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Background: To evaluate the predictive value of radiomics features extracted from the thrombus on 
preoperative computed tomography images to identify successful recanalization after stent retrieve (SR) 
treatment in patients with acute ischemic stroke (AIS). 
Methods: Two hundred fifty-six patients newly diagnosed AIS between March 2017 and September 2020 
from two institutes, including the first affiliated hospital of Soochow university (institute I) and Northern 
Jiangsu People’s hospital (institute II), were enrolled continuously and retrospectively. Patients with 
unsatisfactory image quality were excluded. The remaining patients of institute I were randomly divided into 
the training and internal validation cohorts at a ratio of 7 to 3, and patients of institute II were collected as 
the external validation cohort. After extraction and selection of the optimal radiomics features from training 
cohort, six machine learning (ML) classifiers including naïve Bayes (NB), random forest (RF), logistic 
regression (LR), linear support vector machine (L.SVM), radial SVM (R.SVM), and an artificial neural 
network (ANN) were developed to predict successful recanalization with SR treatment and compared. A 
combined model based on the optimal ML classifier was constructed using the optimal radiomics model and 
clinical-radiological risk variables. Finally, the performance of the model was selected based on the Matthews 
correlation coefficient (MCC) and the area under the receiver operating (AUC) and independently evaluated 
on the internal validation and external validation cohorts.
Results: We automatically extracted 1,130 radiomics features from the voxel of interest (VOI) using 
PyRadiomics. The eight most relevant radiomics features were identified using Intraclass coefficient, 
single-factor logistic regression analysis, and least absolute shrinkage and selection operator algorithm in 
the training cohort. Among the six ML classifiers, the ANN classifier using thrombus radiomics features 
achieved the best prediction of early recanalization under SR with MCCs of 0.913, 0.693 and 0.505 in 
training, internal and external validation cohorts, respectively. Moreover, receiver operating characteristic 
curves showed that the combined model [AUC =0.860, 95% confidence interval (CI): 0.731–0.936; AUC 
=0.849, 95% CI: 0.759–0.831] was not significantly better than radiomics model based on the ANN classifier 
alone (AUC =0.873, 95% CI: 0.803–0.891; AUC =0.805, 95% CI: 0.864–0.971) (P>0.05, Delong test) in 
internal and external validation cohorts.
Conclusions: A radiomics model based on the ANN classifier has the ability to predict successful 
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Introduction

Acute ischemic stroke (AIS), one of the two main subtypes 
of stroke, is caused by the thrombosis of cerebral arteries (1).  
Following the “time is brain” paradigm, clinicians must 
shorten the time from symptom onset to intervention, as 
every minute of delay in treatment can significantly expand 
infarct volume and worsen outcomes (2,3). Mechanical 
thrombectomy (MTB) is a standard treatment for AIS 
secondary to large vessel occlusion, among which stent 
retriever (SR) treatment is recommended as an evidence-
supported first-line treatment strategy (4-6).

Achieving rapid recanalization and complete or near 
complete reperfusion has been associated with improved 
clinical outcomes and reduced complications (7,8). Since 
recognizing the significant role of recanalization in stroke, 
a key issue has been the selection of eligible patients who 
would benefit from SR treatment. The current application 
of imaging techniques in AIS have been focused on 
identifying the presence and extent of potentially salvageable 
areas upon recanalization. In this regard, brain tissues and 
arteries are considered the targets of recanalization, and 
thrombus evaluation is essential for predicting response to 
MTB. It has been recently shown that patient response to 
successful recanalization may differ according to the clinical 
and demographic factors (9,10). Moreover, the image 
characteristics of the thrombus, such as length and density, 
are also linked to recanalization success (11,12). While the 
thrombus can be detected by computed tomography (CT) 
and magnetic resonance imaging (MRI), most studies on 
thrombus imaging for recanalization have been focused 
on CT (13,14). Compared to MRI, CT is more easily and 
widely used for patients with AIS, especially in emergency 
settings and less-developed communities. Nonetheless, 
using these factors to reliably predict recanalization with SR 
treatment in patients with proximal intracranial thrombus is 
still limited. 

Radiomics, a newly emerging computer-assisted 
technique, allows for high-throughput analysis of imaging 

data revealing quantitative information beyond visual 
assessment by expert (15,16). These features depict voxel 
intensity, three-dimensional shape and size, coarseness of 
surface, and gray level. A recent study reported that the 
texture of the thrombus is more predictive of recanalization 
success after intravenous alteplase therapy for AIS than 
previously identified thrombus imaging features such as 
length, volume, and permeability (17). Another study found 
that radiomics analysis of thrombus was able to predict a 
direct aspiration first-pass technique (ADAPT) technique 
for successful recanalization in AIS and select patients 
who are most likely to benefit from the intervention (18). 
However, as another treatment regimen, no radiomics study 
has focused on the predicting success of recanalization 
following SR based on pretherapy CT images. 

Thus, the present study aimed to investigate whether 
the thrombus radiomics features derived from thin-section 
CT can be predictive of recanalization after intra-arterial 
MTB treatment. We also constructed different machine 
learning (ML) classifiers to compare which classifier is 
most suitable in this study according to statistical analysis 
and determine whether a combined model consisting of 
clinical-radiological risk variables and a radiomics model 
could better discriminate the recanalization success than a 
radiomics model alone. We present the following article in 
accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-22-599/rc).

Methods 

Patients 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by the institutional review board of Northern 
Jiangsu People’s Hospital (No. 2022ky058), and individual 
consent for this retrospective analysis was waived. 256 
patients newly diagnosed AIS between March 2017 and 

recanalization after SR in patients with AIS, thus allowing a potentially better selection of mechanical 
thrombectomy treatment.
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September 2020 from two institutes, including the first 
affiliated hospital of Soochow university (institute I) and 
Northern Jiangsu People’s hospital (institute II), were 
enrolled continuously and retrospectively. Inclusion criteria: 
(I) AIS with internal carotid artery/M1 middle cerebral 
artery segment thrombus; (II) received MTB treatment 
using the SR technique, followed by additional devices 
(e.g., ADAPT technique) at the operator’s discretion if 
failed; (III) all patients underwent CT imaging, including 
noncontrast CT (NCCT), CT angiography (CTA), and/
or CT perfusion. Successful recanalization was defined as 
a Thrombolysis In Cerebral Infarction score 2b or 3 on 
the final digital subtracted angiography during MTB, as it 
represents a powerful predictor of treatment success and 
clinical outcome (19). Patients with unsatisfactory image 
quality, such as motion or metal artifacts, and incomplete 
clinical information were excluded. The eligible patients 
from institute I were randomly divided into training and 
internal validation cohorts at a ratio of 7 to 3, and patients 
from institute II were allocated to the external validation 
cohort. This diagnostic study did not register with a 
clinical trial platform and the study protocol has not been 
published. The flowchart shows the analysis pathway for 
this study (Figure 1A).

Image examination

All examinations were performed on multi-detector CT 
scanners (GE Healthcare, USA; United imaging, China). 
The scanning ranged from the top of the skull to the base. 
The scanning parameters were: tube voltage 120 kV, tube 
current 200–360 mA, field of view 320 mm, matrix 512×512, 
and layer thickness 5 mm.

Image preprocessing and segmentation 

All CT images were saved as Digital Imaging and 
Communications in Medicine (DICOM) files and loaded 
into ITK-SNAP, an open-source software (www.itksnap.
org). NCCT images were reconstructed with a voxel of 
1×1×1 mm3 and gray-scale discretization to remove the 
potential differences of CT images acquired by different CT 
scanners. Gray-scale discretization was performed between 
μ ± 3σ [μ, the mean value of the gray levels within the 
region of interest (ROI); σ, the standard deviation]. A senior 
neuroradiologist performed manual contouring of thrombus 
in a slice-by-slice manner from axial views of NCCT 
images using ITK-SNAP by viewing the corresponding co-

registered CTA images for guidance (Figure 1B). Another 
neuroradiologist independently segmented the ROIs in 
40 randomly selected patients to analyze the variability of 
segmentation. They were blind to the clinical information 
and final treatment effect. 

Radiomics feature extraction and selection

Overall, 1,130 radiomics features were automatically 
extracted from the voxel  of  interest  (VOI) using 
PyRadiomics, an open-source and widely used platform 
for radiomics analysis. This allowed to compute first-order 
statistics and higher order textural features using gray 
level co-occurrence matrix features (GLCM), gray level 
size zone matrix features (GLSZM), gray level run length 
matrix (GLRLM), neighboring gray tone difference matrix 
(NGTDM), and gray level dependence matrix features 
(GLDM). Additional wavelet filtering (eight decompositions 
per level) and three different Laplacian of Gaussian filters 
(with sigma values of one, three, and five) were applied to 
the original images for further higher order features after 
pre-processing with gray-scale discretization.

Before selecting features, the features values of all VOIs 
were normalized with a Z-score [(x – μ)/σ; x, the feature 
value; μ, the average of the feature values among all patients; 
σ, the corresponding standard deviation] to eliminate the 
unit limit for each feature. Single-factor logistic regression 
analysis was conducted to select highly significant and 
correlated features. Then, the least absolute shrinkage 
and selection operator (LASSO) regression method was 
performed based on maximum area under curve (AUC) 
criteria in the training cohort. A 10-fold cross-internal 
validation method was adopted to choose the optimized 
subset of features. 

Model construction and evaluation

The selected radiomics features and ML classifiers were 
used to construct models in training cohort. The internal 
validation cohort was used for model optimization. The 
ML classifiers included the naïve Bayes (NB), random 
forest (RF), logistic regression (LR), linear support vector 
machine (L.SVM), radial SVM (R.SVM), and artificial 
neural network (ANN). These classifiers are widely used 
and proven to be effective. Grid search was used for 
hyperparameter tuning, and we set cost 10−4 to 104 for 
L.SVM, cost 10−4 to 104 and gamma 10−4 to 104 for R.SVM, 
ntree 100 to 500 for RF, hidden 1 to 5 for ANN. The 
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Radiomics model

Related clinical and 

radiological variables

Combined model Validated the ability of model

Institute I Institute II

Internal validation cohort (N=39) 

Eligible patients with or without successful revascularization (N=203) 

Patients diagnosed AIS with ICA/M1 MCA segment thrombus (N=256)

External validation cohort (N=69)

Excluded criteria:

•	Unsatisfactory images (N=45)

•	Incomplete clinical information (N=8) 

A

B

Figure 1 Flowchart showing the analysis pathway for this study and schematic diagram of thrombus segmentation. (A) All consecutively 
patients from March 2017 to September 2020 were enrolled retrospectively. After strict inclusion and exclusion, 203 patients were eligible 
finally; (B) the thrombus were manual contoured in a slice-by-slice manner from axial views of NCCT images using ITK-SNAP by viewing 
the corresponding co-registered CTA images for guidance. AIS, acute ischemic stroke; ICA, internal carotid artery; MCA, middle cerebral 
artery; NCCT, noncontrast computed tomography; CTA, computed tomography angiography. 
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Table 1 The parameters of six ML classifiers

Classifiers Package Parameters

L.SVM e1071 kernel: linear; cost: 0.1; number of support vectors: 53

R.SVM e1071 kernel: radial; cost: 1; gamma: 0.1; number of Support vectors: 63

RF randomForest number of trees: 500; no. of variables tried at each split: 2; OOB estimate of error rate: 16.84%

NB e1071 laplace: 0; na.action: na.pass

LR glmnet residual: 86; null deviance: 128.6; residual deviance: 64.34; AIC: 82.34

ANN neuralnet hidden: 3; err.fct: ce; linear.output: false; erro: 31.9826; steps: 9102

ML, machine learning; L.SVM, linear support vector machine; R.SVM, radial SVM; RF, random forest; NB, naïve Bayes; LR, logistic 
regression; ANN, artificial neural network; OOB, out of bag; AIC, Akaike information criterion.

parameters of the six ML classifiers are showed in Table 1. 
The sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV) and Matthews correlation 
coefficient (MCC) for each model were calculated via a 
confusion matrix to evaluate discriminative ability. The 
MCC takes into account true positives, true negatives, false 
positives and false negatives, and is generally considered to 
be a well-balanced metric that can be applied even when 
the sample sizes of the two groups vary greatly. This metric 
is essentially a correlation coefficient describing the actual 
classification and the predicted classification, its value range 
is −1 to 1. A value of 1 indicates a perfect prediction of the 
subject, 0 indicates the predicted result is not as good as 
the random prediction, and −1 means that the predicted 
classification and the actual classification are completely 
inconsistent (20). 

In this study, four related clinical variables, including 
age, gender, atrial fibrillation, national institutes of health 
stroke scale (NIHSS) on admission, and two radiological 
variables, including HDVS (hyperdense vessel sign) and 
thrombus volume, were incorporated into the radiomics 
model to develop the combined model (21-23). Moreover, 
the best classifier was chosen to construct a clinical model 
based on the selected clinical and radiological variables. 
Receiver operating characteristic (ROC) curves for models 
were also generated. These models were constructed in the 
training cohort and optimized in the internal validation. 
The external validation was used for the independently 
verification.

Statistical analysis

Statistical analysis was performed using SPSS (version 22.0) 
and R statistical software (version 3.6.2). For continuous 

variables, difference was calculated using the Student’s t-test 
or the Mann-Whitney U test as appropriate. Continuous 
data are represented as mean ± standard deviation or as 
median with interquartile range depending on whether 
or not the data were normally distributed. For categorical 
variables, difference was calculated with Chi-square 
or Fisher’s exact test as appropriate. ROC curves were 
compared using Delong test. The threshold for significance 
was set at P<0.05. 

Results

Patients

After strict inclusion and exclusion, 45 patients with 
unsatisfactory image quality and eight with incomplete 
clinical information were excluded. Finally, 203 patients 
were enrolled. Among them, 95 patients were used for 
training and 39 patients used for internal validation from 
institute I, and 69 patients from institute II were used 
for external validation. Moreover, 128 (62.75%) cases 
achieved successful recanalization, including 56 (58.95%), 
28 (71.79%) and 44 (63.77%) cases in the training, internal 
validation and external validation cohorts, respectively. 
There were no statistically significant differences of 
baseline demographic characteristics, clinical variables, 
and radiological variables between the patient groups, as 
seen in Table 2. The average interval was 158.4 min (range,  
60–270 min) between preoperative CT examination and 
MTB performed.

Selection of the best radiomics features 

Out of 1,130 radiomics features, 858 (75.93%) had 
good consistency [intraclass correlation coefficients 
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(ICCs), 0.802–0.9230]. The subset of the eight most 
relevant radiomics features (log-sigma-3mm_ GLSZM_ 
LowGrayLevelZoneEmphasis, log-sigma-5mm_ GLRLM_ 
ShortRunHighGrayLevelEmphasis, wavelet-LHL_ 
GLSZM_ LargeAreaHighGrayLevelEmphasis, wavelet-
HLH_ Firstorder_ Mean, wavelet-HHH_ GLRLM_ 
GrayLevelNonUniformityNormalized, wavelet-HHL_ 
GLRLM_ GrayLevelVariance, wavelet-HHL_ GLSZM_ 
GrayLevelNonUniformity, original_ GLRLM_ GrayLeve
lNonUniformityNormalized) were identified using single-
factor logistic regression analysis and a LASSO algorithm in 
the training cohort. The cross internal validation of LASSO 
and the correlation coefficient matrix of selected radiomics 
features are showed in Figure 2. The detailed description of 
the selected radiomics features were reported in Table S1.

Performance of the radiomics models

In the training cohort, the six ML classifiers including 

L.SVM, R.SVM, RF, NB, LR and ANN obtained similar 
AUCs [0.933, 95% confidence interval (CI): 0.871–0.892; 
0.942, 95% CI: 0.762–0.801; 0.889, 95% CI: 0.630–0.852; 
0.924, 95% CI: 0.855–0.898; 0.925, 95% CI: 0.697–0.912; 
0.950, 95% CI: 0.754–0.893], respectively. In the internal 
validation cohort, the six ML classifiers obtained AUCs 
[0.901, 95% CI: 0.734–0.795; 0.792, 95% CI: 0.840–0.992; 
0.820, 95% CI: 0.763–0.859; 0.737, 95% CI: 0.803–0.855; 
0.834, 95% CI: 0.769–0.958; 0.909, 95% CI: 0.772–0.804], 
respectively. The ANN classifier showed the highest AUCs 
in the training and internal validation cohorts. The ANN 
classifier showed the highest MCC of 0.913 in the training 
cohort, while the L.SVM classifier showed the highest 
MCC of 0.766 in the internal validation cohort. 

ANN and L.SVM were regarded as the two most 
suitable ML classifiers and were developed using the 
external validation cohort with MCCs of 0.505 and 0.482, 
respectively (Figure 3A). While the ROC curves of ANN 
and L.SVM showed a significant difference (P<0.001), the 

Table 2 Baseline demographic characteristics, clinical variables, and radiological variables of enrolled patients

Variables Training cohort (n=95) Internal validation cohort (n=39) External validation cohort (n=69)

Age in years* 66.81±10.84 68.13±13.20 64.12±12.56

Male, n (%) 55 (57.89) 21 (53.85) 37 (53.62)

History, n (%)

Hypertension 61 (64.21) 29 (74.36) 49 (71.01)

Diabetes 16 (16.84) 8 (20.51) 8 (11.59)

Anticoagulant therapy 24 (25.26) 9 (23.08) 15 (21.74)

Stroke 22 (23.16) 8 (20.51) 8 (11.59)

Coronary heart disease 13 (13.68) 6 (15.38) 3 (4.35)

Atrial fibrillation 23 (24.21) 13 (33.33) 25 (36.23)

Alcohol consumption 23 (24.21) 13 (33.33) 11 (15.94)

Smoking 38 (40.00) 10 (25.64) 12 (17.39)

Admission SBP (mmHg)* 150.67±23.27 151.85±22.98 126.12±23.27

Admission DBP (mmHg)* 84.74±14.38 86.205±14.68 71.32±14.96

Admission NIHSS* 16.92±8.34 19.08±9.69 16.16±4.80

Time to admission (h)# 3.00 (2.00, 4.50) 4.00 (2.00, 5.00) 3.50 (2.00, 5.00)

MCA, n (%) 84 (88.42) 31 (79.49) 57 (82.61)

HDVS, n (%) 52 (54.74) 23 (58.97) 38 (55.07)

Thrombus volume (mm3)# 62.25 (37.87, 91.75) 63.75 (31.00, 104.38) 70.55 (53.05, 90.31)

*, represented as mean ± standard deviation; #, represented as median with interquartile range. SBP, systolic blood pressure; DBP, 
diastolic blood pressure; NIHSS, National Institutes of Health Stroke Scale; MCA, middle cerebral artery; HDVS, hyperdense vessel sign. 

https://cdn.amegroups.cn/static/public/QIMS-22-599-supplementary.pdf
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Figure 2 The selection producer and exhibition of radiomics features. (A) Internal cross-validation of LASSO was performed to select 
the best subset of radiomics features based on maximum AUC criteria in the training cohort; (B) correlation coefficient matrix of selected 
radiomics features. LASSO, least absolute shrinkage and selection operator; AUC, area under curve; LS-3_GLSZM_LGLZE, log-sigma-
3mm_GLSZM_LowGrayLevelZoneEmphasis; LS-5_GLRLM_SRHGLE, log-sigma-5mm_GLRLM_ShortRunHighGrayLevelEmphasis; 
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GLV, wavelet-HHL_GLRLM_GrayLevelVariance; W-HHL_GLSZM_GLNU, wavelet-HHL_GLSZM_GrayLevelNonUniformity; O_
GLRLM_GLNUN, original_GLRLM_GrayLevelNonUniformityNormalized.

ANN classifier outperformed L.SVM in distinguishing 
the successful and unsuccessful recanalization cases in 
the external validation cohort. The accuracy, sensitivity, 
specificity, PPV, NPV, and MCC for the models in the 
internal and external cohort were showed in Table 3. The 
corresponding ROC curves of six ML classifiers in the 
internal and external cohorts were shown in Figure 3B,3C.

Adding clinical information into radiomics model and 
validation

The combined model, with clinical and radiological 
variables incorporated into the ANN-based radiomics 
model, did not show better ROC curves in the internal 
validation and external validation cohorts than the 
radiomics models alone (P>0.05). A clinical model was also 
constructed using ANN to evaluate its diagnostic efficacy. 
The ROC curves of the three models in the internal and 
external validation cohorts are presented in Figure 4, and 
the AUC, sensitivity, specificity, PPV, and NPV of the 
models were showed in Table 4 in detail. 

Discussion

In this  retrospect ive  s tudy,  we a imed to  predict 
recanalization success with MTB based on radiomics 
features derived from intracranial thrombus CT imaging 
in patients with AIS. By calculating the texture, size, 
shape, and higher order parameters of thrombus, we 
developed and validated ML classifiers to identify patients 
with recanalization following SR treatment. Overall, the 
ANN classifier developed by thrombus radiomics features 
achieved the best prediction of early recanalization. 
Adding clinical information into the radiomics model did 
not improve the final results. This may allow appropriate 
selection of first-line MTB to increase the clinical benefit 
for each patient.

A recent article argued that factors that are well 
established for a specific disease should always be included 
regardless of their statistical significance in a particular 
dataset (24). The recommended approach is to select 
important factors, rather than selecting factors via their 
significance in univariable analysis. Herein, four related 
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Figure 3 The discriminative performance of six machine learning classifiers in different cohorts. (A, B) ROC curves of six machine learning 
classifiers in the internal and external cohorts. It shows that ANN outperformed other classifiers in distinguishing the successful and 
unsuccessful recanalization in two cohorts; (C) Matthews correlation coefficient of six classifiers in three cohorts. ML, machine learning;  
ROC, receiver operating characteristic; L.SVM, linear support vector machine; R.SVM, radial support vector machine; RF, random forest; 
NB, naïve Bayes; LR, logistic regression; ANN, artificial neural network; MCC, Matthews correlation coefficient.

clinical variables and two radiological variables, such as age, 
gender, atrial fibrillation status, were selected according to 
clinical practice (21). One possible reason that increased 
age and the presence of atrial fibrillation were contributors 
to successful recanalization may be stroke etiology (25). 
The differences in anatomical, pathophysiological, and 
biochemical factors, endogenous fibrinolytic activity, 
may lead to different responses to recanalization therapy 
between sexes (26). Many studies have sought to explore 
potential factors influencing recanalization efficacy after 
MTB. The image characteristics of the thrombus, such 
as length and density, are also linked to recanalization 
success (11,12). However, it is very difficult to measure 
thrombus length on NCCT images without the aid of 
specific software. What’s more, this measurement on CTA 
images is indirectly based on the presence of contrast 

opacification.  The thrombus density on CT images 
may represent the compositions of the thrombus, and 
it has been previously shown that different biochemical 
compositions appear to affect their treatment response, in 
that the HU is higher in red blood cell-rich regions and 
lower in fibrin- or platelet-rich regions. Thus, thrombus 
with HDVS was easier to recanalize than fibrin-rich 
thrombus without HDVS. However, the distribution of 
each composition within the thrombus is inhomogeneous. 
So, the measurement of the thrombus may underestimate 
or overestimate its density. 

Limitations on image characteristics in previous studies, 
demonstrate that objective, quantitative analysis is necessary. 
Recently, CT-based radiomics analysis has been applied 
to discriminate recanalization success after treatment 
with promising results (17,18). They found that thrombus 
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Table 3 Performance of six ML classifiers in external and internal validation cohort

Classifiers MCC AUC SEN SPE PPV NPV

External validation

L.SVM 0.482 0.746 0.773 0.720 0.829 0.643

R.SVM 0.498 0.758 0.795 0.72 0.833 0.667

RF 0.298 0.741 0.841 0.640 0.804 0.696

NB 0.519 0.677 0.591 0.800 0.839 0.526

LR 0.494 0.850 0.864 0.720 0.844 0.750

ANN 0.505 0.808 0.680 0.920 0.929 0.561

Internal validation

L.SVM 0.766 0.901 0.893 0.909 0.962 0.769

R.SVM 0.570 0.792 0.857 0.727 0.889 0.667

RF 0.415 0.820 0.821 0.818 0.920 0.643

NB 0.600 0.737 0.857 0.636 0.857 0.636

LR 0.719 0.834 0.857 0.818 0.923 0.692

ANN 0.693 0.909 0.893 0.909 0.962 0.769

ML, machine learning; MCC, Matthews correlation coefficient; AUC, area under curve; SEN, sensitivity; SPE, specificity; PPV, positive-
predictive value; NPV, negative predictive value; L.SVM, linear support vector machine; R.SVM, radial support vector machine; RF, random 
forest; NB, naïve Bayes; LR, logistic regression; ANN, artificial neural network.
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Figure 4 ROC curves of radiomics, clinical and combined models in internal validation and external validation Cohorts. (A) In internal 
validation cohort, the Combined model shows better ROC curves than the clinical model, however, no better than radiomics model; (B) in 
external validation cohort, the Combined model also shows better ROC curves than the clinical model, however, no better than radiomics 
model. ROC, receiver operating characteristic.

images contain valuable information that can be used to 
predict alteplase and aspiration efficacy in the treatment of 
AIS. Another paper utilizes single-phase CTA for thrombus 
measurements and explores the efficiency of thrombus 
texture to predict more attempts to successful reperfusion 
in patients with anterior circulation stroke. These 
thrombus texture, however, were not related to functional  

outcome (27). Thus, we formulate a hypothesis that 
the biochemical characteristics of the thrombus can 
contributed to decision-making and treatment planning in 
patients receiving SR. Feature selection showed that the 
most contributory features to the classification between 
subtypes were derived from GLRLM (4/8) and GLSZM 
(3/8) features. The GLRLM quantifies gray level runs, 
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which are defined as the length in number of pixels, of 
consecutive pixels that have the same gray level value. In 
this matrix, GLNUN measures the similarity of gray-level 
intensity values in the image, where a lower GLNUN value 
correlates with a greater similarity in intensity values (28).  
The GLSZM quantifies gray level zones in an image, and 
GLNU measures the variability of gray-level intensity 
values in the image, with a lower value indicating more 
homogeneity in intensity values (29). A thrombus with 
successful recanalization shows lower GLSZM_GLNU 
value than one with failed recanalization, meaning that 
these thrombi are more homogeneous. 

In the present study, ML classifiers of features extracted 
from the thrombus on the baseline NCCT were useful 
to predict successful recanalization. Among six ML 
classifiers used in this study, ANN achieved best predictive 
performance. Universally applied in medical practice, the 
ANN classifier has proven its robustness against a variety of 
input features and random noise (30,31). The performance 
of classifiers varied between the internal and external 
cohort, which may due to the small sample size of the 
present study. The predictive performance of the combined 
model was not significantly improved compared to the 
radiomics model alone. It indicated that the combined 
model was weighted more heavily towards the radiomics 
features which produced better performances than clinical 
and radiological variables. The result further points to the 
potential of a radiomics-based objective and quantized 
strategy for more standardized diagnostic process. 

There are several limitations to this work. Firstly, there was 
relatively small sample size and an unbalanced distribution 
between groups because of the retrospective nature of study 
and strict inclusion criteria. Secondly, the manual measurement 

of thrombus characteristics is inefficient in an emergency 
setting and could lead to a lack of reproducibility, and further 
studies will need to focus on automatic or semiautomatic 
segmentation and analysis. Thirdly, thrombus composition 
was not systematically analyzed, so we were unable to explore 
underlying biology of thrombus related to the CT-based 
radiomics features. This type of correlation will require in 
vitro studies that look at radiomics and thrombus pathology 
together. Finally, recanalization was used as the only biological 
marker of outcomes, while prognosis, such as mortality, was 
not evaluated.

Conclusions

Our findings suggest that preoperative thrombus-based 
radiomics analysis can help identify patients who are likely 
to achieve recanalization with SR treatment. Although, 
at present, the segmentation tools and the time needed 
to perform the analysis are not adapted for clinical 
practice, further studies should explore the role of artificial 
intelligence for providing a rapid comprehensive thrombus 
segmentation and image analysis that could help clinicians 
determine whether patients would recanalize in a reasonable 
timeframe with SR treatment. 
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Table S1 The detailed description of the selected radiomics features

log-sigma- 
3 mm

Gray Level Size Zone 
Matrix Features

Low Gray Level Zone 
Emphasis (LGLZE)

LGLZE measures the distribution of lower gray-level size zones, with 
a higher value indicating a greater proportion of lower gray-level 
values and size zones in the image.

wavelet-LHL Gray Level Size Zone 
Matrix  Features

Large Area High Gray Level 
Emphasis (LAHGLE)

LAHGLE measures the proportion in the image of the joint 
distribution of larger size zones with higher gray-level values.

wavelet-
HHL

Gray Level Size Zone 
Matrix Features

Gray Level Non-Uniformity 
Normalized (GLNN)

GLNN measures the variability of gray-level intensity values in the 
image, with a lower value indicating a greater similarity in intensity 
values. This is the normalized version of the GLN formula.

log-sigma-
5mm

Gray Level Run Length 
Matrix  Features

Short Run High Gray Level 
Emphasis (SRHGLE)

SRHGLE measures the joint distribution of shorter run lengths with 
higher gray-level values.

wavelet-
HHH

Gray Level Run Length 
Matrix  Features

Gray Level Non-Uniformity 
Normalized (GLNN)

GLNN measures the similarity of gray-level intensity values in the 
image, where a lower GLNN value correlates with a greater similarity 
in intensity values. This is the normalized version of the GLN formula.

wavelet-
HHL

Gray Level Run Length 
Matrix Features

Gray Level Variance (GLV) GLV measures the variance in gray level intensity for the runs.

original_ 
GLRLM

Gray Level Run Length 
Matrix  Features

GrayLevelNonUniformityNor
malized (GLNN)

GLNN measures the similarity of gray-level intensity values in the 
image, where a lower GLNN value correlates with a greater similarity 
in intensity values. This is the normalized version of the GLN formula.

wavelet-
HLH

First Order Features Mean The average gray level intensity within the ROI.
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