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Background: Multimodal analysis has shown great potential in the diagnosis and management of cancer. 
This study aimed to determine the multimodal data associations between radiological, pathologic, and 
molecular characteristics in bladder cancer.
Methods: A retrospective study of computed tomography (CT), pathologic slice, and RNA sequencing 
data from 127 consecutive adult patients in China who underwent bladder surgery and were pathologically 
diagnosed with bladder cancer was conducted. A total of 200 radiological and 1,029 pathologic features were 
extracted by radiomics and pathomics. Multimodal associations analysis and structural equation modeling 
were used to measure the cross-modal associations and structural relationships between CT and pathologic 
slice. A convolutional neural network was constructed for molecular subtyping based on multimodal imaging 
features. Class activation maps were used to examine the feature contribution in model decision-making. Cox 
regression and Kaplan-Meier survival analysis were used to explore the relevance of multimodal features to 
the prognosis of patients with bladder cancer.
Results: A total of 77 densely associated blocks of feature pairs were identified between CT and whole slide 
images. The largest cross-modal associated block reflected the tumor-grade properties. A significant relation 
was found between pathological features and molecular subtypes (β=0.396; P<0.001). High-grade bladder 
cancer showed heterogeneity of significance across different scales and higher disorders at the microscopic 
level. The fused radiological and pathologic features achieved higher accuracy (area under the curve: 0.89; 
95% CI: 0.75–1.0) than the unimodal method. Thirteen prognosis-related features from CT and whole slide 
images were identified.
Conclusions: Our work demonstrated the associations between CT, pathologic slices, and molecular 
signatures, and the potential to use multimodal data analysis in related clinical applications. Multimodal data 
analysis showed the potential of cross-inference of modal data and had higher diagnostic accuracy than the 
unimodal method.
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Introduction

With the advancements in medical diagnostic technologies, 
an abundance of multimodal data in clinic, such as 
pathology, radiology, and molecular characteristics, has 
enabled us to obtain multidimensional information about 
diseases, deepening our understanding of their nature. 
Integrative analysis of multimodal data can aid in identifying 
new features of complex diseases, such as cancer (1).

Bladder cancer is the ninth most common tumor 
worldwide and is the highest incidence tumor of the urinary 
system (2). Approximately 75% of newly diagnosed cases 
are non-muscle-invasive bladder cancer (NMIBC), which 
is characterized by painless hematuria, while approximately 
25% of patients have muscle-invasive bladder cancer (MIBC), 
which has a 5-year survival rate as low as 40–60% (3-5).

Features of bladder cancer have been extensively studied 
at the subcellular level, and comprehensive molecular 
analysis has identified four molecular subtypes: basal, 
luminal, neuronal, and squamous (6,7). Recent studies 
have shown that molecular typing is correlated with the 
prognosis of patients and thus, is of value in predicting 
response to neoadjuvant chemotherapy (8-10). However, 
the confirmatory procedure requires the cancer tissues to 
be sequenced after surgery, and the difficulty in accessing 
specimens and the expense of sequencing limit its clinical 
application. One alternative to molecular typing is to infer 
the molecular type on the basis of other easily accessible 
features, such as radiological imaging features. Recently, 
histopathological slides have been used to predict the 
molecular subtype of MIBC based on convolution neural 
networks, providing a potential way to confirm the 
molecular subtypes (11).

F o r  p a t i e n t s  w i t h  c a n c e r ,  C T  i m a g e s  a n d 
histopathological slices are conventionally used for 
diagnosis. CT images primarily record patterns of density 
in the body, and histopathological slides usually serve 
as the gold standard for diagnosis. Quantitative omics, 
such as radiomics and pathomics, capture tissue or cell 
characteristics including morphology and density, and 
demonstrate great promise in clinical applications (12-16). 

Many previous studies on pathologic (17,18) and molecular 
typing (19,20), recurrence (21), and chemosensitivity (22) 
of bladder cancer have used machine learning based on 
CT or pathological whole slide imaging (WSI). Currently, 
the associations between molecular, pathological, and 
radiological features in bladder cancer remain obscure and 
have rarely been the focus of research. 

In the present work, we aimed to investigate the 
relevance of quantitative imaging features to pathology, 
radiology, and molecular signatures in bladder cancer. To 
achieve this, we collected data at the molecular, cellular, 
and tissue levels. Additionally, we built a deep learning 
model to learn the latent associations between different 
modalities and attempt to predict the molecular subtypes 
of patients with bladder cancer. Finally, we analyzed the 
contributions of features in the model to distinguish certain 
subtypes using visualization strategies. We present the 
following article in accordance with the STARD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-679/rc).

Methods

Patient cohorts and data filtering

The participants in this study were from three retrospective 
cohorts. Consecutive cases that met our inclusion criteria 
were enrolled. The inclusion criteria for patients were 
as follows: (I) had undergone transurethral resection or 
cystectomy and were pathologically confirmed to have 
bladder cancer; and (II) had not received tumor-related 
treatment (chemotherapy or radiotherapy) before surgery. 
The exclusion criteria were as follows: (I) patients whose 
contrast-enhanced CT imaging (before surgery), WSI, or 
clinicopathological diagnostic report was incomplete; and 
(II) patients with low-quality CT or WSI images. 

The principle of sample collection was to obtain as 
many samples as possible in line with the inclusion and 
exclusion criteria. After selection, the first and second 
cohorts consisted of 19 (19 males) and 32 (4 females and 
28 males) participants who underwent surgery in two first-
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level hospitals (The Third Affiliated Hospital of Shenzhen 
University and Cancer Hospital Chinese Academy of 
Medical Sciences) from 2018 to 2020. Arterial-phase CT 
images, WSI images, and clinicopathological diagnostic 
reports were gathered from the local hospital information 
system. Among the second cohort of 32 patients, 23 of 
bladder cancer tissues were RNA-sequenced. Patients from 
The Cancer Genome Atlas-Bladder Urothelial Carcinoma 
(TCGA-BLCA) cohort underwent transurethral resection 
or cystectomy between 2010 and 2014 (23). The original 
120 arterial-phase CT images in Digital Imaging and 
Communications in Medicine (DICOM) format and 
the digital pathologic slices in WSI (40× magnification) 
were gathered from the open-source  The Cancer 
Imaging Archive (TCIA) database. The corresponding 
clinicopathological, survival information, and raw count 

files measuring gene expression levels in bladder cancer 
cells were gathered from TCGA database. Finally, 76 
participants (17 females and 59 males) were selected for the 
analysis.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Research Ethics Committee of Shenzhen 
Luohu People’s  Hospital  (No. 2022-LHQRMYY-
KYLL-067). All data used were acquired with institutional 
review board-approved protocols. The need to obtain 
informed consent was waived since this was a retrospective 
and observational study.

A flow diagram describing the data filtering and selection 
is shown in Figure 1. The basic and clinical characteristics 
of the participants are shown in Table 1. In summary, 127 
patients (21 females and 106 males; mean age ± standard 

Inclusion criteria
•	 Consecutive adults; 
•	 Underwent transurethral resection or cystectomy and were 

pathologically confirmed to have bladder cancer;
•	 Without tumor-related treatment (chemotherapy or 

radiotherapy) before surgery.

Cohort I: 98 participants from the local hospital I
Cohort II: 119 participants from the local hospital II
Cohort III: 412 participants from TCGA-BLCA (open-source)

Cohort I: 19 participants from the local hospital I
Cohort II: 32 participants from the local hospital II
Cohort III: 76 participants from TCGA-BLCA (open-source)

Cohort II: 23 participants from the local hospital II
Cohort III: 75 participants from TCGA-BLCA (open-source)

Exclusion criteria
•	 Incomplete clinicopathological diagnostic 

report
•	 Patients with low-quality images (low 

resolution, disordered, blurred images)

127 participants for association analysis 
between CT and WSI

98 participants for molecular subtyping model training  
(five-fold cross-validation)

Exclusion criteria
•	 Incomplete contrast-enhanced CT (before 

surgery) 
•	 Incomplete pathological slice images 

(WSI)

Exclusion criteria
•	 Incomplete RNA-sequencing results or 

molecular typing information

Figure 1 Flow diagram showing the initial numbers of participants and the selection process. WSI, whole slide imaging; TCGA-BLCA, 
The Cancer Genome Atlas-Bladder Urothelial Carcinoma.

https://cn.bing.com/dict/search?q=hospital&FORM=BDVSP6&mkt=zh-cn
https://cn.bing.com/dict/search?q=information&FORM=BDVSP6&mkt=zh-cn
https://cn.bing.com/dict/search?q=system&FORM=BDVSP6&mkt=zh-cn
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deviation, 65.6±10.1 years) who met the criteria were 
retrospectively analyzed in our study. There were 104 (81%) 
participants diagnosed with high-grade bladder cancer, and 
79 (62%) participants diagnosed with MIBC. There was 
a class imbalance between the three cohorts (Table S1); 
therefore, we merged them into a single large dataset to 
perform the prediction task.

Data preprocessing and feature extraction

Because the whole dataset consisted of three cohorts, batch 
effects posed a major challenge in data preprocessing. 
Generally, batch effects come from technical variation across 
samples. In CT imaging, slice thickness and gray values are 
the main variability-causing factors when images are from 
different cohorts. In WSI, the use of tissue samples from 
different laboratories can introduce systematic technical 
differences, such as depth of color, which are unrelated to 
the biological variation of tissues. Batch effects affect the 
mean and variance (location and spread) of the data and 
the performance of machine learning models. Although the 
causes of batch effects for each data modality are different, 
the methods are still applicable to different data modalities. 
For CT normalization in the present study, we adjusted 

the resolution of raw CT images to 1.5×1.0×1.0 mm3  
using the interpolation method and normalized each image 
by centering it at the mean with standard deviation based on 
all gray values (24). We used ComBat to normalize the gene 
expression data (25,26). To remove batch effects in WSI 
images, we performed color normalization as described in 
previous studies (11,27).

We performed additional quality screening for the CT 
images in all three cohorts to exclude CT images of low 
resolution (slice thickness >5 mm) and CT images that did 
not contain the bladder. After the correction, the bladder 
and cancer regions in CT images were manually annotated 
by two radiologists, who had each been in clinical practice 
for more than 5 years, and two well-trained clinical graduate 
students. To speed up the annotation process, we trained a 
deep learning model based on the three-dimensional (3D) 
U-Net and performed automatic semantic segmentation 
on the rest of the data. Then, the segmentation results 
were examined and amended by radiologists, who further 
delineated accurate bladder and cancer boundaries. After 
annotation, the image voxel values were normalized, and 
200 radiological features of the bladder and cancer voxels, 
roughly consisting of texture, morphological, and statistical 
features, were extracted using PyRadiomics (v 3.0.1) (24).

The pathologic cancer tissue slices were processed and 
digitalized at various institutions. To avoid a batch effect, 
each slice was split into tiles of 1,024×1,024 pixels and then 
normalized to the same reference tile as described by Anand 
et al. (27). The cancer cell phenotypes were quantified 
from the normalized tiles using CellProfiler software  
(v 4.1.3) (28). Four types of features of the nucleus and 
plasma of cells were extracted by CellProfiler: shape, 
intensity, texture, and radial distribution-related features. 
For each type of feature, statistical indicators, such as 
the mean, median, and standard deviation values, were 
calculated and concatenated for further analysis.

Expression levels of cancer genes were obtained through 
RNA sequencing of 23 participants from the second cohort. 
Raw gene counts were calculated through alignment to 
human reference genome GRCh38. We performed batch 
effect adjustment using ComBat, and then transcripts per 
million were calculated as the measurement of the gene 
expression level. We combined the bladder cancer molecular 
subtypes luminal, luminal-papillary, luminal-infiltrated, and 
neuronal as one class (luminal) and the basal subtype as the 
other class (basal). Molecular subtyping (luminal/basal) of 
bladder cancer was performed by hierarchical clustering 
with a panel of 48 genes according to the TCGA subtype 

Table 1 Basic and clinical characteristics of the study participants

Basic characteristics Value or amount

Participants (cases) 127

Female 21

Male 106

Age (years) 65.6 (10.1)*

Muscle invasiveness

Non-invasive 48

Invasive 79

Tumor grade

High grade 104

Low grade 23

Molecular subtype

Luminal 71

Basal 27

Not available 29

* indicates the data are presented as the mean value (standard 
deviation).

https://cdn.amegroups.cn/static/public/QIMS-22-679-Supplementary.pdf
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approach (6). The molecular classification of the study 
participants is shown in Table 1.

The diagram of the integrative analysis framework is 
shown in Figure 2. The features of CT and WSI images 
were used to explore multimodal associations, molecular 
subtype prediction, and prognosis in patients with bladder 
cancer.

Multimodal association analysis

To explore the associations between CT and WSI features, 
feature selection was performed for the redundant WSI 
features, and we found that the patterns became much 
clearer after selection. We removed the highly correlated 
(Pearson correlation >0.7) WSI features since these features 
represent similar properties of WSI, such as smoothness. 
After selection, the pattern block of the cross-modal matrix 
could be identified, and we obtained 200 and 428 CT and 
WSI features, respectively, from the association analysis. 
First, the modal correlation matrices were calculated 
by HallA (v 0.8.18) (29). Then, blocks of associated 
features with significant correlations were determined by 
hierarchical clustering and the Gini impurity of the splits.

To further  explore  the  s ta t i s t ica l  dependency 
between CT features, WSI features, clinicopathological 
characteristics, and molecular subtypes of bladder cancer, 
we constructed a structural equation model (SEM) using 
the aforementioned features with lavaan (v 0.6–8) (30). The 
standardized beta coefficient (β) was used to quantify the 
influence of the change in independent variables on the 
dependent variables. Other indices such as the root mean 
square error of approximation (RMSEA), compare fit index 
(CFI), Tucker-Lewis Index (TLI), and Standardized Root 
Mean Residual square (SRMR) were used to measure the 
model fitting effect.

Statistical analysis

The differential features of high- and low-grade cancer 
were identified by Welch’s two-sample t test. Cox regression 
analysis and survival analysis were used to assess the impact 
of multimodal features on the overall prognosis of patients 
with bladder cancer. All these machine learning experiments 
and statistical analyses were conducted in python (v3.8) and 
R (v3.6.3). A statistical result was considered significant 
when the P value was less than 0.05. The uncertainty of an 

Luminal/basal 
classification

Prognostic 
relevance

Multimodal feature 
associations

Tumor whore slice 
image

Normalize 
& cut

Segmented CT image

Segmentation

Raw CT slices

Radiomics CellProfiler

3D Unet

Tile

Structural 
relationships

200 CT features 1,029 WSI features

A B

C

Figure 2 Analytical framework. A three-dimensional U-Net model was used to assist semantic segmentation in CT images. Then, 
radiological features were abstracted by PyRadiomics (A). Tumor pathological WSI images were processed through several steps: splitting the 
image into tiles, color normalization, and feature abstraction by CellProfiler (B). The paired radiological and pathologic features were used to 
perform the following statistical analyses: association, causal relationship, molecular subtype prediction, and prognosis (C). CT, computed 
tomography; WSI, whole slide imaging.

https://cn.bing.com/dict/search?q=statistic&FORM=BDVSP6&mkt=zh-cn
https://cn.bing.com/dict/search?q=analysis&FORM=BDVSP6&mkt=zh-cn
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estimate, such as its accuracy and the area under the receiver 
operating characteristic curve (AUC), was quantified at the 
95% CI. To quantitatively measure the heterogeneity of 
bladder cancer across different scales, the Shannon entropy of 
the frequency distribution was calculated for each modality.

Deep learning algorithm and model interpretability 
analysis

A convolutional neural network was constructed to 
predict the molecular subtype for each participant with a 
multimodal feature fusion approach. To avoid overfitting, 
we randomly split the dataset into five parts and applied 
five-fold cross-validation. Performance metrics included 
accuracy and the AUC.

To explore the contributions of different features to 
model decision-making, a score-class activation map (Score-
CAM) was used as a post hoc explanation method (31). 
With Score-CAM, a large score suggests that a feature 
affects the substance of the model’s decisions.

Results

Strong associations among multimodal features

A to ta l  o f  200  CT and  428  WSI  f ea ture s  f rom  
127 participants were processed with HAllA to investigate 
the associations between modalities. Seventy-seven densely 
associated blocks were identified in the modal correlation 
matrix between CT and WSI features (Figure S1). Block 
1 had the largest number of notable feature pairs clustered 
together (Figure 3A). The significance level of feature pairs 
in block 1 was verified using the Pearson correlation test. 
One feature pair of significance is illustrated in Figure 3B. 
A positive correlation (R=0.537±0.113; P<0.001) was found 
between cancer_firstorder_TE (CT feature: cancer first-order 
Total Energy) and nucleus_mean_Texture_CORH3 (WSI 
feature: nucleus Texture Correlation Hematoxylin; Figure 3B).  
The second and third blocks (plasmic and nucleic blocks) 
reflected the associations of plasmic and nucleic features 
of cancer cells with CT features, respectively (Figure S2). 
Texture features of cancer cell plasma are associated with 
gray-level matrix-relevant features in CT (P<1.49×10–6). 
Nucleus-related features were accompanied by first-order 
features that described the distribution of voxel intensities 
within the bladder (P<4.08×10–6).

To explore the features with significant differences 
between high- and low-grade bladder cancer, we also 

performed a supervised analysis with a two-sample  
t test. Texture, intensity, and area shape-related features 
were distinctive in high- and low-grade WSI. Among 
the radiological features, shape-related features and gray 
level matrix (glcm, glrlm, and glszm) exhibited a significant 
difference between high- and low-grade bladder cancer 
(Figure 3C). Moreover, most features in block 1 were in line 
with the differential features between high- and low-grade 
bladder cancer (odds ratio =21.0±10.8; P<0.001; Figure 3D). 
This result suggests that the features in block 1 revealed the 
pathological grade characteristics (grade block).

High-grade bladder cancer typically presents with 
a higher level of heterogeneity than does low-grade 
bladder cancer (32). We quantified this heterogeneity 
using the Shannon entropy, which is a specific measure 
of randomness. Figure 3E shows the entropy of high- and 
low-grade bladder cancer for different modalities. High-
grade cancer had higher entropy in all scales. Also, bladder 
cancer had higher entropy at the microscopic level than at 
the macro level, which reflected the disorder of cancer at 
the microscopic scale. We assessed the efficacy of Shannon 
entropy in predicting the outcome of patients with bladder 
cancer, and the results showed that the entropy level in the 
cancer cell nucleus and plasma had a significant impact on 
clinical prognosis (Figure S3).

Statistical dependency among multimodal data

According to previous results and related studies, we 
hypothesized that both CT and WSI features were related 
to clinicopathology and the luminal/basal molecular subtype 
in bladder cancer (11). To further explore the statistical 
dependency between multimodal data, we constructed 
a hypothetical path diagram (Figure 4) and validated the 
hypothesis by an SEM.

Specifically, texture, intensity, and area shape-related 
features were discriminative characteristics in high- and 
low-grade bladder cancer slides. High-grade samples tended 
to manifest with higher intensity and more variations 
in texture. The area shape of the nucleus in high-grade 
cancer cells was changeable, and a high coefficient of 
variation was observed in the radial intensity distribution 
in the nucleus. A similar phenomenon was observed in CT 
images. First-order statistics, describing the distribution of 
voxel intensities, in intensity level, nonuniformity, and zone 
variance in the gray level matrix (glcm, glrlm, and glszm) 
exhibited a significant difference between high- and low-
grade cancer. These results are in line with the noteworthy 

https://cdn.amegroups.cn/static/public/QIMS-22-679-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-679-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-679-Supplementary.pdf
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Figure 3 Multimodal data associations. (A) Densely associated block 1 of CT and pathological WSI features identified by HAllA. The white dot 
indicates the statistical significance (P<0.05) of the related feature pairs. (B) Scatter diagrams of CT and WSI feature pairs identified in HAllA 
block 1. Log base 10 was used to transform CT feature values. A significant correlation was determined with a correlation coefficient (Pearson 
correlation, R) >0.3 or <–0.3 and a P value <0.05. The coefficient was estimated at the 95% confidence level. (C) Welch’s two-tailed two-sample 
t test was used to examine the features with significant differences between high- and low-grade cancer. Significant differences were determined 
with an adjusted P value (false discovery rate, FDR) <0.05. (D) Two-by-two contingency table showing the features in/out HAllA block 1 and 
with/without significant difference between high- and low-grade cancer. The association was determined with an odds ratio >1 and a P value 
<0.05 by Fisher’s exact test. The odds ratio was estimated at the 95% confidence level. (E) Box plot illustrating the Shannon entropy of high- 
and low-grade bladder cancer for CT, WSI, and transcriptomics. CT, computed tomography; WSI, whole slide imaging.
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pattern identified by HAllA, which demonstrated that the 
variation in texture and intensity distribution of bladder 
cancer cells in slides was correlated with the gray-level 
matrix variation of bladder cancer at the CT level.

The SEM analysis confirmed significant associations 
(P<0.05) along the proposed path. A strong association was 
observed between WSI features and pathologic subtype 
(β=0.806; P<0.001), which was consistent with pathological 
diagnosis. A moderate association was observed between 
WSI features and luminal/basal molecular subtype (β=0.396; 
P<0.001), which was in agreement with the conclusion that 
the molecular subtype of bladder cancer could be inferred 
by WSI features (11). Furthermore, weak associations were 
detected between CT features and pathologic subtype 
(β=0.148; P=0.007) and molecular subtype (β=–0.20; 
P=0.031), which indicated that molecular changes might 
also exert a certain influence on CT texture features. Fitting 
indices indicated that the proposed path fitted the data well 
(CFI: 0.942; TLI: 0.905; RMSEA: 0.099; SRMR: 0.103).

Molecular subtype prediction by multimodal feature fusion

Considering that the molecular signature of cancer 

impacted both CT features and WSI features, we 
constructed a deep learning model using features of CT 
and WSI to predict the luminal/basal subtype. As described 
in Figure 5A, a convolutional neural network for molecular 
subtype classification was constructed. Ninety-seven cases, 
each containing 200 CT features and 1,029 WSI features, 
were randomly split into a training set (79%, 77 cases) and a 
testing set (21%, 20 cases). Our model (Figure S4A) worked 
better than the unimodal models (Figure S4B,S4C) when 
either WSI or CT features were used (Figure S4D). The 
AUC was 0.89 (0.75–1.0 at the 95% CI) for luminal/basal 
molecular subtype classification on the fold-0 testing set 
(Figure 5B), while the average AUC of the five-fold cross-
validation test was 0.84 (Figure S4E).

To explore the contribution of each feature to the model 
prediction, Score-CAM was used for the deep learning 
model. We calculated the score of each input feature for 
all the cases and took features with positive median scores 
as model-activated features (Figure 5C). In summary, the 
convolution neural network emphasized luminal/basal 
molecular classification. Features of WSI exhibited the 
highest scores and showed strong relations with molecular 
subtype, which was consistent with the results of the 
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Figure 4 Structural equation modeling to explore statistical causal associations. Red edges indicate positive effects, and blue edges indicate 
negative effects. The values on the map show the standardized beta coefficient (β), which indicates the magnitude of associations between 
latent variables. The asterisk (*) indicates statistical significance (P<0.05). Model fit indices including the CFI, TLI, RMSEA, and SRMR 
were used to measure the model fitting effect. CT, computed tomography; WSI, whole slide imaging; CFI, comparative fit index; TLI, 
Tucker-Lewis index; RMSEA, root mean square error of approximation; SRMR, standardized root mean residual square.
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SEM analysis. The value of CT features in predicting the 
molecular subtype of bladder cancer was lower than that of 
WSI features.

Relevance of imaging features to prognosis

The molecular subtype of bladder cancer significantly 
impacts clinical prognosis; therefore, we performed Cox 
regression analysis on the features with positive median 
scores that influenced the prediction of molecular subtype 
(Figure 6A). Thirteen features of substance were identified; 
CT texture features, such as first-order statistics of voxel 
intensities (bladder_firstorder_10Percentile), and WSI 
features, such as the measurement in the nucleus area 
(nucleus_median_AreaShape_MinFeretDiameter), indicated a 
poor prognosis. The prognostic relevance of the 13 features 
was also verified by log rank test. Figure 6B illustrates 
the relevance of the nucleic WSI feature nucleus_StDev_

Intensity_MeanIntensity_ Hematoxylin to overall survival in 
bladder cancer.

Discussion

In this paper, we delineated the multimodal characteristics 
of bladder cancer collected from 127 individuals on three 
different scales, namely at the molecular, cellular, and tissue 
levels. We identified novel associations in pathological 
and radiological features that distinguished high- and low-
grade bladder cancer. Texture features of cancer cell plasma 
were found to be related to the gray level matrix features in 
CT, while the nucleic features reflected the intensity level 
of voxels in CT. Also, high-grade bladder cancer showed 
heterogeneity of significance across different scales, which 
was validated by the Shannon entropy, a generalizable 
indicator across all scales for grading and prognosis. We 
further explored the statistical dependency of modality 
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features by an SEM and validated our main findings. A deep 
learning-based model was built to predict the molecular 
subtype of bladder cancer and achieved an average AUC of 
0.84 in the five-fold cross-validation test.

There is some evidence of connections between medical 
imaging features and molecular characteristics in various 
cancers. Woerl et al. (11) constructed a deep convolution 
neural network to process WSI images and predict the basal, 
luminal and luminal p53-like molecular subtypes in bladder 
cancer. They achieved high predictive accuracy using only 
WSI images. Sirinukunwattana et al. (33) showed that four 
molecular subtypes defined by RNA expression profiles in 
colorectal cancer could be predicted using WSI images with 
a deep learning model. This classification model achieved a 
robust molecular-subtyping performance, with an AUC of 
0.81 in the test set. Yan et al. (34) successfully developed a 
magnetic resonance imaging-based model for the prediction 
of glioma subtyping markers, including IDH gene mutation 
(AUC =0.88), 1p/19q chromosome deletion (AUC =0.82), 
and TERT gene promoter mutation (AUC =0.67). Lee  
et al. (35) investigated machine learning methods for 
magnetic resonance radiomics-based prediction of the 
luminal A and B, HER2-overexpressing, and triple-negative 
molecular subtypes of breast cancer. Among five machine 
learning methods, they found that an integrated random 

forest model showed the best performance (AUC =0.75). 
These studies evidence the potential of utilizing of medical 
images in the prediction of cancer molecular subtyping. 
Image-based models build a macro-to-micro connection 
between medical images and cancer genomes, and open 
the door for fast and low-cost molecular subtyping. Unlike 
these studies, our study aimed to determine the multimodal 
associations between radiological, pathologic, and molecular 
properties of bladder cancer. Based on the findings, we 
propose that the performance of molecular subtyping 
prediction could be improved by integrating multimodal 
medical images, including CT and WSI images.

Through multimodal association analysis, we found 
similar patterns at different scales within the same 
pathological grade. Additionally, nucleus-related features, 
such as the radial intensity distribution, were associated 
with basal molecular subtype in Score-CAM analysis. 
Pathological features are of particular importance in 
the prediction of molecular subtype and prognosis. 
Interestingly, bladder shape-related features on CT played 
an important role in predicting the luminal subtype. 
Unsupervised analysis revealed a similar feature association 
to supervised pattern detection, which indicates that these 
features are relevant to the transition in pathological type 
and can be used as an imaging biomarker. 
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Molecular features are crucial in today’s personalized 
treatment. The complex interactions between individuals’ 
molecular characteristics and phenotypes typically 
require diverse and large-scale data to be identified. A 
systematic multimodal data analysis approach is essential 
for the identification of novel signatures for diseases. 
Our work proffers a comprehensive framework for the 
signature recognition of multimodal data and is helpful in 
personalized medical management.

The present framework still has several limitations that 
require further improvement. First, sample imbalance 
existed—for example, in the number of patients with 
different tumor grades, batch effects (slice thickness and 
gray values) in CT images, and depth of color in WSI 
images—which might have caused potential bias and 
influenced the statistical results in the study. Although we 
applied normalization methods to the data, this bias could 
not be fully eliminated. Second, these findings remain to be 
replicated in a large population-based cohort before they 
can be applied in clinic. The limited number of samples may 
have resulted in a covariate shift; therefore, elements of our 
findings may be somewhat contingent. Additional efforts 
are needed to include more participants in future studies.

Conclusions

High-grade bladder cancer showed heterogeneity of 
significance across different scales. The Shannon entropy 
was used as an indicator to differentiate high- and low-grade 
bladder cancer and predict the outcome. The characteristics 
of the plasma and nucleus of cancer cells in the pathological 
slides were correlated with gray-level matrix characteristics 
and voxel intensity characteristics at the CT level. Further, 
CT features also contributed to the molecular subtype 
prediction, albeit not as much as WSI features.

Our work illustrates the complex associations between 
multimodal features in bladder cancer. Our results further 
prove that the fusion of multimodal features can achieve 
higher accuracy in predicting molecular subtypes of bladder 
cancer than can unimodal-based methods. This work 
demonstrates the potential of multimodal data analysis 
to be used in personalized medicine and related clinical 
applications.

Acknowledgments

We thank the open-source databases used in this study, 
including The Cancer Imaging Archive (TCIA) and The 

Cancer Genome Atlas (TCGA), for use of their data.
Funding: This work was supported by the National Natural 
Science Foundation Fund of China (No. 61931024), 
Shenzhen Science and Technology Program (No. 
JCYJ20220818100015031 and No. RCJC20200714114557005), 
the Guangdong Basic and Applied Basic Research Foundation 
(No. 2019A1515110038), and the Shenzhen Municipal 
Science and Technology Innovation Commission (No. 
JSGG20180712090411521).

Footnote

Reporting Checklist: The authors have completed the STARD 
reporting checklist. Available at https://qims.amegroups.
com/article/view/10.21037/qims-22-679/rc

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-679/coif). 
The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This study was approved by the 
Research Ethics Committee of Shenzhen Luohu People’s 
Hospital (No. 2022-LHQRMYY-KYLL-067). All data used 
were acquired with institutional review board-approved 
protocols. The need to obtain informed consent was waived 
since this was a retrospective and observational study.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Gao J, Li P, Chen Z, Zhang J. A Survey on Deep 
Learning for Multimodal Data Fusion. Neural Comput 
2020;32:829-64.

https://qims.amegroups.com/article/view/10.21037/qims-22-679/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-679/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-679/coif
https://qims.amegroups.com/article/view/10.21037/qims-22-679/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Wu et al. Quantitative association of radiology, pathology, and RNA profiles1034

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(2):1023-1035 | https://dx.doi.org/10.21037/qims-22-679

2.	 Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer 
statistics, 2022. CA Cancer J Clin 2022;72:7-33.

3.	 Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, 
Malmström PU, Choi W, Guo CC, Lotan Y, Kassouf W. 
Bladder cancer. Lancet 2016;388:2796-810.

4.	 Alfred Witjes J, Lebret T, Compérat EM, Cowan NC, De 
Santis M, Bruins HM, Hernández V, Espinós EL, Dunn 
J, Rouanne M, Neuzillet Y, Veskimäe E, van der Heijden 
AG, Gakis G, Ribal MJ. Updated 2016 EAU Guidelines 
on Muscle-invasive and Metastatic Bladder Cancer. Eur 
Urol 2017;71:462-75.

5.	 Saginala K, Barsouk A, Aluru JS, Rawla P, Padala SA, 
Barsouk A. Epidemiology of Bladder Cancer. Med Sci 
(Basel) 2020.

6.	 Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo 
G, Cherniack AD, et al. Comprehensive Molecular 
Characterization of Muscle-Invasive Bladder Cancer. Cell 
2017;171:540-556.e25.

7.	 Comprehensive molecular characterization of urothelial 
bladder carcinoma. Nature 2014;507:315-22.

8.	 McConkey DJ, Choi W. Molecular Subtypes of Bladder 
Cancer. Curr Oncol Rep 2018;20:77.

9.	 Seiler R, Ashab HAD, Erho N, van Rhijn BWG, Winters 
B, Douglas J, et al. Impact of Molecular Subtypes in 
Muscle-invasive Bladder Cancer on Predicting Response 
and Survival after Neoadjuvant Chemotherapy. Eur Urol 
2017;72:544-54.

10.	 Tan TZ, Rouanne M, Tan KT, Huang RY, Thiery JP. 
Molecular Subtypes of Urothelial Bladder Cancer: Results 
from a Meta-cohort Analysis of 2411 Tumors. Eur Urol 
2019;75:423-32.

11.	 Woerl AC, Eckstein M, Geiger J, Wagner DC, Daher T, 
Stenzel P, Fernandez A, Hartmann A, Wand M, Roth W, 
Foersch S. Deep Learning Predicts Molecular Subtype 
of Muscle-invasive Bladder Cancer from Conventional 
Histopathological Slides. Eur Urol 2020;78:256-64.

12.	 Yuan J, Xue C, Lo G, Wong OL, Zhou Y, Yu SK, Cheung 
KY. Quantitative assessment of acquisition imaging 
parameters on MRI radiomics features: a prospective 
anthropomorphic phantom study using a 3D-T2W-TSE 
sequence for MR-guided-radiotherapy. Quant Imaging 
Med Surg 2021;11:1870-87.

13.	 Ou J, Wu L, Li R, Wu CQ, Liu J, Chen TW, Zhang 
XM, Tang S, Wu YP, Yang LQ, Tan BG, Lu FL. CT 
radiomics features to predict lymph node metastasis in 
advanced esophageal squamous cell carcinoma and to 
discriminate between regional and non-regional lymph 
node metastasis: a case control study. Quant Imaging Med 

Surg 2021;11:628-40.
14.	 Wu K, Wu P, Yang K, Li Z, Kong S, Yu L, Zhang E, 

Liu H, Guo Q, Wu S. A comprehensive texture feature 
analysis framework of renal cell carcinoma: pathological, 
prognostic, and genomic evaluation based on CT images. 
Eur Radiol 2022;32:2255-65.

15.	 Cao R, Yang F, Ma SC, Liu L, Zhao Y, Li Y, Wu DH, 
Wang T, Lu WJ, Cai WJ, Zhu HB, Guo XJ, Lu YW, 
Kuang JJ, Huan WJ, Tang WM, Huang K, Huang J, Yao J, 
Dong ZY. Development and interpretation of a pathomics-
based model for the prediction of microsatellite instability 
in Colorectal Cancer. Theranostics 2020;10:11080-91.

16.	 Feng L, Liu Z, Li C, Li Z, Lou X, Shao L, et al. 
Development and validation of a radiopathomics model 
to predict pathological complete response to neoadjuvant 
chemoradiotherapy in locally advanced rectal cancer: a 
multicentre observational study. Lancet Digit Health 
2022;4:e8-e17.

17.	 Zhang G, Xu L, Zhao L, Mao L, Li X, Jin Z, Sun H. 
CT-based radiomics to predict the pathological grade of 
bladder cancer. Eur Radiol 2020;30:6749-56.

18.	 Yang Y, Zou X, Wang Y, Ma X. Application of deep 
learning as a noninvasive tool to differentiate muscle-
invasive bladder cancer and non-muscle-invasive bladder 
cancer with CT. Eur J Radiol 2021;139:109666.

19.	 Loeffler CML, Ortiz Bruechle N, Jung M, Seillier L, 
Rose M, Laleh NG, Knuechel R, Brinker TJ, Trautwein 
C, Gaisa NT, Kather JN. Artificial Intelligence-based 
Detection of FGFR3 Mutational Status Directly from 
Routine Histology in Bladder Cancer: A Possible 
Preselection for Molecular Testing? Eur Urol Focus 
2022;8:472-9.

20.	 Velmahos CS, Badgeley M, Lo YC. Using deep learning to 
identify bladder cancers with FGFR-activating mutations 
from histology images. Cancer Med 2021;10:4805-13.

21.	 Tokuyama N, Saito A, Muraoka R, Matsubara S, 
Hashimoto T, Satake N, Matsubayashi J, Nagao T, Mirza 
AH, Graf HP, Cosatto E, Wu CL, Kuroda M, Ohno 
Y. Prediction of non-muscle invasive bladder cancer 
recurrence using machine learning of quantitative nuclear 
features. Mod Pathol 2022;35:533-8.

22.	 Mi H, Bivalacqua TJ, Kates M, Seiler R, Black PC, 
Popel AS, Baras AS. Predictive models of response to 
neoadjuvant chemotherapy in muscle-invasive bladder 
cancer using nuclear morphology and tissue architecture. 
Cell Rep Med 2021;2:100382.

23.	 Lerner SP, Duddalwar V, Huang E, Altun E, Bathala T, 
Kennish S, Ibarra J, Lucchesi F, Muglia VF, Thomas S, 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 2 February 2023 1035

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(2):1023-1035 | https://dx.doi.org/10.21037/qims-22-679

Vikram R, Vargas HA, Cen SY, Hwang D, King KG, 
Varghese B, Fevrier-Sullivan B, Kirby J, Jaffe C, Freymann 
J. Comprehensive radiogenomics analysis of qualitative 
and quantitative features of cross-sectional imaging in the 
TCGA project in MIBC. J Clin Oncol 2019;37:482.

24.	 van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, 
Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, 
Pieper S, Aerts HJWL. Computational Radiomics System 
to Decode the Radiographic Phenotype. Cancer Res 
2017;77:e104-7.

25.	 Johnson WE, Li C, Rabinovic A. Adjusting batch effects in 
microarray expression data using empirical Bayes methods. 
Biostatistics 2007;8:118-27.

26.	 Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch 
effect adjustment for RNA-seq count data. NAR Genom 
Bioinform 2020;2:lqaa078.

27.	 Anand D, Ramakrishnan G, Sethi A. Fast GPU-Enabled 
Color Normalization for Digital Pathology. 2019 
International Conference on Systems, Signals and Image 
Processing (IWSSIP) 2019:219-24.

28.	 Jones TR, Carpenter AE, Lamprecht MR, Moffat J, 
Silver SJ, Grenier JK, Castoreno AB, Eggert US, Root 
DE, Golland P, Sabatini DM. Scoring diverse cellular 
morphologies in image-based screens with iterative 
feedback and machine learning. Proc Natl Acad Sci U S A 
2009;106:1826-31.

29.	 Ghazi AR, Sucipto K, Rahnavard A, Franzosa EA, McIver 
LJ, Lloyd-Price J, Schwager E, Weingart G, Moon YS, 
Morgan XC, Waldron L, Huttenhower C. High-sensitivity 

pattern discovery in large, paired multiomic datasets. 
Bioinformatics 2022;38:i378-85.

30.	 Rosseel Y. lavaan: An R Package for Structural Equation 
Modeling. 2012 2012;48:36.

31.	 Wang H, Wang Z, Du M, Yang F, Zhang Z, Ding 
S, Mardziel P, Hu X. Score-CAM: Score-weighted 
visual explanations for convolutional neural networks. 
Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition Workshops 2020:24-5.

32.	 Cheng L, Neumann RM, Nehra A, Spotts BE, Weaver 
AL, Bostwick DG. Cancer heterogeneity and its biologic 
implications in the grading of urothelial carcinoma. 
Cancer 2000;88:1663-70.

33.	 Sirinukunwattana K, Domingo E, Richman SD, Redmond 
KL, Blake A, Verrill C, et al. Image-based consensus 
molecular subtype (imCMS) classification of colorectal 
cancer using deep learning. Gut 2021;70:544-54.

34.	 Yan J, Zhang B, Zhang S, Cheng J, Liu X, Wang W, Dong 
Y, Zhang L, Mo X, Chen Q, Fang J, Wang F, Tian J, 
Zhang S, Zhang Z. Quantitative MRI-based radiomics for 
noninvasively predicting molecular subtypes and survival 
in glioma patients. NPJ Precis Oncol 2021;5:72.

35.	 Lee JY, Lee KS, Seo BK, Cho KR, Woo OH, Song 
SE, Kim EK, Lee HY, Kim JS, Cha J. Radiomic 
machine learning for predicting prognostic biomarkers 
and molecular subtypes of breast cancer using tumor 
heterogeneity and angiogenesis properties on MRI. Eur 
Radiol 2022;32:650-60.

Cite this article as: Wu P, Wu K, Li Z, Liu H, Yang K, Zhou R,  
Zhou Z, Xing N, Wu S. Multimodal investigation of bladder 
cancer data based on computed tomography, whole slide 
imaging, and transcriptomics. Quant Imaging Med Surg 
2023;13(2):1023-1035. doi: 10.21037/qims-22-679



© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-22-679

Supplementary

Figure S1 Densely associated blocks identified by HAllA software. A white dot indicates statistical significance (P<0.05) of the related 
feature pairs.
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Figure S2 Heatmap of densely associated blocks 2 and 3 identified by HAllA software. A white dot indicates statistical significance (P<0.05) 
of the related feature pairs.
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Figure S3 Survival analysis of plasmic and nucleic Shannon entropy. (A) The survival plot of plasma entropy. (B) The survival plot of nuclei 
entropy. WSI, whole slide imaging.
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Figure S4 Comparison of three proposed neural networks in luminal/basal molecular subtype prediction. (A) Diagram of the neural 
network with fused features of WSI and CT. (B) Diagram of the neural network with pathological WSI features. (C) Diagram of the neural 
network with CT features. (D) ROC curves of the three proposed neural networks for the luminal/basal molecular subtype prediction in 
testing set (fold_0, 20 cases). Net1 stands for the neural network iN (A), Net2 stands for the neural network iN (B), and Net3 stands for the 
neural network in (C). The AUC was evaluated at the 95% CI. The Net1 reached the best performance among these three classification 
networks. (E) The AUC value was assessed with five-fold cross-validation using Net1 in the testing set. Stained with HE-staining method 
and magnificated 40 times. WSI, whole slide imaging; CT, computed tomography; ROC, receiver operating characteristic; AUC, area under 
the curve.
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Table S1 Clinical characteristics of each cohort

First cohort; local hospital 1 Second cohort; local hospital 2 Third cohort; TCGA-BLCA

Basic information 

No. of participants 19 32 76

Female 0 4 17

Male 19 28 59

Pathology 

High grade 10 18 76

Low grade 9 14 0

Stage T1 16 32 0

Stage T2 3 0 26

Stage T3 0 0 31

Stage T4 0 0 9

Stage not available 0 0 10

Lymph node/distant metastasis 0 0 22

Carcinoma in situ 0 0 0

Molecular subtype

Luminal 23 48

Basal 0 27

Not available 19 9 1


