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Introduction 

Medical imaging has been indispensable in medicine since 
the discovery of X-rays by Wilhelm C. Röntgen in 1895. 
Medical imaging offers useful information on patients’ 
medical conditions and provides clues to causes of their 
symptoms and diseases. As imaging technologies advance, 
a large number of medical images are produced which 
physicians/radiologists must interpret. Thus, computer 
aids are demanded and become indispensable in physicians’ 
decision making based on medical images. Consequently, 
computer-aided detection and diagnosis (CAD) (1-4) has 
been an active research area in medical imaging. CAD is 
defined as detection and/or diagnosis made by a radiologist/
physician who takes into account the computer output 
as a “second opinion” (2). CAD is often categorized into 
two major groups: computer-aided detection (CADe) 

and computer-aided diagnosis (CADx). CADe focuses 
on a detection task, i.e., detection (or localization) of 
lesions in medical images. CADx focuses on a diagnosis 
(characterization) task, e.g., distinction between benign and 
malignant lesions, and classification among different lesion 
types.

A branch of the history of CAD started in 1955. A 
radiologist, Lee Lusted, mentioned the potential use of 
digital computers for large-scale data problems in medicine 
in (5) in 1955. It was only nine years after the first general-
purpose computer, ENIAC, was introduced in 1946. 
In 1963, Lodwick et al. digitized chest radiographs for 
computer analysis (6). In 1964, Becker et al. developed 
automated measurement of the cardiothoracic ratio in chest 
radiographs (7,8). The first study on CADe of abnormalities 
in mammograms was published by Winsberg et al. (9) in 
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1967. In 1973, Toriwaki et al. (10) reported the first study 
on CADe of a focal abnormality in chest radiographs, and 
Roellinger et al. (11) reported the first study on CADe 
of a heart abnormality in chest radiographs. In the mid-
1980’s, investigators in the Kurt Rossmann Laboratories 
in the Department of Radiology at the University of 
Chicago began studies on the development and evaluation 
of CAD. Chan et al. (12), Fujita et al. (13), Giger et al. (14), 
and Katsuragawa et al. (15) published a series of papers on 
CADe of microcalcifications in mammography, CAD for 
vessel size measurement in angiography, CADe of lung 
nodules in chest radiography, and CADe of interstitial lung 
disease in chest radiography, respectively. In 1988, a venture 
company, R2 Technology (now Hologic), which obtained 
licenses for CAD technologies from the University of 
Chicago, received approval for the first commercial CAD 
system for mammography from the U.S. Food and Drug 
Administration (FDA).

Evidence suggests that CAD can help improve the 
diagnostic performance of radiologists/physicians in 
their image interpretations (16-22). Consequently, 
many investigators have participated and developed 
CAD schemes such as those for detection of lung 
nodules in chest radiographs (14,23-25) and in thoracic 
CT (26-29), those for detection of microcalcifications/
masses in mammography (12), breast MRI (30), and breast 

ultrasound (US) (31,32), and those for detection of polyps 
in CT colonography (CTC) (33-36). 

In this paper, the progress and advancement of the 
development of CAD schemes of the thorax and colon 
are reviewed, including CAD schemes for detection and 
diagnosis of lung nodules in thoracic CT, and those for 
detection of polyps in CTC.

Generic architectures of CADe and CADx schemes

A flowchart for a generic CADe scheme of lesions in 
medical images is shown in Figure 1. A CADe scheme 
generally consists of four major steps and two optional 
steps: (I) segmentation of the organ of interest, (III) 
detection of lesion candidates from the segmented organ, 
(IV) segmentation and feature analysis of the detected lesion 
candidates, (V) classification of the lesion candidates by use 
of a classifier with features; optionally (II) enhancement 
of lesions between steps I and III, and (VI) reduction of 
false-positive (FP) detections. Segmentation of the organ 
of interest is the first necessary step that aims at making 
the rest of the steps focus on the organ. The development 
of the detection of lesion candidates generally aims at 
obtaining a high sensitivity level, because the sensitivity lost 
in this step cannot be recovered in the later steps. In the 
next step, the detected (or localized) lesion candidates are 
segmented, and connected-component labeling (37,38) is 
performed for identification of each segmented candidate 
as an individual isolated object. Pattern features such as 
gray-level-based features, texture features, and morphologic 
features are extracted from the segmented candidates. 
Finally, the detected lesion candidates are classified into 
lesions or non-lesions by use of a classifier. This final step is 
very important, because it determines the final performance 
of a CADe scheme when the additional step of FP reduction 
is not employed. The development of the classification step 
aims at removing as many non-lesions (i.e., FPs) as possible 
while minimizing the removal of lesions (i.e., true-positive 
detections). 

A machine-learning technique is generally used in the 
step of classification of lesion candidates. The machine-
learning technique is trained with sets of input features 
and correct class labels. This class of machine learning is 
referred to as feature-based machine learning, or simply as a 
classifier. The task of machine learning here is to determine 
“optimal” boundaries for separating classes in the multi-
dimensional feature space which is formed by the input 
features (39). Feature-based machine-learning algorithms 

Figure 1 Flowchart for a generic CADe scheme for detection 
of lesions in medical images. Boxes with solid lines indicate four 
major steps in the CADe scheme, and those with dashed lines 
indicate optional, yet important steps
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include linear discriminant analysis (LDA) (40), quadratic 
discriminant analysis (QDA) (40), multilayer perceptron 
[one of the most popular artificial neural network (ANN) 
models] (41), and support vector machines (SVMs) (42). 
The structure of an ANN may be designed by use of an 
automated design method such as sensitivity analysis (43,44). 
Recently, as available computational power has increased 
dramatically, pixel/voxel-based machine learning (45) 
emerged in medical image processing/analysis which uses 
pixel/voxel values in images directly, instead of features 
calculated from segmented regions, as input information; 
thus, feature calculation or segmentation is not required. 
Pixel-based machine learning has been used in the 
classification of the detected lesion candidates in CADe and 
CADx schemes. 

To improve the performance of CADe schemes, 
investigators sometimes employ an additional step that is 
enhancement of lesions after the step of the segmentation 
of the organ of interest. This additional step aims at 
improving the sensitivity for detection of lesion candidates 
in the subsequent step. It often helps improve the specificity 

as well. Figure 2 shows such an example. Suzuki (46) 
developed a supervised “lesion enhancement” filter based on 
a massive-training ANN (MTANN) for enhancing lesions 
and suppressing non-lesions in medical images. Figure 3 
illustrates the enhancement of a lung nodule in a CT image 
by means of a trained MTANN lesion enhancement filter. 
In the output image, the lung nodule in the original CT 
image is enhanced, while normal structures such as lung 
vessels are suppressed substantially. By use of the MTANN 
lesion enhancement filter, the performance of the initial 
nodule candidate detection step in a CADe scheme was 
substantially improved from a 96% sensitivity with 19.3 FPs 
per section to a 97% sensitivity with 6.7 FPs per section.

Investigators also often employ an additional step of 
reduction of FPs at the end in a CADe scheme. The FP 
reduction step aims at improving the specificity of the 
CADe scheme. Reduction of FPs is very important, because 
a large number of FPs could adversely affect the clinical 
application of CADe. A large number of FPs is likely to 
confound the radiologist’s task of image interpretation 
and thus lower his/her efficiency. In addition, radiologists 
may lose their confidence in CADe as a useful tool. Suzuki 
et al. developed an FP reduction technique based on 

Figure 2 Lesion enhancement by means of a supervised MTANN 
lesion-enhancement filter. (A) Original axial CT slice with a lung 
nodule (indicated by an arrow). (B) Output image of the trained 
MTANN nodule-enhancement filter. In the output image (B), the 
lung nodule in the original CT image (A) is enhanced, whereas 
normal structures such as lung vessels are suppressed substantially
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Figure 3 Enhancement of lung nodules and suppression of FPs 
(i.e., lung vessels) by use of MTANNs for FP reduction. Once 
lung nodules are enhanced, and FPs are suppressed, FPs can be 
distinguished from lung nodules by use of scores obtained from the 
output images
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Figure 4 FROC curve indicating the performance of the FP 
reduction by MTANNs in a CADe scheme for detection of lung 
nodules in CT. With the trained MTANNs, FPs were removed 
without any removal of true positives
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Figure 5 Flowchart for a generic CADx scheme for diagnosis of 
(detected) lesions in medical images 
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MTANNs (26) for reduction of FPs in a CADe scheme 
for lung nodules in CT. The MTANNs were trained to 
enhance lung nodules and suppress various types of FPs 
(i.e., non-nodules) such as lung vessels. Figure 3 shows 
the results of the enhancement of various-sized lung 
nodules (a) and those of the suppression of various-sized 
lung vessels (b). Figure 4 shows a free-response receiver 
operating characteristic (FROC) curve (47) indicating 
the performance of the trained MTANNs in the CADe 
scheme. With the MTANNs, the specificity of the CADe 
scheme was improved from 15.0 to 6.3 FPs per case without 
sacrificing the original sensitivity of 97%.

After the development of a CADe scheme, the evaluation 
of the stand-alone performance of the developed scheme 
is the last step in CADe development. The evaluation of 
radiologists’ performance with the use of the developed 
CAD scheme is the important last step in CAD research.

The flowchart for a generic CADx scheme for diagnosis 
(or characterization) of detected lesions in medical images 
is shown in Figure 5. CADx schemes start from detected 
(localized) lesions either automatically or manually. In other 
words, the location of a lesion of interest is known. CADx 
schemes include distinction between benign and malignant 
status of detected lesions, and classification among different 
types of detected lesions. First, the detected lesions are 
segmented, and pattern features are extracted from the 
segmented lesions. With the extracted features, the lesions 
are classified into benign or malignant, or different lesion 

types. CADx schemes may provide the likelihood of 
malignancy or the likelihood of being a certain type of 
lesion, as opposed to categorical classification results (or 
classes). 

CADe and CADx in thoracic imaging

Thoracic imaging for lung cancer detection and diagnosis

Lung cancer continues to rank as the leading cause of 
cancer deaths in the United States and in other countries 
such as Japan. Because CT is more sensitive than chest 
radiography in the detection of small nodules and of lung 
carcinoma at an early stage (48-51), lung cancer screening 
programs are being investigated in the United States (52,53), 
Japan (48,49), and other countries with low-dose (LD) 
helical CT as the screening modality. Evidence suggests 
that early detection of lung cancer may allow more 
timely therapeutic intervention and thus a more favorable 
prognosis for the patient (49,54). Helical CT, however, 
generates a large number of images that must be read 
by radiologists/physicians. This may lead to ‘‘information 
overload’’ for the radiologists/physicians. Furthermore, they 
may miss some cancers during their  interpretation of CT 
images (55,56). Therefore, a CADe scheme for detection 
of lung nodules in CT images has been investigated as a 
tool for lung cancer screening. Figure 6 shows an example 
of CADe outputs on a CT image of the lungs. A CADe 
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scheme detected a lung nodule correctly with an FP which 
was a branch of the lung vessels.

CADe of lung nodules in thoracic CT

In 1994, Giger et al. (57) developed a CADe scheme for 
detection of lung nodules in CT based on comparison of 
geometric features. They applied their CADe scheme to 
a database of thick-slice diagnostic CT scans of 8 patients 
with 47 nodules. They achieved a sensitivity of 94% with 
1.25 FPs per case. In 1999, Armato et al. (28,58) extended 
the method to include 3D feature analysis, a rule-based 
scheme, and LDA for classification. They tested their CADe 
scheme with a database of thick-slice (10 mm) diagnostic 
CT scans of 43 patients with 171 nodules. They achieved a 
sensitivity of 70% with 42.2 FPs per case in a leave-one-out 
cross-validation test. Gurcan et al. (59) employed a similar 
approach, i.e., a rule-based scheme based on 2D and 3D 
features, followed by LDA for classification. They achieved 
a sensitivity of 84% with 74.4 FPs per case for a database of 
thick-slice (2.5-5 mm, mostly 5 mm) diagnostic CT scans 
of 34 patients with 63 nodules in a leave-one-out test. Lee 
et al. (60) employed a simpler approach which is a rule-
based scheme based on 13 features for classification. They 
achieved a sensitivity of 72% with 30.6 FPs per case for a 
database of thick-slice (10 mm) diagnostic CT scans of 20 
patients with 98 nodules. 

Suzuki et al. (26) developed a pixel-based machine-
learning technique called an MTANN for reduction of a 
single source of FPs and a multiple MTANN scheme for 
reduction of multiple sources of FPs that had not been 
removed by LDA. They achieved a sensitivity of 80.3% 
with 4.8 FPs per case for a database of thick-slice (10 mm) 
screening LDCT scans of 63 patients with 71 nodules with 
solid, part-solid, and non-solid patterns, including 66 cancers 
in a validation test. This MTANN approach did not require 
a large number of training cases: the MTANN was able to 
be trained with 10 positive and 10 negative cases (61-63), 
whereas feature-based classifiers generally require 400-800 
training cases (61-63). Arimura et al. (27) employed a rule-
based scheme followed by LDA or by the MTANN (26) for 
classification. They tested their scheme with a database 
of 106 thick-slice (10 mm) screening LDCT scans of 
73 patients with 109 cancers that had solid, part-solid 
and non-solid patterns, and they achieved a sensitivity of 
83% with 5.8 FPs per case in a validation test (or a leave-
one-patient-out test for LDA). Farag et al. (64) developed 
a template-modeling approach that uses level sets for 
classification. They achieved a sensitivity of 93.3% with 
an FP rate of 3.4% for a database of thin-slice (2.5 mm) 
screening LDCT scans of 16 patients with 119 nodules 
and 34 normal patients. Ge et al. (65) incorporated 3D 
gradient field descriptors and ellipsoid features in LDA for 
classification. They employed Wilks’ lambda stepwise feature 
selection for selecting features before the LDA classification. 
They achieved a sensitivity of 80% with 14.7 FPs per case 
for a database of 82 thin-slice (1.0-2.5 mm) CT scans of 56 
patients with 116 solid nodules in a leave-one-patient-out 
test. Matsumoto et al. (66) employed LDA with 8 features 
for classification. They achieved a sensitivity of 90% with 
64.1 FPs per case for a database of thick-slice (5 or 7 mm) 
diagnostic CT scans of 5 patients (4 of which used contrast 
media) with 50 nodules in a leave-one-out test.

Yuan et al. (67) tested a commercially available CADe 
system (ImageChecker CT, LN-1000, by R2 Technology, 
Sunnyvale, CA; Hologic now). They achieved a sensitivity 
of 73% with 3.2 FPs per case for a database of thin-slice 
(1.25 mm) CT scans of 150 patients with 628 nodules in 
an independent test. Pu et al. (68) developed a scoring method 
based on the similarity distance of medial axis-like shapes for 
classification. They achieved a sensitivity of 81.5% with 6.5 FPs 
per case for a database of thin-slice (2.5 mm) screening CT 
scans of 52 patients with 184 nodules, including 16 non-
solid nodules. Retico et al. (69) used a voxel-based neural 
approach (i.e., a class of the MTANN approach) with pixel 

Figure 6 CADe outputs (indicated by circles) on an axial CT slice 
of the lungs. A lung nodule (indicated by an arrow) was detected 
correctly by a CADe scheme with one FP detection (branch of 
lung vessels) on the right
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values in a subvolume as input for classification. They 
obtained sensitivities of 80-85% with 10-13 FPs per case 
for a database of thin-slice (1 mm) screening CT scans of 
39 patients with 102 nodules. Ye et al. (70) used a rule-based 
scheme followed by a weighted SVM for classification. 
They achieved a sensitivity of 90.2% with 8.2 FPs per case 
for a database of thin-slice (1 mm) screening CT scans 
of 54 patients with 118 nodules including 17 non-solid 
nodules in an independent test. Golosio et al. (71) used a 
fixed-topology ANN for classification, and they evaluated 
their CADe scheme with a publicly available database from 
the Lung Image Database Consortium (LIDC) (72). They 
achieved a sensitivity of 79% with 4 FPs per case for a 
database of thin-slice (1.5-3.0 mm) CT scans of 83 patients 
with 148 nodules that one radiologist detected from an 
LIDC database in an independent test. 

Murphy et al. (73) used a k-nearest-neighbor classifier 
with features selected from 135 features for classification. 
They achieved a sensitivity of 80 with 4.2 FPs per case for 
a large database of thin-slice screening CT scans of 813 
patients with 1,525 nodules in an independent test. Tan 
et al. (74) developed a feature-selective classifier based on 
a genetic algorithm and ANNs for classification. They 
achieved a sensitivity of 87.5% with 4 FPs per case for a 
database of thin-slice CT scans of 125 patients with 80 
nodules that 4 radiologists agreed from the LIDC database 
in an independent test. Messay et al. (75) developed a 
sequential forward selection process for selecting the 
optimum features for LDA and quadratic discriminant 
analysis (QDA). They obtained a sensitivity of 83% with 
3 FPs per case for a database of thin-slice CT scans of 
84 patients with 143 nodules from the LIDC database 
in a 7-fold cross-validation test. Riccard et al. (76) used a 
heuristic approach based on geometric features, followed 
by an SVM for classification. They achieved a sensitivity of 
71% with 6.5 FPs per case for a database of thin-slice CT 
scans of 154 patients with 117 nodules that 4 radiologists 
agreed on from the LIDC database in a 2-fold cross-
validation test.

Thus, various approaches have been proposed for CADe 
schemes for lung nodules in CT. Sensitivities for detection 
of lung nodules in CT range from 70% to 95%, with 
from a few to 70 FPs per case. Major sources of FPs are 
various-sized lung vessels. Major sources of false negatives 
are ground glass nodules, nodules attached to vessels, and 
nodules attached to the lung wall (i.e., juxtapleural nodules). 
Ground glass nodules are difficult to detect, because they 
are subtle, of low-contrast, and have ill-defined boundaries. 

The MTANN approach was able to enhance and thus 
detect ground-glass nodules (26). The cause of false 
negatives due to vessel-attached nodules and juxtapleural 
nodules is mis-segmentation and thus inaccurate feature 
calculation. Because the MTANN approach does not 
require segmentation or feature calculation, it was able to 
detect such nodules (26).

CADx of lung nodules in thoracic CT

Although CT has been shown to be sensitive to the detection 
lung nodules, it may be difficult for radiologists to distinguish 
between benign and malignant nodules on LDCT images. 
In a screening program with LDCT in New York, 88% 
(206/233) of suspicious lesions were found to be benign 
on follow-up examinations (50). In a screening program 
in Japan, only 83 (10%) among 819 scans with suspicious 
lesions were diagnosed to be cancer cases (56). According 
to recent findings at the Mayo Clinic, 2,792 (98.6%) of 
2,832 nodules detected by a multidetetor CT were benign, 
and 40 (1.4%) nodules were malignant (52). Thus, a large 
number of benign nodules were found with CT; follow-up 
examinations such as high-resolution CT (HRCT) and/or 
biopsy were performed on these patients. Therefore, CADx 
schemes for distinction between benign and malignant 
nodules in LDCT would be useful for reducing the number 
of “unnecessary” follow-up examinations.

A number of researchers developed CADx schemes 
distinguishing malignant nodules from benign nodules 
automatically and/or determining the likelihood of 
malignancy for the detected nodules. The performance of 
the schemes was generally evaluated by means of receiver-
operating-characteristic (ROC) analysis (77), because this 
task is a two-class classification. The area under the ROC 
curve (AUC) (78) was often used as a performance index. 

In  1999,  McNitt-Gray e t  a l .  (79)  developed a 
classification scheme based on LDA for distinction between 
malignant and benign nodules in HRCT. They achieved 
a correct classification rate of 90.3% for a database of 
17 malignant and 14 benign nodules. Matsuki et al. (80) 
used an ANN with subjective features determined by 
radiologists for classification between 99 malignant and 56 
benign nodules in HRCT and achieved an AUC value of 
0.951. Aoyama et al. (81) used LDA for distinction between 
malignant and benign nodules in thick-slice (10 mm) 
screening LDCT. They achieved an AUC value of 0.846 
for a database of 73 patients with 76 primary cancers and 342 
patients with 413 benign nodules. Mori et al. (82) developed 
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a classification scheme for distinction between malignant and 
benign nodules in contrast-enhanced (CE) CT by using LDA 
with 3 features (i.e., attenuation, shape index, and curvedness 
value). They used a database of thin-slice (2 mm) CE-CT 
scans of 35 malignant and 27 benign nodules for testing 
their CADx scheme. They achieved AUC values of 0.91 and 
1.0 with non-CE CT and CE-CT, respectively, in a leave-
one-out test. 

Shah et al. (83) employed different classifiers such as 
logistic regression and QDA with features selected from 
a group of 31 by using stepwise feature selection based 
on the Akaike information criterion. Their scheme with 
logistic regression achieved an AUC value of 0.92 in the 
distinction between 19 malignant and 16 benign nodules in 
thin-slice CE-CT. Suzuki et al. (84) developed a pixel-based 
machine-learning technique called a multiple MTANN 
scheme for the classification task. They achieved an AUC 
value of 0.88 for thick-slice screening LDCT scans of 73 
patients with 76 primary cancers and 342 patients with 
413 benign nodules. Iwano et al. (85) achieved a sensitivity 
of 76.9% and a specificity of 80% with their scheme 
based on LDA with 2 features in their evaluation of 
HRCT images of 52 malignant and 55 benign nodules. 
Way et al. (86) incorporated nodule surface features into 
their classification based on LDA or an SVM, and they 
achieved an AUC value of 0.857 in the classification of 
124 malignant and 132 benign nodules in 152 patients. 
Chen et al. (87) employed an ANN ensemble to classify 19 
malignant and 13 benign nodules, and they achieved an 
AUC value of 0.915. Lee et al. (88) developed a two-step 
supervised learning scheme combining a genetic algorithm 
with a random subspace method, and they achieved an 
AUC value of 0.889 in the classification between 62 
malignant and 63 benign nodules. 

Thus, various approaches to CADx schemes have been 
proposed. The database size varied in different studies; CT 
scans in the databases included screening LDCT, standard 
diagnostic CT, and HRCT. 

CADe in colonic imaging

Colonic imaging for colorectal cancer detection

Colorectal cancer is the second leading cause of cancer 
deaths in the United States (89). Evidence suggests that 
early detection and removal of polyps (which are precursors 
of colorectal cancer) can reduce the incidence of colorectal 
cancer (90,91). Consequently, the American Cancer 

Society recommends that a person who is at average risk 
for developing colorectal cancer, beginning at age 50, 
should have colorectal cancer screening with examinations 
including optical colonoscopy and CTC. CTC, also 
known as virtual  colonoscopy,  is  a  technique for 
detecting colorectal neoplasms by use of CT scans of the 
colon (92). The diagnostic performance of CTC in detecting 
polyps, however, remains uncertain due to a propensity for 
perceptual errors in the detection of polyps (93). CADe of 
polyps has been investigated in an effort to address this 
issue with CTC (94-96). CADe has the potential to (I) 
increase radiologists’ diagnostic accuracy in the detection 
of polyps, (II) decrease reader variability, and (III) reduce 
radiologists’ interpretation time when CAD is used during 
the primary read (94,95). A number of investigators have 
developed automated or semi-automated CADe schemes 
for the detection of polyps in CTC (33,97-102). Figure 7 
shows an example of a CADe output for detection of polyps 
in an endoluminal view in CTC. A CADe scheme detected 
a polyp correctly.

CADe of polyps in CTC

In 2000, Summers et al. (36) developed a CADe scheme for 
detection of polyps in CTC based on curvature analysis. 
They tested the feasibility of it with simulated polyps. In 
2001, they tested their CADe scheme on 50 actual polyps. 
In 2001, Yoshida et al. (33) developed a CADe scheme 

Figure 7 CADe output (indicated by an arrow) for detection of 
polyps in an endoluminal view in CTC. A polyp (indicated by an 
arrow) was detected correctly by a CADe scheme
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based on curvature analysis called a shape index. They 
tested their CADe scheme on a database of 43 patients 
with 12 polyps. They achieved a by-patient sensitivity of 
100% with 2.0 FPs per case. In 2001, Gokturk et al. (103) 
employed an SVM with histogram input that is used as a 
shape signature for classification. They achieved a by-patient 
(by-polyp) sensitivity of 100% (95%) with a specificity of 
0.69 (0.74) [14.3 FPs/patient (12.0 FPs/patient)] for CTC 
data (2.5-3.0 mm collimation) of 48 patients in either supine 
or prone position, containing 40 polyps (2-15 mm). Näppi et 
al. (104) developed a CADe scheme based on LDA or QDA 
with 54 volumetric features (9 statistics of 6 features). They 
achieved a by-patient (by-polyp) sensitivity of 100% (95%) 
with 2.4 FPs/patient for CTC data (5 mm collimation) of 
40 patients in both supine and prone positions, including 12 
polyps in 11 patients. 

Acar et al. (105) used edge-displacement fields to model 
the changes in consecutive cross-sectional views of CTC 
data and QDA for classification. They achieved a sensitivity 
of 100% (95%) with a specificity of 0.47 (0.56) for CTC 
data (2.5-3.0 mm collimation) of 48 patients in either 
supine or prone position, containing 40 polyps (2-15 mm). 
Jerebko et al. (106) used a multilayer perceptron to classify 
polyp candidates in their CADe scheme and improved the 
performance by incorporating a committee of multilayer 
perceptrons (107) and a committee of SVMs (108). They 
used CTC data (5 mm collimation) of 40 patients in both 
supine and prone positions, including 21 polyps (5-25 mm) 
for evaluating their CADe scheme. They finally achieved 
a sensitivity of 86.7% for larger polyps (≥10 mm) and 75% 
for other polyps with 3 FPs/patient in a independent test. 
Wang et al. (109) developed a classification method based 
on LDA with internal features (geometric, morphologic, 
and textural) of polyps. They achieved a sensitivity of 
100% and 100% for larger polyps (≥10 mm) and other 
polyps with 4 and 6.9 FPs/patient, respectively, for 
CTC data (5 mm collimation) of 153 patients in both 
supine and prone positions, including 61 polyps (4-30 mm) 
in 45 patients. Näppi et al. (110) developed a method for 
false-positive reduction (i.e., classification between lesions 
and non-lesions) based on supine-prone correspondence 
of CTC scans where patients are scanned in the supine 
and prone positions. Näppi et al. (111) also developed 
feature-guided analysis in colon segmentation and feature 
analysis of polyp candidates and compared them with their 
previously developed fuzzy clustering. They were able 
to reduce 70-75% of FPs with their new method, which 
combines both a non-machine-learning-based method and 

a feature-based classifier. 
Suzuki et al. (112) developed a pixel-based machine-

learning technique called a 3D MTANN by extending the 
structure of a 2D MTANN (26) to process 3D volume data 
in CTC. Their CADe scheme was based on a Bayesian 
ANN with texture and geometric features, followed by 
t3D MTANNs. They removed FPs due to rectal tubes by 
using a single 3D MTANN (112) and multiple sources 
of FPs by developing and using a mixture of expert 3D 
MTANNs (35). They achieved a by-polyp (by-patient) 
sensitivity of 96.4% (100%) with 2.1 FPs/patient in a leave-
one-lesion-out cross-validation test of the classification part 
for CTC data (1.25-5 mm collimation) of 73 patients 
in both supine and prone positions, including 28 polyps 
(5-25 mm) in 15 patients. Li et al. (113) developed a 
classification method based on an SVM classifier with 
wavelet-based features. They obtained a sensitivity of 71% 
with 5.4 FPs/patient in a 4-fold cross-validation test of the 
classification part for CTC data of 44 patients containing 
45 polyps (6-9 mm). Wang et al. (114) improved the SVM 
performance by using nonlinear dimensionality reduction 
(i.e., a diffusion map and locally linear embedding). They 
used CTC data (1.25-2.5 mm collimation) of 792 patients 
in both supine and prone positions, including 226 polyps 
(>6 mm) for evaluating their CADe scheme. They achieved 
a sensitivity of 83% for polyps (6-9 mm) with 9 FPs/patient. 

Yao at al. (115) employed a topographic height map for 
calculating features for an SVM classifier. They used a large 
database containing CTC data (1.25-2.5 mm collimation) 
of 792 patients in both supine and prone positions, 
including 226 polyps (>6 mm) for evaluating their CADe 
scheme. They obtained a sensitivity of 93% and 76% for 
larger polyps (≥10 mm) and other polyps with 1.2 and 
3.1 FPs/patient, respectively, in a 10-fold cross-validation 
test of the classification part. Suzuki et al. (116) tested a 
CADe scheme based on a Bayesian ANN with texture and 
geometric features together with MTANNs (i.e., a pixel-
based machine-learning technique). They used CTC data 
(1.25-5 mm collimation) of 24 patients in both supine and 
prone positions, including 23 polyps (6-25 mm) and a mass 
(35 mm), that had been “missed” by radiologists (117) in a 
multicenter clinical trial (118). They achieved a by-polyp 
(by-patient) sensitivity of 96.4% (100%) with 1.1 FPs/
patient in a leave-one-lesion-out cross-validation test of the 
classification part. 

Suzuki et al. (119,120) also improved the efficiency of the 
MTANN approach by incorporating principal-component 
analysis-based and Laplacian eigenmap-based dimension 
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reduction techniques. Xu and Suzuki (121) showed that 
other nonlinear regression models such as support vector 
and nonlinear Gaussian process regression models instead of 
the ANN regression model could be used as the core model 
in the MTANN framework. Zhou et al. (122) developed 
projection features for an SVM classifier. They achieved 
by-polyp sensitivities of 93.1% and 80.6% for larger polyps 
(≥10 mm) and other polyps with 1.9 and 5.2 FPs/patient, 
respectively, for CTC data (1.25-5.0 mm collimation) of 325 
patients in the supine and/or prone positions, including 347 
polyps and masses (5-60 mm). Wang et al. (123) improved 
the performance of a CAD scheme by adding statistical 
curvature features in multiple-kernel learning. They obtained 
a sensitivity of 83% with 5 FPs/patient in a leave-one-out 
cross-validation test of the classification part for a database 
containing CTC data (1.25-2.5 mm collimation) of 66 patients 
in supine and/or prone positions, including 96 polyps. 

Thus, various approaches have been proposed for CADe 
schemes for polyps in CTC. Most of the methods for the 
initial detection of polyp candidates employed morphologic 
analysis, including curvature analysis such as the shape 
index. Curvatures are often calculated by using the Hessian 
matrix. Classifiers used in CADe schemes include LDA, 
QDA, an SVM, and a Bayesian ANN. Sensitivities for 
detection of polyps in CTC range from 70% to 100%, 
with 1 to 30 FPs per case. Major sources of FPs include 
haustral folds, residual stool, rectal tubes, the ileocecal valve, 
and extra-colonic structures such as the small bowel and 
stomach. Existing CADe schemes tend to miss superficially 
elevated neoplasms (often called flat lesions) (124,125). 
Recently, Suzuki et al. developed a CADe scheme for 
detection of superficially elevated neoplasms (126). Detection 
of superficially elevated neoplasms is very important, 
because they are histologically aggressive, and because 
they are often missed by radiologists in CTC as well as by 
gastroenterologists in optical colonoscopy.

Summary

In this paper, CADe and CADx schemes for detection and 
diagnosis of lung nodules in thoracic CT and those for 
detection of polyps in CTC have been reviewed. A CADe 
scheme (i.e., detection of lesions) generally consists of 
four major steps and two optional steps: segmentation of 
the organ of interest, detection of lesion candidates from 
the segmented organ, segmentation and feature analysis 
of the detected lesion candidates, and classification of the 
lesion candidates by use of a classifier with features; and 

optionally, enhancement of lesions and reduction of FPs. 
Feature-based machine learning (or classifier), including 
LDA, QDA, an ANN, a Bayesian ANN, and an SVM, 
was used in the step of the classification of the lesion 
candidates. To improve the performance of CADe schemes 
further, investigators sometimes employ additional steps of 
enhancement of lesions and FP reduction. CADe schemes 
that employ those addition steps tend to yield a high 
performance. Sensitivities for detection of lung nodules in 
CT range from 70% to 95%, with a few to 70 FPs per case. 
On the other hand, sensitivities for detection of polyps in 
CTC range from 70% to 100%, with 1 to 30 FPs per case. 
Thus, the sensitivities of CADe schemes are relatively high, 
but the number of FPs is high-compared to radiologists’ 
performance. Therefore, further improvement in specificity 
is necessary in future research.

A CADx scheme (i.e., diagnosis or characterization of 
detected lesions) generally consists of two major steps, 
which are segmentation and feature analysis of the detected 
lesions and classification of the lesions. CADx schemes 
start from detected (localized) lesions either automatically 
or manually. The major component of CADx schemes is 
classification of lesions by use of a classifier with features. 
The performance of CADx schemes for distinction between 
benign and malignant lung nodules in CT range from AUC 
values of 0.85 to 0.95. Thus, the computer performance is 
relatively high compared to radiologists’ performance. 

I hope that this review will be useful for researchers to 
advance the development of CAD schemes in thoracic and 
colonic imaging as well as for those who want to start the 
development of CAD schemes in other imaging areas.
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