of thyroid nodules

We performed per-image analysis of the AI model using 
the Youden index and our own recommended averages of 
the sensitivity and specificity scores as the efficacy score, as 
shown in Figure 2. These 2 measures followed an identical 
trend while the conventional Youden index failed to show 
the values of sensitivity and specificity at their balanced 
optimum for gauging the diagnostic efficacy of the model.

Per-nodule evaluation of diagnostic performance

The optimal threshold for each nodule (referred to as the 
conditionally optimized threshold) was chosen by optimizing 
the average sensitivity and specificity (Figure 3). It can 
be seen from Figure 3 that the conditionally optimized 
threshold increased with the percentile, while the efficacy 
score (average of the sensitivity and specificity scores) 

Table 1 Characteristics of study participants

Parameters Value

Mean age (years), mean ± SD 46.5±12.5

Gender, n (%)

Male 64 (22.3)

Female 223 (77.7)

No. of nodules, n (%)

All 397

Benign 125 (31.5)

Malignant 272 (68.5)

Nodule sizes (mm), mean ± SD, range [IQR 25, 50, 75]

All 16.34±14.8 [7.64, 11.82, 20.01]

Benign 25.82±20.6 [12.21, 20.62, 35.23]

Malignant 11.98±8.0 [6.79, 9.90, 14.16]

SD, standard deviation; IQR, interquartile range.

Table 2 The number of different nodules and their respective 
histological diagnoses

Histological diagnoses No. of nodules

Benign 125

Thyroid follicular nodular disease 75

Follicular adenoma 47

Oncocytic adenoma of the thyroid 3

Malignant 272

Papillary thyroid carcinoma 254

Follicular thyroid carcinoma 10

Thyroid tumors of uncertain malignant potential 6

Medullary thyroid carcinoma 2
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first increased and then decreased, taking a negatively 
skewed form. The peak performance was reached at the 
70th percentile with a threshold of 0.6, and the conventional 
averaging or maximum method to define the nodule-specific 
malignancy score underestimated the diagnostic performance 
by clear margins in comparison with the best case.

Having defined the method to calculate the nodule-
specific malignancy score, we compared the diagnostic 
efficacy for thyroid nodules on the per-image and nodule 
basis using the ROC curves and the associated area under 
the curve (AUC) values, as shown in Figure 4. There is a 
substantial gap between the 2 types of analyses, as can be 

seen from the figure and the P value of 0.0198 calculated 
from the Delong test, confirming that the observed 
difference was statistically significant.

Diagnostic performance of the AI system and radiologists 
in different groups 

Of the 397 cases of thyroid nodules, 125 cases were benign 
thyroid nodules and 272 cases were malignant thyroid 
nodules. Of these, 87 benign nodules (69.6%) and 209 
(76.8%) malignant ones were correctly diagnosed by junior 
radiologists [sensitivity: 95% confidence interval (CI): 71.3–
81.6%; specificity: 95% CI: 60.6–77.3%]. In comparison, 
99 benign cases (79.2%) and 263 malignant cases (96.7%) 
were correctly diagnosed by senior radiologists (sensitivity: 
95% CI: 93.6–98.4%; specificity: 95% CI: 70.8–85.7%). 
A total of 115 benign cases (92.0%) and 249 malignant 
cases (91.5%) were correctly diagnosed by the AI system 
(sensitivity: 95% CI: 87.4–94.5%; specificity: 95% CI: 
85.4–95.9%). The complete set of statistics summarizing 
the performance metrics of sensitivity, specificity, and 
accuracy are provided in Table 3. The sensitivity of the AI 
system in diagnosing benign and malignant thyroid nodules 
was lower than that of senior radiologists (91.5% vs. 96.7%, 
respectively) but higher than that of junior radiologists 
(91.5% vs. 76.8%, respectively), with statistical significance. 
The specificity of the AI system was higher than that of 
both the junior and senior radiologists (92.0% vs. 69.6% 
and 79.2%, respectively), with statistically significant P 
values of (P=0.0023 and P=0.0095, respectively). The 

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

D
ia

gn
os

is
 e

ffi
ca

cy

0.2       0.3       0.4       0.5       0.6       0.7       0.8

Threshold

Sensitivity

Specificity 

(Se + Sp)/2 

Youden index

0.920

0.915

0.910

0.905

E
ffi

ca
cy

 s
co

re

0.45           0.50           0.55           0.60           0.65

Conditionally-optimized threshold

30th percentile 
40th percentile 
50th percentile 
60th percentile 
70th percentile 
80th percentile 
90th percentile 
Mean 
Max

Figure 2 Diagnostic efficacy of the AI system measured by 
sensitivity, specificity, average sensitivity and specificity, and 
the Youden index per image as a function of threshold for the 
computed malignancy score. Se, sensitivity; Sp, specificity; AI, 
artificial intelligence.

Figure 3 The calculated efficacy scores with respect to the 
conditionally optimized for each case of defining the nodule-
specific malignancy score
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Table 3 Diagnostic performance of the AI system with radiologists (according to ACR TI-RADS) in different groups

Ultrasonography examiner
Pathology results (n)

Sensitivity (%) Specificity (%) Accuracy (%) κ value
Benign Malignant

Junior radiologist

ACR TI-RADS 1–3 87 63 76.8*** (209/272) 69.6** (87/125) 74.6**** (296/397) 0.441

ACR TI-RADS 4–5 38 209

95% CI (71.3, 81.6) (60.6, 77.3)

Senior radiologist

ACR TI-RADS 1–3 99 9 96.7* (263/272) 79.2** (99/125) 91.2ns (362/397) 0.788

ACR TI-RADS 4–5 26 263

95% CI (93.6, 98.4) (70.8, 85.7)

Diagnostic AI System

Benign (predicted) 115 23 91.5 (249/272) 92.0 (115/125) 91.7 (364/397) 0.813

Malignant (predicted) 10 249

95% CI (87.4, 94.5) (85.4, 95.9)

Statistical 2-tail pairwise t-tests for sensitivity, specificity, and accuracy were conducted to assess the radiologists and the AI system by 
randomly subdividing the entire dataset into 5 partitions. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, not significant. AI, artificial 
intelligence; ACR, American College of Radiology; TI-RADS, Thyroid Imaging Reporting and Data System. 

overall diagnostic accuracy of the AI system was equivalent to 
that of the senior radiologists (91.7% vs. 91.2%, respectively) 
with a P value of 0.72 as evaluated by randomly subdividing 
the entire dataset. The results showed that the diagnoses of 
benign and malignant thyroid nodules made by the junior 
radiologists generally had moderate consistency with the 
postoperative pathological diagnoses (κ=0.441), the ultrasound 
diagnoses of thyroid nodules made by the senior radiologists 
were generally highly consistent with the postoperative 
pathological diagnoses (κ=0.788), and the AI system for 
per-nodule diagnoses had very good consistency with the 
postoperative pathological diagnoses (κ=0.813; AUC =0.949).

Comparison of the diagnostic performance of AI system to 
senior radiologists for the diagnosis of thyroid nodules of 
different sizes

Table 4 summarizes the sensitivity, specificity, accuracy, κ 
value, and 95% CI of the AI system and the radiologists in 
the diagnosis of thyroid nodules of different sizes. We split 
the dataset into 2 groups using a cutoff size of 25 mm. The 
senior radiologists and the AI system both had excellent 
sensitivity (senior radiologists: 98.4%, 95% CI: 95.7–
99.5%; AI system: 92.9%, 95% CI: 88.8–95.6%) and overall 
accuracy (91.5% vs. 91.5%) for smaller thyroid nodule 

diagnosis as well as excellent specificity for larger nodule 
diagnosis (senior radiologists: 95.9%, 95% CI: 84.9–99.3%; 
AI system: 100%, 95% CI: 90.9%–100%). The AI system 
surpassed the senior radiologists in diagnostic specificity 
for smaller nodules by a large margin (AI system: 86.8%, 
95% CI: 76.7–93.2%; senior radiologists: 68.4%, 95% CI: 
56.6–78.3%). Both the senior radiologists and the AI system 
had mediocre sensitivity in diagnosing larger thyroid nodules 
(senior radiologists: 73.7%, 95% CI: 48.6–89.9%; AI system: 
73.7%, 95% CI: 48.6–89.9%). The AI system showed a 
consistent tendency of higher κ values than compared to the 
senior radiologists for different nodule sizes. 

Comparison of the diagnostic efficiency of AI system with 
radiologists in different groups 

The AI system had an average processing time for 
diagnosing each inputted ultrasound image of 52.96 ms, 
recorded by running the software development kit on a 
standard hardware package (details provided in “Instruments 
and methods”), and the average runtime per nodule was 
estimated at 0.146 s. This is in sharp contrast with the mean 
diagnostic time of the radiologists, as shown in Table 5. Junior 
radiologists required on average 273.5 s for an ultrasound-
based thyroid nodule diagnosis per nodule while the senior 
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Table 4 Comparison of the diagnostic performance of the AI system with that of the radiologists in differentiating the thyroid nodules of different 
sizes

Ultrasonography examiner
Pathology results (n)

Sensitivity (%) Specificity (%) Accuracy (%) κ value 
Benign Malignant

d≤25 mm (junior radiologist)

ACR TI-RADS 1–3 42 59 76.7 (194/253) 55.3 (42/76) 71.7 (236/329) 0.29

ACR TI-RADS 4–5 34 194

95% CI (70.9, 81.6) (43.5, 66.5)

d>25 mm (junior radiologist)

ACR TI-RADS 1–3 45 4 78.9 (15/19) 91.8 (45/49) 88.2 (60/68) 0.71

ACR TI-RADS 4–5 4 15

95% confidence interval (53.9, 93.0) (79.5, 97.3)

d≤25 mm (senior radiologist)

ACR TI-RADS 1–3 52 4 98.4 (249/253) 68.4 (52/76) 91.5 (301/329) 0.74

ACR TI-RADS 4–5 24 249

95% CI (95.7, 99.5) (56.6, 78.3)

d>25 mm (senior radiologist)

ACR TI-RADS 1–3 47 5 73.7 (14/19) 95.9 (47/49) 89.7 (61/68) 0.73

ACR TI-RADS 4–5 2 14

95% CI (48.6, 89.9) (84.9, 99.3)

d≤25 mm (AI System)

Benign (predicted) 66 18 92.9 (235/253) 86.8 (66/76) 91.5 (301/329) 0.77

Malignant (predicted) 10 235

95% CI (88.8, 95.6) (76.7, 93.2)

d>25 mm (AI System)

Benign (predicted) 49 5 73.7 (14/19) 100 (49/49) 92.6 (63/68) 0.80

Malignant (predicted) 0 14

95% CI (48.6, 89.9) (90.9, 100)

AI, artificial intelligence; ACR, American College of Radiology; TI-RADS, Thyroid Imaging Reporting and Data System.

radiologists required 172.4 s on average.

Discussion

In this study, we showed that when the cutoff value was 

optimized to predict thyroid nodule malignancy with an AI 

system, the means of sensitivity and specificity had exactly 

Table 5 Comparison of mean diagnostic times of the AI system 
with those of radiologists in different groups

Ultrasonography examiner Time (s) per nodule

Junior radiologist 273.5

Senior radiologist 172.4

AI system 0.146

AI, artificial intelligence.
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the same tendency as the commonly used Youden index but 
with the advantage of having better interpretable absolute 
values for estimating the approximate ranges of sensitivity 
and specificity around the optimal cutoff value. We then 
evaluated different statistical strategies to estimate the per-
nodule-based malignancy score from the per-image-based 
malignancy scores outputted by the AI system on multiple 
images associated with each individual thyroid nodule. We 
showed that taking the average or the maximum values 
was suboptimal for per-nodule analysis and recommend 
the use of the median value, although further optimization 
using other percentiles was possible. In case sensitivity is 
compromised for an exchange of higher specificity, one can 
take the maximum method when calculating the nodule-
specific scores. Nevertheless, our results support the 
practice of per-nodule analysis for improving the diagnostic 
performance of an AI system, despite the fact that additional 
preprocessing efforts are required (17). 

We compared the diagnostic performances of an AI 
system, AI-SONIC Thyroid v. 5.3.0.2, to that of junior and 
senior radiologists on ultrasound images of 397 collected 
thyroid nodules collected from 287 patients, all with definite 
diagnoses as determined by postoperative pathology. Our 
results showed that although the sensitivity of the AI 
automated detection system was slightly lower than that 
of the senior radiologist (91.5% vs. 96.7%), the specificity 
of the AI automated detection system was significantly 
higher than that of the senior radiologist (92.0% vs. 
79.2%, P=0.0095). The accuracy of the AI system was 
similar to that of the senior radiologist (91.7% vs. 91.2%). 
The junior radiologists, in contrast, had significantly 
lower performances than did he AI system in terms of 
sensitivity (76.8%), specificity (69.6%), and accuracy 
(74.6%), suggesting that with the aid of the AI system, an 
improvement in diagnostic performance can be presumably 
expected, although this was not tested in this study.

Meanwhile, among the 33 cases misdiagnosed by the 
AI system, 14 cases of papillary thyroid carcinoma were 
predicted to be benign. For these 14 misdiagnosed papillary 
thyroid carcinoma cases, capsule infiltration by nodules 
was commonly observed, resulting in blurred boundaries 
between the nodules and the thyroid glands. In contrast, 
among the 35 cases misdiagnosed by senior radiologists, 
7 cases of nodular goiter and 6 cases of thyroid adenoma 
were considered suspicious for thyroid cancer. The cases 
misdiagnosed by both the AI system and the senior 
radiologists were diverse in terms of their subcategorization 
on pathological examinations. In the clinical practice of 

thyroid cancer screening, it may be helpful to further 
boost the sensitivity of the AI system by setting a slightly 
lower threshold with only a moderate compromise for the 
specificity. Nevertheless, concerning the overall diagnostic 
accuracy in this study where malignant samples were 
overrepresented (68.5%), the AI system demonstrated a 
slightly better performance than did the senior radiologists 
(91.7% vs. 91.2%), although this was not statistically 
significant. This implies that in scenarios where benign 
and malignant samples are more balanced or benign cases 
are more frequently occurring, the AI system could have a 
statistically measurable higher accuracy. 

We further analyzed how a diagnosis of malignancy 
by the AI system was affected by the sizes of the thyroid 
nodules compared to the diagnosis made by senior 
radiologists. The results showed that the sensitivities of 
both the AI system and senior radiologists for diagnosing 
medium-sized and large-sized nodules (>25 mm) were 
greatly reduced compared to those for smaller nodules. 
Large thyroid nodules may protrude from fibrous capsules 
toward the sternum, causing degradation of the contrast 
between the nodules and glands. For large nodules, tumor 
heterogeneity may also be present, necessitating the 
acquisition of more ultrasound images at different cross-
sections to capture adequate evidence of malignancy in 
the form of relevant ultrasound features to improve the 
sensitivity during the per-nodule analysis. It may also 
simply be a sampling-bias effect, as only a small fraction of 
our dataset was composed of thyroid nodules larger than 
25 mm (68/397, 17.1%). All raters showed a reduction 
in specificity for diagnosing small nodules, especially the 
radiologists. The ultrasound features of small nodules are 
typically less distinctive compared with the large nodules, 
which seemed to influence all raters, including the AI 
system. Nevertheless, a dramatic reduction in the specificity 
of radiologists’ diagnoses of small nodules might reflect 
the psychological tendency of not overlooking malignant 
nodules. AI systems are not affected by these psychological 
effects. However, the trade-off between sensitivity and 
specificity is not avoidable. With our proposed cutoff value 
optimization strategy, satisfactory results on the AI system 
have been achieved. In terms of κ values, the AI system was 
consistently better compared to the senior radiologists in 
diagnosing thyroid nodules of different sizes. 

In addition to the evaluations of the diagnostic 
performance metrics of the AI system, we also compared 
the throughput of the AI system with that of radiologists 
performing diagnoses. The mean diagnostic time per image 
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in the AI system was about 53 ms, resulting in a subsecond 
mean diagnostic time of 0.146 s on a per-nodule basis. This 
is in sharp contrast to the mean diagnostic time of about 2.8 
to 4.5 minutes taken by the radiologists. In real practice, 
however, extra time is needed to assist radiologists with 
applying the AI system, as the images need to be transferred 
from an ultrasound instrument to the AI system, and the 
association of each image to its corresponding nodule has to 
be performed manually in its current form. 

Our study found that the sensitivity of the AI-based 
automated diagnostic system was slightly lower than 
that of senior radiologists (91.5% vs. 96.7%), but the 
specificity of the AI-based automated detection system was 
higher than that of senior radiologists (92.0% vs. 79.2%). 
Furthermore, the accuracy of AI was similar to that of 
senior doctors (91.7% vs. 91.2%), but we found that this 
result was different from other research results (18,19), 
in which the computer-aided designs (CADs) presented a 
higher sensitivity (90.5% vs. 81.1%) and lower specificity 
(41.2% vs. 83.5%) than did the radiologists. We analyzed 
the possible reasons for this and included nodules subjected 
to ultrasound-guided fine-needle aspirations (FNAs) or 
ultrasound examinations prior to scheduled surgery. In 
fact, many patients with benign nodules chose to continue 
follow-up observation and those with malignant nodules 
chose surgical treatment, so that the proportion of benign 
and malignant nodules in this experimental sample might 
have been biased. The proportion of malignancies was 
rather high, which might have influenced the diagnostic 
performance of the CADs due to the increased sensitivity 
and accuracy of the malignant nodules. In the future, 
we will collect more benign cases to achieve a balanced 
proportion of benign and malignant thyroid nodules, so as 
to improve diagnostic accuracy. The AI-based automated 
diagnostic system is expected to provide reliable assistance 
with the preoperative evaluation of thyroid malignant 
nodules. 

This study was not without limitations. First, a larger 
sample size for the evaluation of the diagnostic performance 
would allow a more statistically reliable assessment of the 
AI system for diagnosing indeterminate thyroid nodules of 
Bethesda categories III and IV (23), which pose a significant 
challenge even for FNA cytology. It would be interesting 
to see whether the generally trained AI-SONIC Thyroid 
system could be helpful in assessing different follicular types 
of nodules. Follicular thyroid cancer, which accounts for 5% 

to 10% of all thyroid cancers (27), is less prone to lymph 
node metastases than is papillary thyroid cancer, the most 
common type, but is more likely to relapse and metastasize 
to the lung and bone. Papillary thyroid carcinoma consists 
of a papillary structure within the tumor cells. The most 
confusing nodules are follicular variant papillary thyroid 
carcinoma (FVPTC). At present, an AI-based diagnosis 
has the advantages of rapid and noninvasive diagnosis, but 
the current data volume may not be sufficiently large to 
support further study on the differentiation of such nodules. 
However, in the future, we will continue to accumulate 
data and further identify and study such follicular papillary 
thyroid carcinoma (PTC) nodules through the combination 
of ultrasound imaging features identified by AI and FNA 
results.

Ideally, it would also be better to evaluate the diagnostic 
performance of the AI system in a prospective setting, in 
which we could additionally assess how effective it can be 
in helping to reduce the need for fine-needle aspiration 
cytology (FNAC) in making malignant diagnoses in real-
world clinical scenarios. However, a possible challenge 
that we might encounter is that for certain cases, FNAC 
might be taken as the endpoint diagnostic method. The 
drawback of this is that the FNAC itself suffers from the 
aforementioned disadvantages in diagnosing Bethesda 
categories of indeterminate thyroid nodules and, thus, is 
not 100% accurate, making the assessment of AI diagnostic 
performance less reliable.

In addition, most AI systems only process and analyze 
static, gray-scale, ultrasound images, and cannot effectively 
analyze multimode, ultrasonic, AI-based diagnoses using 
dynamic video, color Doppler ultrasound, and ultrasonic 
elastography (28-30). It would be beneficial if in the future, 
the AI system in could process multimode ultrasound 
images, as mentioned above, and facilitate 3D visualization 
of the nodule as it is examined in real time.

To relieve the burden of radiologists, we look forward to 
the future research and development of effective analyses 
using ultrasound videos, color Doppler ultrasound, and 
ultrasonic elastography, as well as diagnostic tools that 
can accurately display the positions of thyroid nodules, 
characterize them in real time, and associate individual 
slices of nodules automatically (31). Ideally, it will also 
be beneficial for an AI system to offer the selection and 
formulation of surgical plans for thyroid cancer cases 
depending on the characterizations of the nodules (32). 
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