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Background: The current study aimed to develop a deep learning (DL) model for prediction of lymph 
node metastasis (LNM) based on hematoxylin and eosin (HE)-stained histopathological images of 
endometrial cancer (EC). The model was validated using external data.
Methods: A total of 2,104 whole slide image (WSI) from 564 patients with pathologically confirmed LNM 
status were collated from West China Second University Hospital. An artificial intelligence (AI) model was 
built on the multiple instance-learning (MIL) framework for automatic prediction of the probability of LNM 
and its performance compared with “Mayo criteria”. An additional external data source comprising 533 WSI 
was collected from two independent medical institutions to validate the model’s robustness. Heatmaps were 
generated to demonstrate regions of the WSI that made the greatest contributions to the DL network output 
to improve understanding of these processes.
Results: The proposed MIL model achieved an area under the curve (AUC) of 0.938, a sensitivity of 0.830 
and a specificity of 0.911 for LNM prediction to EC. The AUC according to Mayo criteria was 0.666 for 
the same test dataset. For types I, II and mixed EC, AUCs were 0.927, 0.979 and 0.929, respectively. The 
predictive performance of the MIL model also achieved an AUC of 0.921 for early staging. In external 
validation data, the proposed model achieved an AUC of 0.770, a sensitivity of 0.814 and a specificity of 0.520 
for LNM prediction. AUCs were 0.783 for type I and 0.818 for early stage EC. 
Conclusions: The proposed MIL model generated from histopathological images of EC has a much better 
LNM predictive performance than that of Mayo criteria. A novel DL-based biomarker trained on different 
histological subtypes of EC slides was revealed to predict metastatic status with improved accuracy, especially 
for early staging patients. The current study proves the concept of MIL-based prediction of LNM in EC for 
the first time, and brought a new sight to improve the accuracy of LNM prediction. Multicenter prospective 
validation data is required to further confirm the clinical utility.
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Introduction

Endometrial cancer (EC) is a common gynecological 
malignant tumor. In the past 20 years, the incidence of 
EC has shown an upward trend worldwide, becoming the 
most prevalent malignant tumor of the female reproductive 
system in some developed countries (1,2). Lymph node 
metastasis (LNM) is a common complication of EC and an 
independent risk factor that affects postoperative recurrence 
and prognosis. Clinical studies have shown that EC patients 
with LNM often have a poor prognosis (3,4). Indeed, 
patients without LNM have a 5-year overall survival (OS) 
rate of 96% which drops to 57% in the presence of systemic 
pelvic LNM and 49.4% with para-aortic LNM (3), and 
recurrence rates are as high as 60% (4). Therefore, accurate 
prediction of the presence of LNM improves prognosis 
evaluation and a risk prediction model has great clinical 
significance.

According to the National Comprehensive Cancer 
Network (NCCN) guidelines, “Mayo standards” and 
previous LNM prediction studies, CA125 preoperative 
serum level, tumor pathological type, size, deep muscle 
invasion, cervical invasion, adnexa invasion, vascular cancer 
thrombus and ascites are considered to be the main risk 
factors for LNM in EC (5,6). However, different models 
identify different risk factors, making unified clinical 
practice standards for LNM risk stratification difficult. In 
evaluator errors and inter-observer disagreements among 
pathologists lead to false negative or positive results. Both 
problems are fundamental and may affect individualized 
clinical decisions. Preoperative medical images, such as 
computed tomography (CT) and magnetic resonance 
imaging (MRI), are the most common current approaches 
for LNM assessment, especially enhanced pelvic MRI which 
is the preferred method from 2018 NCCN guidelines (5). 
However, a meta-analysis showed a sensitivity of 0.68, 
specificity of 0.96, AUC of 0.82 and accuracy of 0.75 for 
18F-fluorodeoxyglucose-positron emission tomography 
(FDG-PET)  or  PET/CT in  LNM preopera t i ve  
prediction (7). Economic factors also restrict patients’ access 
to 18F-FDG-PET or PET/CT.

T h e  h e m a t o x y l i n  a n d  e o s i n  ( H E ) - s t a i n e d 
histopathological images which show tumor tissue 
structure and cellular characteristics are considered the 

“gold standard” for tumor diagnosis, generating richer 
information with multi-dimensional features than MRI/
CT radiological or ultrasound images. However, since 
the derivation of information from pathological images 
has traditionally relied on subjective evaluation by 
pathologists, exploitation of the complexity and richness 
of the images has been difficult. The traditional method 
of artificial description has limited generation of a unified 
standard for risk prediction, diagnosis and treatment 
plans. Artificial intelligence (AI) technologies may offer 
solutions to this and other issues (8,9). AI models trained 
to interpret digital pathology imaging have been shown to 
predict specific clinical events, such as treatment response, 
prognosis assessment, classification, grading or scoring 
of different cancers (10-15) and detection of lymph node 
metastases (16). Takamatsu used Image J, a deep learning 
(DL) algorithm, to predict risk of preoperative LNM from 
pathological images of T1 colorectal cancer by extracting 
morphologic parameters from whole-slide images (WSI). 
The resulting areas under the curve (AUCs) were 0.938 
for DL model and 0.826 for the conventional method (17),  
illustrating the successful combination of DL and 
pathological tissue morphology images for LNM prediction. 
However, to the best of our knowledge, in-depth analysis of 
histopathological images giving the essential characteristics 
of EC for DL has not been conducted. 

We argue that AI has utility for predicting LNM in EC 
from analysis of histopathological images. The current 
study employed a DL neural network algorithm to fulfil 
a binary classification task and predict the presence or 
absence of LNM in EC. The model was verified using an 
external cohort. EC represents a group of heterogeneous 
tumors with morphological and histological differences and 
curettage specimens cannot comprehensively reflect tumor 
characteristics. Thus, pathological images of EC obtained 
from paraffin-embedded tissues after surgical resection was 
sued during the current study, in order to best observe the 
morphological characteristics of cancer tissue and obtain 
the most suggestive morphology information for LNM. DL 
features that proved to be most salient to LNM prediction 
are highlighted to inform pathologists an intuitive 
interpretation, and give transparency to the development of 
the multiple instance-learning (MIL) model. We present the 
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following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-220/rc).

Methods

Study population and cases

Data of EC patients were retrospectively collated from West 
China Second University Hospital, Sichuan University 
with the following inclusion criteria: (I) patients underwent 
total hysterectomy (or extensive total hysterectomy), 
bilateral adnexectomy and pelvic lymphadenectomy; (II) 
no history of other malignant tumors; (III) no hormone 
therapy, radiotherapy or chemotherapy before surgery; 
(IV) diagnosed for the first time. The HE-stained sections 
from all cases were reviewed by double-blind microscopy 
observation by two senior attending physicians with 
experience in pathological clinical diagnosis. The status 
of lymph vascular space invasion (LVSI) and LNM was 
confirmed. The diagnosis of histological type was based on 
the 2020 World Health Organization (WHO) Classification 
of Tumors of the Breast and Female Genital Organs. Tumor 
staging and surgical pathological staging were undertaken 
according to the International Federation of Gynecology and 
Obstetrics (FIGO) Surgical-pathological staging standard. 
A total of 564 patients diagnosed with EC were enrolled of 
whom 230 had LNM (LNM+) and 334 did not (LNM−). 
External validation data were obtained by applying the 
same inclusion criteria to 261 patients, 114 LNM+ and  
147 LNM−, from two independent medical institutions, 
Qingdao University, Affiliated Yantai Yu Huang Ding 
Hospital, Beijing Maternal and Child Health Care Hospital. 
The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This study was approved by 
our institutional review board. Informed consent was waived. 

Slides and image acquisition

All slides were prepared by staining a 4-µm formalin-
fixed paraffin-embedded section with HE; 1,017 LNM+ 
and 1,087 LNM− slides composed the internal dataset. 
In total, 2,104 slides were digitized through the following 
three types of digital slice scanning: The Hamamatsu 
Optics NanoZoomer 2.0 HT digital slice scanner, the Una 
Technology PRECICE 600 automatic digital slice scanner 
and the 3D HISTECH Panoramic SCAN 150 digital slice 
scanner; 388 LNM+ and 145 LNM− slides composed the 

external dataset and all 533 slides were digitized through 
3D HISTECH Panoramic SCAN 150 digital slice scanner 
and ScanScope Aperio CS2 digital slice scanner (Leica 
Biosystems). Each WSI was given an LNM+ or LNM− 
label based on the results of final pathological diagnosis. 

Data preparation

Tumor cells and glands were manually delineated 
us ing  the  ASAP so f tware  ( ver s ion  1 .9 ,  h t tp s : / /
computationalpathologygroup.github.io/ASAP/) at ×20 
magnification (0.5 µm/pixel) by two expert pathologists. 
In this work, the pathologists first manually annotated the 
cancer regions on each WSI and used them as regions of 
interest (ROIs) for the following processing step. The ROIs 
were divided into a set of patches with a size of 512×512 
pixels. Patches with less than 20% overlap with the ROIs 
were excluded before further analysis.

DL model

The framework of the proposed MIL model is illustrated 
in Figure 1, which consists of three components, i.e., 
instance-level (tile-level) feature extraction, instance-
level (tile-level) feature selection, and bag-level (WSI-
level) representation generation (18). The details of the 
components are illustrated in the remainder of this section. 
In the formalization of the MIL, each WSI is regarded as 
a bag and the patches tiled from the WSI are regarded as 
instances inside the bag. During the training phase, we 
chose to use the categorical cross-entropy loss, which is 
defined as:
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1 logδ
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= − = =∑ ∑N C
i ii c

L y c P y c
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 [1]

where N denotes the number of samples and C represents 
the number of categories. The term δ (yi =c) is the indicator 
function of the ith observation belonging to the cth category. 
P (yi =c) is the predicted probability by the model.

Instance-level feature extractor
In our AI system, we employed the ResNet-18 model (19)  
as the instance-level feature extractor, which aimed at 
automatically learning useful features from patches. From 
another perspective, this component played the role of 
information compression, and each inputted patch was 
transformed into a low-dimensional feature space, which 
facilitated the following classification stage. In this work, we 
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used a pretrained ResNet-18 model (trained on ImageNet) 
after removing the final fully connected layer to extract 
distinguishable features.

Feature selection strategy
The feature se lect ion procedure chose the most 
discriminative instance-level features for generating the bag 
representation. Removing redundant or irrelevant features 
can also simplify the following learning task. Unlike most 
feature selection problems where there are feature-label 
pairs, in our task, the instance-level feature has no associated 
label and is assigned a bag-level label. We needed to build 
a bridge between the extracted instance feature and the 
bag label. We utilized the histogram as the bridge and the 
maximum mean discrepancy (20) as the criterion to evaluate 
the feature importance. For instance, when evaluating the 
k-th feature, feature k was chosen as the representation of 
the instance. A histogram of this feature was calculated in 
each bag, and then these histograms were utilized as the 
representations of a bag. After that, the maximum mean 
discrepancy (21) distance was calculated between positive 
bags and negative bags using these bag representations. The 
feature was regarded as discriminative if the maximum mean 
discrepancy distance was larger than a certain threshold (22).

WSI-level representation generator
The WSI-level representation generator in our pipeline 
generates the bag representation by integrating the 
extracted and selected most discriminative instance-level 

features. The attention-based deep MIL method (18) 
was applied, which made the WSI-level representation 
generator able to adaptively adjust the contribution of 
each tiled patch for the final decision. After iteratively and 
incrementally adjusting the attention weights on the feature 
of each patch during the training phase, the attention-based 
operator increased the contribution of the instances that 
were more related to the corresponding bag label, and vice 
versa. After obtaining the WSI-level representation of each 
pathological slide, a multilayer perceptron was utilized to 
map the representation to LNM prediction possibility. 

Network training setting
We implemented the MIL system including both ResNet-18 
and the attention-based MIL network with Python and 
PyTorch (22) framework. The network was trained with the 
Adam optimizer (9) with the learning rate of 10−4 under the 
supervision of the categorical cross-entropy loss. The early-
stop strategy was leveraged with patience of 20 epoch to 
prevent over-fitting. To address the class imbalance problem 
during the bag-level classification stage, we employed the 
‘weighted random sampler’ strategy (22) to prepare each 
training batch. The dataset is randomly split in the ratio of 
6:2:2, that is, 1,264 WSIs in the training set, 420 WSIs in 
the validation set, and 420 WSIs in the testing set.

Model interpretability and feature visualization

Tiles were assigned an LNM probability score reflecting 

ResNet-18

Multi instance learning modelWSI sampled from biopsy
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Figure 1 The overall framework of the MIL-based AI system for predicting LNM. The MIL method consists of three components 
including instance-level feature extraction, instance-level feature selection, and bag-level representation generation and classification. 
ResNet-18 works as an instance-level feature extractor. The feature selection procedure selects discriminative instance-level features. The 
attention-based deep MIL model is used to synthesize instance-level features for generating bag representations to perform the LNM 
prediction. WSI, whole slide image; LNM, lymph node metastasis; MIL, multiple instance-learning. 
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usefulness for LNM prediction. Heatmaps were generated 
from LNM probability scores to reflect the determination 
of each subregion of the WSI. 

Baseline model based on “Mayo criteria”

Patients were divided into low-risk and high-risk groups of 
LNM, according to the widely accepted “Mayo criteria” (6).  
Mayo criteria recommend lymph node dissection for the 
following patients: (I) grade 1 or grade 2 endometrioid 
adenocarcinoma ≥2 cm and >50% myometrial invasion; (II) 
any grade 3 endometrioid adenocarcinoma and (III) all non-
endometrioid adenocarcinomas (serous, clear cell, mixed, 
carcinosarcoma). Patients satisfying one or more of these 
conditions were considered to be with the high-risk factors 
of LNM. Mayo criteria were also used for the baseline 
feature model to predict LNM risk. 

Statistical analysis

The statistical analyses were performed using SPSS 22.0 
software. Age and tumor size were considered as numeric 
variables. Histological type, histological grade, depth of 
myometrial invasion and presence of LVSI were considered 
as categorical variables. Clinicopathological characteristics 
between cohorts were compared using Pearson’s χ2 or Fisher’s 
exact test. The AUC of the receiver operating characteristic 
(ROC) curves from cross-validation were calculated and 
plotted using “scikit-learn” in python to assess model 
performance. The optimal cut-off point of the ROC curves 
was determined by referring to the Youden index. AUC 
ranges from 0 to 1 and a model is considered to have a poor 
performance with a value of 0.5–0.6, fair 0.6–0.7 or good >0.  
Other standard metrics, sensitivity [true positive rate (TPR)], 
false positive rate (FPR), specificity, accuracy, recall-score, 
F1-score and positive predictive value (PPV)/negative 
predictive value (NPV) were also employed. The confidence 
intervals (CI) were calculated using the bootstrap method. All 
statistical tests were two sided and P values of less than 0.05 
were considered to indicate statistical significance. 

Results 

Clinicopathological characteristics of EC patients

According to the inclusion and exclusion criteria, a total of 
564 eligible patients were enrolled in this study; 230 patients 
were diagnosed with LNM+ EC of whom 114 (49.56%) 

cases were type I, 52 (22.61%) type II and 64 (27.83%) 
mixed type. A total of 143 (62.17%) cases were poorly 
differentiated while 87 (37.83%) cases were moderately-
well differentiated. A total of 62 (26.96%), 79 (34.35%), 
68 (29.56%), and 21 (9.13%) patients were diagnosed with 
FIGO stages I–IV, respectively; 334 patients were diagnosed 
with LNM− EC of whom 274 (82.03%) cases were type I,  
19 (5.69%) type II and 41 (12.28%) mixed type; 112 
(33.53%) cases were poorly differentiated and 222 (66.47%) 
cases were moderately-well differentiated. A total of 247 
(73.95%), 61 (18.26%), 25 (7.49%) and 1 (0.30%) patients 
were diagnosed with FIGO stages I–IV, respectively. There 
were 336 patients in the training cohort and 228 patients  
in the independent test cohort after all WSIs were 
randomly divided into 8 (6+2):2. No significant differences 
in detailed characteristics between the training and 
independent test cohorts were present (all P>0.05; Table 1).  
Clinicopathological characteristics of EC patients in the 
external validation cohort are shown in Table S1.

The predictive performance of the “Mayo criteria”

Of 564 EC patients who underwent pelvic lymphadenectomy, 
369 (65.43%) met the Mayo criteria for lymph node 
resection while the remaining 195 (34.57%) patients had 
comprehensive evaluations of clinical manifestations, 
pathological characteristics and other aspects; 195 (84.78%) 
of the 230 patients with LNM met the Mayo criteria, 
indicating that 35 (15.22%) belonged to the low-risk group 
for LNM prediction based on Mayo criteria. However, these 
35 patients were found to have LNM after pathological 
diagnosis and 16 patients were FIGO I stage with 8 
being grade 1 or grade 2 endometrioid adenocarcinoma  
<2 cm and <50% myometrial invasion; 174 (52.10%) of the  
334 patients without LNM had high-risk LNM factors but 
no metastases were confirmed following a final lymph node 
examination. Therefore, 15.22% patients in the low-risk 
group according to existing Mayo criteria for LNM risk 
stratification will progress to develop LNM. Some patients 
were also exposed to unnecessary lymphadenectomy, 
corresponding to 52.10% in our comparative study. Thus, 
two rows and two columns were used to represent predicted 
and real values. The AUC was 0.666, TPR 0.878, FPR 
0.545, accuracy score 0.635, PPV 0.544, NPV 0.833, F1_
score 0.672 for LNM prediction in the test dataset. The 
finally clinical practices have shown that 37.97% of EC 
patients were exposed to unnecessary lymphadenectomy 
and approximatively 17.14% with a low-risk classification 

https://cdn.amegroups.cn/static/public/QIMS-22-220-supplementary.pdf
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Table 1 Patient and tumor characteristics for the training and test cohorts

Characteristics All patients (n=564) Training (n=336), n (%) Test (n=228), n (%) P

Age (years), mean ± SD 53.90±8.89 54.46±9.29 53.08±8.23 0.070

Tumor size (cm), mean ± SD 3.55±1.78 3.39±1.58 3.79±2.01 0.091

Tumor histological subtype 0.158

I 388 237 (70.54) 151 (66.23)

II 71 45 (13.39) 26 (11.40)

Mixed (I + II) 105 54 (16.07) 51 (22.37)

Tumor grade (differentiation) 0.062

1–2 (well/moderate differentiation) 309 197 (58.63) 112 (49.12)

3 (poor differentiation) 255 139 (41.37) 116 (50.88)

Depth of tumor invasion 0.340

<1/2 258 166 (49.40) 92 (40.35)

≥1/2 306 170 (50.60) 136 (59.65)

Lymph vascular space invasion 0.739

Yes 297 175 (52.08) 122 (53.51)

No 267 161 (47.92) 106 (46.49)

Lymph node metastasis 0.381

Yes 230 132 (39.29) 98 (42.98)

No 334 204 (60.71) 130 (57.02)

FIGO staging

I 309 186 (55.36) 123 (53.95) 0.297

II 140 86 (25.60) 54 (23.68)

III 93 53 (15.77) 40 (17.54)

IV 22 11 (3.27) 11 (4.82)

SD, standard deviation; FIGO, International Federation of Gynecology and Obstetrics.

progressed to develop LNM in the test cohort. The 
statistical results are summarized in Table 2, and the ROC 
curve is shown in Figure 2A.

Predictive performance of the MIL model based on HE-
stained images for the internal dataset

The training process was stopped after 30 epochs with 
33,540 iterations and the best model, evaluated after each 
epoch, saved. After training, 420 test sets of WSIs were 
used to give an unbiased evaluation of the model. The mean 
AUC was 0.938 (95% CI: 91.3–96.2) on the WSI level, 
mean sensitivity 0.830 (95% CI: 75.9–88.9), mean specificity 

0.911 (95% CI: 85.9–94.8), mean PPV 0.881 (95% CI: 
81.5–92.3), mean NPV 0.872 (95% CI: 81.3–92.4) for the 
internal test data (Figure 2B, Figure 3 and Table 2). Clinical 
analysis showed that 21.51% of EC patients were exposed to 
unnecessary lymphadenectomy and approximatively 11.11% 
with low-risk classification progressed to develop LNM. 
Predictive performances for different histological subtypes 
[type I, type II and mixed (I and II) type] and different 
FIGO stages on the WSI level are presented in Table 3, 
Table 4 and Figure 4A-4F. For type I EC (endometrioid 
adenocarcinoma as the main histological type and mucinous 
adenocarcinoma), the mean AUC was 0.927 on the WSI 
level and 0.979 for type II and 0.929 for mixed type. Mean 
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Table 2 Performance comparison of the proposed MIL method and Mayo criteria in LNM in test dataset, and the performance in external 
dataset

Standard metrics
Internal test dataset External validation dataset

Mayo criteria MIL-model MIL-model

AUC 0.666 0.938 0.770

Accuracy 0.635 0.847 0.630

Recall 0.878 0.830 0.814

Precision (PPV) 0.544 0.881 0.706

F1_score 0.672 0.807 0.756

Sensitivity (TPR) 0.878 0.830 0.814

Specificity 0.455 0.911 0.520

FPR 0.545 0.143 0.479

NPV 0.833 0.872 0.665

MIL, multiple instance-learning; LNM, lymph node metastasis; AUC, area under the curve; PPV, positive predictive value; TPR, true 
positive rate; FPR, false positive rate; NPV, negative predictive value.
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Figure 2 The ROC curves for predicting LNM in EC of MIL-model and Mayo criteria. (A) AUC level was 0.666 of Mayo-model. (B) AUC 
level was 0.938 of MIL-model. AUC, area under the curve; ROC, receiver operating characteristic; LNM, lymph node metastasis; EC, 
endometrial cancer; MIL, multiple instance-learning.
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Figure 3 The distribution graph of predicted LNM possibility of our proposed MIL-model on WSI level. (A) The sensitivity and specificity 
of predicted LNM possibility. (B) Histogram distribution of predicted LNM possibility. LNM, lymph node metastasis; MIL, multiple 
instance-learning; WSI, whole slide image. 
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Table 3 Performance comparison of the proposed MIL method between different histological subtypes in test datasets and external validation 
dataset

Standard metrics Histological subtype: I (%) (95% CI) Histological subtype: II (%) (95% CI) Histological subtype: mixed (%) (95% CI)

Internal test dataset (420 WSIs from 228 patients)

AUC 92.7 (89.8–95.7) 97.9 (94.6–100.0) 92.9 (88.1–97.7)

Sensitivity 80.2 (70.6–87.8) 97.0 (84.2–99.9) 95.3 (86.9–99.0)

Specificity 92.2 (88.4–95.0) 95.1 (83.5–99.4) 80.4 (66.1–90.6)

PPV 76.8 (68.2–85.5) 94.1 (80.6–99.8) 87.1 (76.3–97.1)

NPV 93.5 (89.5–95.9) 97.5 (86.7–99.7) 92.5 (80.1–96.7)

External validation dataset (533 WSIs from 261 patients)

AUC 78.3 (74.1–82.5) 76.2 (59.3–93.1) 63.6 (48.3–79.0)

Sensitivity 60.8 (54.5–66.8) 62.5 (40.6–81.2) 42.4 (25.5–60.8)

Specificity 84.3 (78.4–89.1) 100.0 (59.0–NaN) 94.1 (71.3–99.9)

PPV 83.3 (77.2–86.7) 100.0 (75.5–100.0) 93.3 (68.5–98.7)

NPV 62.4 (56.2–71.6) 43.8 (24.2–NaN) 45.7 (28.1–97.2)

Histological subtype I: endometrioid adenocarcinoma as the main histological type and mucinous adenocarcinoma; Histological subtype 
II: non endometrioid adenocarcinoma; Mixed subtype: composing of subtype I + II, where at least one component is either serous or clear 
cell. MIL, multiple instance-learning; WSI, whole slide image; AUC, area under the curve; PPV, positive predictive value; NPV, negative 
predictive value; NaN, not a number. 

Table 4 Performance comparison of the proposed MIL method of different FIGO stages in test dataset and external validation dataset

Standard metrics FIGO stage: I (%) (95% CI) FIGO stage: II (%) (95% CI) FIGO stage: III (%) (95% CI) FIGO stage: IV (%)

Internal test dataset (420 WSIs from 228 patients)

AUC 92.1 (86.8–97.5) 93.8 (90.2–97.4) 95.5 (90.1–100.0) –

Sensitivity 90.6 (79.3–96.9) 80.3 (68.7–89.1) 94.0 (83.5–98.7) 78.9

Specificity 87.6 (82.8–91.4) 94.7 (87.1–98.5) 95.3 (84.2–99.4) –

PPV 60.8 (51.4–83.3) 93.0 (83.2–96.4) 95.9 (85.9–99.2) 99.9

NPV 97.8 (94.6–98.5) 84.7 (74.9–95.4) 93.2 (81.5–99.1) –

External validation dataset (533 WSIs from 261 patients)

AUC 81.8 (75.8–85.8) 85.4 (77.6–93.2) 66.4 (56.9–76.1) –

Sensitivity 69.2 (57.8–79.2) 80.6 (71.8–87.5) 50.0 (39.7–60.3) –

Specificity 82.2 (75.2–88.0) 78.6 (59.0–91.7) 83.3 (67.2–93.6) –

PPV 66.7 (56.7–77.2) 93.5 (85.1–96.1) 89.1 (77.0–92.5) –

NPV 83.9 (76.0–89.1) 51.2 (39.2–76.0) 38.0 (28.8–64.3) –

FIGO stage I: tumour confined to the corpus uterus; FIGO stage II: tumour invades cervical stroma, but does not extend beyond the 
uterus; FIGO stage III: local and/or regional spread as specified here: the serosa of the corpus uterus or adnexae, vaginal or parametrial 
involvement, pelvic or para-aortic lymph nodes; FIGO stage IV: tumour invades bladder/bowel mucosa, and/or metastasizes remotely. 
MIL, multiple instance-learning; FIGO, International Federation of Gynecology and Obstetrics; CI, confidence interval; WSI, whole slide 
image; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value. 
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AUCs were 0.921, 0.938 and 0.955 for FIGO stages I, 
II and III on the WSI level. The PPV reached 0.999 for 
FIGO stage IV, perhaps because 95.45% (21/22) of stage IV 
patients are positive for LNM. The encouraging AUC value 
of the image model of 0.938, higher than the Mayo model 
at 0.666, indicated better LNM predictive performance for 
the AI model.

Predictive performance of the MIL model based on HE-
stained images in external validation dataset

The proposed MIL model achieved an AUC of 0.770, a 
sensitivity of 0.814, a specificity of 0.520, a PPV of 0.706 
and an NPV of 0.665 in the external validation dataset 
(Figure 5 and Table 2). Mean AUCs were 0.783 for type 
I, 0.762 for type II and 0.636 for mixed type on the WSI 
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Figure 4 The performance comparison of the proposed MIL method between different histological subtypes and FIGO stages in internal 
cohort. Different histological subtypes: (A-C). Different FIGO stages: (D-F). More detailed metrics can be found in Table 3 and Table 4. 
AUC, area under the curve; FIGO, International Federation of Gynecology and Obstetrics; MIL, multiple instance-learning. 
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Figure 5 The ROC curves for predicting LNM of EC in external 
datasets based on MIL-model. AUC level was 0.770 in external 
datasets based on our proposed MIL-model. AUC, area under the 
curve; ROC, receiver operating characteristic; LNM, lymph node 
metastasis; EC, endometrial cancer; MIL, multiple instance-learning. 
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Figure 6 The performance comparison of the proposed MIL method between different histological subtypes and FIGO stages in external 
cohort. Different histological subtypes: (A-C). Different FIGO stages: (D-F). More detailed metrics can be found in Table 3 and Table 4. 
AUC, area under the curve; FIGO, International Federation of Gynecology and Obstetrics; MIL, multiple instance-learning. 

level (Figure 6A-6C and Table 3). Mean AUCs were 0.818, 
0.854, 0.664 for FIGO stages I, II, and III on the WSI level 
(Figure 6D-6F). All stage IV cases included in the external 
validation dataset were positive for LNM, so that no 
analysis of predicted results was possible. In summary, the 
predictive performance of the proposed MIL model was not 
as good for the external as for the internal cohort. 

Interpretation of predictive performance of the MIL model

The LNM prediction probability distribution in each 
WSI was evaluated, with LNM probability of each 
subregion (tile) calculated and visualized, to illustrate the 
decision-mechanism of the model (Figure 7). Tiles with 
high (near 1) and low (near 0) LNM probability scores 
had distinguishable features to support LNM prediction. 
Enhanced texture, voluminous extracellular mucin, cleft-
like structures and elongated angular glandular lumen were 
“histomics” features with significant alterations between 
LNM+ and LNM− WSIs, indicating an increased rate of 
lymph node involvement. These features were consistent 

with previous studies (23-25) and provide an interpretative 
reliability to the predictive results of the AI-model.

Discussion

At present, the use of cutting-edge DL technology to 
predict the preoperative LNM status of tumors, including 
gastric cancer (26,27), breast cancer (28), colorectal 
cancer (29), lung cancer (30), urothelial cancer (31) and 
EC (7,32), usually relies on the readily-available MRI/
CT and ultrasound imaging. However, WSI technology 
and advances in machine learning algorithms have enabled 
digital transformation of pathological images for cancer 
research and sparked a global trend. The current study 
applied a DL neural network algorithm to the binary 
classification task of LNM+/LNM− in EC, based on a 
comprehensive analysis of postoperative pathological 
specimens on the WSI-level. Prediction efficiency was 
validated in external samples. The MIL DL model of LNM 
prediction achieved AUCs of 0.938 and 0.770 in the internal 
and external cohorts, regardless of the specific histological 
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EC subtype. In addition, a heat map was generated to 
visualize the contributions made by regions on the WSI to 
the LNM diagnosis and to explain the end-to-end process 
of the MIL model. The DL model has predictive utility for 
specimens of endometrioid and non-endometrioid cancer 
with relatively intact structure obtained before or during 
surgery. The pathological images also have the potential to 
be used as an AI-based biomarker for LNM prediction. 

Clinical experience has illustrated that the existing 
LNM risk stratification criteria, including the Mayo 
criteria and NCCN guidelines, will expose 75% of EC 
patients to unnecessary lymphadenectomy (33) and about 
10% of low-risk and 15% of early-stage ECs will progress 
to LNM (34). In our internal cohort, 52.10% of EC 
patients underwent unnecessary lymphadenectomy and 
approximatively 15.22% of those with low-risk developed 
LNM when assessed according to the accepted “Mayo 
criteria”. These observations are basically consistent with 

the results of a recent prospective multicenter study (35). 
The current analysis reveals two possible explanations: 
(I) racial differences and (II) existing NCCN guidelines 
and Mayo standards rely on the professional skills and 
subjective judgments of pathologists, making it difficult to 
achieve unified quality control. Such clinical phenomenon 
also prompts us to re-understand the existing criteria, and 
explores more accurate morphological characteristics of 
pathological images to predict the LNM risk. The current 
AI model relies on HE-stained histopathological images 
producing more accurate prediction with a mean AUC 
of 0.938, higher than that based on Mayo criteria. Thus, 
machine learning may be superior to human subjective 
experience and is more accurate, objective, stable and highly 
repeatable. 

Most of the existing research to produce LNM 
prediction models by comprehensive analysis  the 
clinicopathological features and laboratory examination 

Figure 7 Visualization of the LNM probability of the subregions (tiles) of sample WSIs based on HE-stained histopathological images (×10). 
The example of LNM probability heatmaps showing the probability distribution on WSIs. The colors reflect LNM probabilities. LNM, 
lymph node metastasis; WSI, whole slide image; HE, hematoxylin and eosin. 
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data, such as nomogram and Bayesian model, has focused on 
type I EC or endometrioid adenocarcinoma (36-38). Such 
approaches are accurate but often ignore the heterogeneity 
of EC and do not apply to type II EC or other histological 
subtypes. The current study included a variety of 
histological subtypes of EC, including endometrioid 
adenocarcinoma, serous adenocarcinoma (adenoid serous 
adenocarcinoma and papillary serous adenocarcinoma), 
clear cell adenocarcinoma, mucinous adenocarcinoma, 
mixed endometrial  adenocarcinoma, mesonephric 
adenocarcinoma and adeno-squamous carcinoma. HE-
stained histopathological images on WSI are thus more 
complicated and extraction of image features for consensus 
among different observers is more difficult. Fortunately, 
MIL technology enables fast and objective analysis by 
integrating recurring patterns from complex images (39). 
The resulting AUC for prediction of LNM reached 0.938 
without distinguishing specific histological types. LNM 
prediction rates were 0.927, 0.979 and 0.929 for type I,  
type II and mixed type based on pathomorphological 
diagnosis (Table 3). LNM prediction rates were 0.783, 0.762 
and 0.636 for type I, II and mixed type from the external 
validation dataset. The current MIL model performed less 
well for the external cohort than the internal, but was still 
superior to predictions based on Mayo criteria, regardless 
of histological subtype. Thus, even when the specific 
histological subtype was unclear before or during surgical 
operation, a reliable prediction result could be reached. For 
low risk early FIGO (FIGO I), mean AUCs were 0.921 and 
0.818 in internal and external datasets, potentially enabling 
more accurate individualized LNM stratification in early 
stage EC. 

The lower predictive performance in the external 
dataset may be due to the following reasons: (I) pathology 
technicians from different medical institutions may 
prepare specimens with different slice thicknesses, staining 
intensities and uniformities. (II) Differences in automatic 
dyeing machine models do not completely overcome this 
problem. (III) Definition and resolution of the digitized 
WSI images are different due to variations in scanner 
models. However, expansion of the sample size and 
continued optimization may improve future performance.

Hierarchical clustering enabled heatmap visualization 
of each tumor region in the WSI and its contribution to 
LNM prediction with the heatmap mapped to the original 
image by the jet color space. Tiles were assigned an LNM 
probability score to measure the contribution to LNM 
prediction, red subregions represented a higher and blue a 

lower contribution to LNM. Figure 7 shows the “histomics” 
features with significant alterations between LNM+ and 
LNM− patients in top-value tiles, enhanced texture, 
voluminous extracellular mucin, cleft-like structures and 
elongated angular glandular lumen, which distinguish 
LNM+ from LNM− patients well. These suggested features 
from the red subregions appear to be highly consistent 
with pathologists’ experience and previous studies (23-25). 
Feature visualization demonstrated that output results of 
our model have realistic interpretability. 

We acknowledge some limitations to the current study. 
Firstly, digital pathology images from paraffin tissues after 
surgical resection of EC patients were used retrospectively. 
Considering that predictions mainly depend on preoperative 
curettage specimens, preoperative data from multiple 
centers are indeed required to further confirm the utility of 
such DL models in clinical practice. Secondly, although a 
variety of histological EC subtypes, including endometrioid 
and non-endometrioid carcinoma were analyzed, less 
common subtypes, such as carcinosarcoma, was not 
collected in the current study. Thirdly, the inclusion of 
additional features, such as CA125 and CA19-9 expression, 
ascites and other risk factors that are related to LNM, may 
confirm to improve predictive accuracy. DL experience of 
unusual cases may improve predictive accuracy and reduce 
false-positives and false-negatives.

Conclusions

In summary, the main contribution of our study is the 
development of a DL model for LNM prediction in 
EC based on HE-stained histopathological images with 
different subtypes for the first time. The model showed 
particular accuracy for early staging patients and advances 
the approach of pathological slide analysis based on AI. 
The most significant features for DL of LNM predictions 
were highlighted to allow intuitive interpretation of the 
MIL model by pathologists. To confirm the utility of the 
proposed MIL model in clinical practice, preoperative 
curettage specimens and further multicenter prospective 
validation is indeed required.
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Supplementary

Table S1 Patient and tumor characteristics for the external validation cohort

Characteristics
All external validation cohort

Sum (n=261) Medical center 1 (n=94), n (%) Medical center 2 (n=167), n (%)

Age (years), mean ± SD 53.16±8.07 53.05±9.13 53.36±8.46

Tumor size (cm), mean ± SD 3.55±1.86 3.86±2.34 3.24±1.57

Tumor histological subtype

I 220 80 (85.11) 140 (83.83)

II 15 6 (6.38) 9 (5.39)

Mixed (I + II) 26 8 (8.51) 18 (10.78)

Tumor grade (differentiation)

1–2 (well/moderate differentiation) 176 63 (67.02) 113 (67.66)

3 (poor differentiation) 85 31 (32.98) 54 (32.34)

Depth of tumor invasion

<1/2 134 44 (46.81) 90 (53.89)

≥1/2 127 50 (53.19) 77 (46.11)

LVSI

Yes 119 48 (51.06) 71 (42.51)

No 142 46 (48.94) 96 (57.49)

Lymph node metastasis

Yes 114 41 (43.62) 73 (43.71)

No 147 53 (56.38) 94 (56.29)

FIGO stage

I 130 41 (43.62) 89 (53.29)

II 46 7 (7.45) 39 (23.35)

III 70 37 (39.36) 33 (19.76)

IV 15 9 (9.57) 6 (3.59)

SD, standard deviation; LVSI, lymph vascular space invasion; FIGO, International Federation of Gynecology and Obstetrics. 


