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Background: The aim of this study was to develop and validate a radiomics nomogram for preoperative 
prediction of Ki-67 proliferative index (Ki-67 PI) expression in patients with meningioma.
Methods: A total of 280 patients from 2 independent hospital centers were enrolled. Patients from 
center I were randomly divided into a training cohort of 168 patients and a test cohort of 72 patients, and  
40 patients from center II served as an external validation cohort. Interoperator reproducibility test, 
Z-score standardization, analysis of variance (ANOVA), and least absolute shrinkage and selection operator 
(LASSO) binary logistic regression were used to select radiomics features, which were extracted from 
contrast-enhanced T1-weighted imaging (CE-T1WI) imaging. The radiomics signature for predicting Ki-
67 PI expression was developed and validated using 4 classifiers including logistic regression (LR), decision 
tree (DT), support vector machine (SVM), and adaptive boost (AdaBoost). Finally, combined radiological 
characteristics with radiomics signature were used to establish the nomogram to predict the risk of high Ki-
67 PI expression in patients with meningioma.
Results: Fourteen radiomics features were used to construct the radiomics signature. The radiomics 
nomogram that incorporated the radiomics signature and radiological characteristics showed excellent 
discrimination in the training, test, and validation cohorts with areas under the curve of 0.817 (95% CI: 
0.753–0.881), 0.822 (95% CI: 0.727–0.916), and 0.845 (95% CI: 0.708–0.982), respectively. In addition, 
the calibration curve for the nomogram demonstrated good agreement between prediction and actual 
observation. 
Conclusions: The proposed contrast enhanced magnetic resonance imaging (MRI)–based radiomics 
nomogram could be an effective tool to predict the risk of Ki-67 high expression in patients with 
meningioma.
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Introduction

Meningioma is one of the most frequent primary central 
nervous system (CNS) tumors (1,2). According to the 2016 
World Health Organization (WHO) classification of CNS 
tumors, meningioma can be classified into 3 histological 
grades and 15 subtypes (3), among which grade I accounts 
for 81% to 95% of meningioma (2,4). However, the 5-year 
recurrence rate of grade I meningioma is more than 10% 
after complete resection (5,6), and some have the potential 
to transform into high-grade subtypes (7). In the past 
half century, prediction of meningioma recurrence and 
invasiveness has relied solely upon histological features, 
which, however, has proven inadequate in evaluating 
survival outcomes (8). Thus, it is essential to explore new 
auxiliary diagnostic techniques or histological markers to 
evaluate the complex clinical and biological behavior of 
meningioma (9,10). Proliferation markers include the p53 
gene, Ki-67 proliferation index (Ki-67 PI), argyrophilic 
nucleolar organizer regions, 5-bromo-2-deoxyuridine, and 
proliferating cell nuclear-antigen. Among these markers, 
Ki-67 PI is the most valuable, as it is expressed in all 
active phases of the cell cycle (G1, S, G2, M) except the 
G0 phase (11). Recently, its negative effects on clinical 
outcomes have been extensively proven for most solid 
tumors (12-16). Many studies have demonstrated that 
Ki-67 is an important surrogate marker of meningioma 
grade, prognosis, and malignant transformation (17-19). 
Telugu et al. reported that Ki-67 PI correlated well with 
increasing the histological grade and biological behavior 
of meningioma (17). Furthermore, it has been found that 
higher Ki-67 PI expression is negatively associated with 
survival in meningioma, with Ki-67 PI >4% being more 
appropriate for prognosis prediction; it has been thus highly 
recommended that patients with elevated expression of Ki-
67 PI undergo stricter follow-up (18).

At present, the expression of Ki-67 PI in clinical practice 
is mainly detected through immunohistochemical (IHC) 
analysis of postoperative specimens. However, sampling 
error, delays, and the high cost of IHC analysis reduce the 
value of Ki-67 PI in preoperative evaluation and treatment 
planning of patients with meningioma (20). In contrast, 
radiomics, which involves analyzing the distribution and 
relationship of pixel or voxel gray levels in the lesion area, 
has been used to quantitatively assess tumor heterogeneity in 
more detail than has visual evaluation (21,22). It can evaluate 
the holistic characteristics of meningioma comprehensively, 
noninvasively, and in a timely manner (23). Previous studies 

showed that analysis using magnetic resonance imaging 
(MRI)–based radiomics features perform well in predicting 
Ki-67 PI of CNS tumors (24,25).

Considering the above cumulatively,  our study 
aimed to develop and validate a classifier and integrate 
radiological characteristics with radiomics features to 
construct a nomogram for preoperatively predicting Ki-
67 PI expression in meningioma. The aim was to provide 
valuable information for predicting the intrinsic clinical and 
biological behavior of meningioma. The following article 
is presented in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-689/rc).

Methods

Patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and approved 
by the ethics board of the First Affiliated Hospital of 
Kunming Medical University (ethics No. 2021-L-6). 
Individual consent for this retrospective analysis was 
waived. The data of consecutive patients with pathologically 
confirmed meningioma who were hospitalized in 2 centers 
between June 2016 and June 2020 were reviewed. Patients 
were included only if they met all of the following criteria: 
(I) received neurosurgery treatment and diagnosed with 
meningioma based on pathology results, (II) underwent 
head MRI scanning within 1 month before neurosurgery, 
(III) underwent postoperative IHC analysis of Ki-67 PI, 
and (IV) accurate results (Ki-67 PI ≤4% was recorded as 
low expression, and Ki-67 PI >4% was recorded as high 
expression) (18,26,27). Patients were excluded if they 
met any of the following criteria: (I) insufficient quality 
of MRI images or (II) incomplete clinical or pathological 
information. Patients from center I were enrolled in the 
training and test cohort, while center II patients were 
enrolled in the external validation cohort.

MRI image acquisition and evaluation

The following MRI scanners were used: center I, Philips 
1.5-Tesla (Achieva, Philips, Amsterdam, The Netherlands); 
and center II, Siemens (Area) 1.5-Tesla (Siemens, Munich, 
Germany). The MRI protocol of center I was as follows: 
T1-weighted imaging [T1WI; repetition time/time to echo 
(TR/TE) =550 ms/15 ms], T2-weighted imaging (T2WI; 
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TR/TE =4,000 ms/100 ms), fluid-attenuated inversion 
recovery (FLAIR; TR/TE/TI =7,000 ms/120 ms/2,200 ms),  
and diffusion-weighted imaging (DWI; TR/TE =2,533 ms/ 
94 ms, b =1,000 s/mm2); apparent diffusion coefficient (ADC) 
maps were automatically reconstructed and contrast enhanced 
T1-WI was used (CE-T1WI; TR/TE =250 ms/2.5 ms).  
All sequences were acquired with the following range of 
parameters: slice thickness =6 mm, slice spacing =1 mm, 
field of view (FOV) =240 mm × 240 mm, and number of 
excitations (NEX) =1. For contrast medium, gadopentetate 
Di meglumine (Gd-DTPA) was injected into the cubital vein 
using a high-pressure syringe at a dose of 0.2 mmol/kg and a 
rate of 2.0 mL/s.

Radiological characteristics were assessed randomly 
by 2 radiologists (YL and YHG) with more than 8 years’ 
experience in CNS radiology. Both were blinded to the 
histopathological information of patients. Any disagreement 
was resolved through consultation. 

IHC analysis

The surgical specimens were fixed in 10% buffered neutral 
formalin entirely sampled and embedded in paraffin, and 
5-µm sections were stained with hematoxylin and eosin 
(HE). Ki-67 PI was recorded as the percentage of positively 
labeled tumor nuclei with Ki-67 monoclonal antibody per 
1,000 tumor cells. Tumor grading was classified according 
to the 2016 WHO classification (3). 

Tumor segmentation and radiomics feature extraction

The axial CE-T1WI images of all patients were imported 
into IBEX radiomics software (version 1.0, http://bit.
ly/IBEX_MDAnderson) with the DICOM format. The 
tumor contours were manually delineated using outermost 
boundaries slice by slice. Two regions of interest (ROIs) 
were independently delineated by two radiologists (ZQO 
and YZ) and reviewed by a senior radiologist (XJS) with 
more than 30 years’ experience in CNS radiology. Before 
extraction of radiomics features, resample voxel size and a 
Laplacian filter were used to preprocess these delineated 
ROIs. In total, 838 radiomics features were extracted 
by IBEX from 3 categories, including (I) shape and size 
features, (II) first-order statistics features, and (III) texture-
based features, which were calculated from gray-level co-
occurrence matrix (GLCM) and gray-level run-length 
matrix (GLRLM). 

Radiomics feature selection and model construction

To avoid dimensional disarray and choose related features 
that made a major contribution to the predictive models, 
a 4-stage feature selection was performed. First, the inter-
operator reproducibility of 2 ROIs was evaluated using 
the intraclass correlation coefficient (ICC) (28). Radiomics 
features with an ICC value >0.75 were categorized as good 
agreement with high reproducibility. Second, the radiomics 
features with an ICC value >0.75 were normalized using 
Z-scores to eliminate differences introduced due to value 
scales. Then, the normalized data were randomly divided 
into training and test cohorts using a random function with 
a 7:3 ratio. Third, the radiomics features of the training 
cohort were preliminarily screened using 1-way analysis 
of variance (ANOVA). Finally, a least absolute shrinkage 
and selection operator (LASSO) binary logistic regression 
and 10-fold cross-validation were conducted to select the 
effective radiomics features with nonzero coefficients in the 
training cohort. 

After the above steps were conducted, the features 
selected by the training cohort were entered into the 
following classifiers to construct a radiomics signature: 
logistic regression (LR), decision tree (DT), support 
vector machine (SVM), and adaptive boost (AdaBoost). 
Additionally, the 4 classifiers were internally validated in 
the test cohort. In addition, radiological characteristics with 
significant differences were combined with the radiomics 
signature to construct a combined model. Based on the 
combined model, a radiomics nomogram was constructed 
to preoperatively quantify the risk of Ki-67 high expression 
in patients with meningioma. The formula of the radiomics 
score was fitted using the linear combination of the selected 
features, which were weighted by their LASSO coefficients. 
For the specific methods, refer to Wu et al. (29). Finally, 
the radiomics score was included in the nomogram to 
calculate the risk of high expression Ki-67 in patients with 
meningioma.

External validation and model evaluation

The data obtained from center II were normalized with 
Z-scores to perform external validation of the above 
models. Receiver operating characteristic (ROC), area 
under curve (AUC), sensitivity, specificity, and accuracy 
were used to evaluate the performances of the prediction 
models. Moreover, a decision curve (DC) was used to 
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compare the overall net benefits between the radiology 
signature, radiomics signature, and the combined model. A 
calibration curve (CC) was used to evaluate the reliability of 
the nomogram.

The workflow is shown in Figure 1.

Statistical analysis

The sample size of our study was determined using binormal 

ROC curve analysis, which was performed using diagnostic 
accuracy studies in PASS software (version 15.0; NCSS 
LLC, Kaysville, UT, USA; https://www.ncss.com). Statistical 
analysis was performed using SPSS software (version 23.0; 
IBM Corp, Armonk, NY, USA) and the R software package 
(version 4.0.2; The R Foundation for Statistical Computing, 
Vienna, Austria; https://www.r-project.org). Differences in 
clinical characteristics were assessed by t-test, chi-squared 
test, or Fisher exact test, as appropriate, and a 2-sided P value 

Figure 1 Study flowchart. (A) The ROI of Meningioma was delineated in contrast-enhanced T1-weighted imaging. (B) After image 
preprocessing, 3 categories of radiomics features were extracted from the ROI. (C) Four selection steps were applied to all extracted 
radiomics features. (D) A final prediction model was constructed by incorporating both a radiomics and a radiological signature; a receiver 
operating curve and decision curve were generated for further statistical analyses, and a combined nomogram was adopted to present the 
outcomes of prediction to achieve clinical usefulness. ROI, region of interest; ICC, intraclass correlation coefficient; LR, logistic regression; 
DT, decision tree; SVM, support vector machine; AdaBoost, adaptive boost; ANOVA, analysis of variance; ROC, receiver operating 
characteristic; LASSO, least absolute shrinkage and selection operator; DC, decision curve.
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<0.05 was considered statistically significant.

Results

Clinical, pathological, and radiological characteristics of 
patients

A total of 240 eligible patients, including 120 patients with 
high Ki-67 expression and 120 patients with low Ki-67 
expression were enrolled in our study. Among these patients, 
168 cases were randomized to the training cohort, and the 
remaining 72 cases were enrolled in the test cohort. As is 
shown in Table 1, except for expression of Ki-67 PI (P<0.001) 
and postoperative pathological grade (P=0.002 and P=0.011, 
respectively), no significant differences were found between 
groups regarding age and gender in either cohort. Table 2 
shows the radiological characteristic data; only enhanced 
homogeneity showed significant differences in both the 
training and test cohorts (P=0.008 and P=0.009, respectively). 
The above results demonstrated that pathological grade was 
positively correlated with a high expression of Ki-67, which 
is consistent with results of previous studies (18,26,30-32),  
and patients with meningioma with higher Ki-67 PI 
expression were more likely to exhibit less homogeneous/
heterogeneous enhancement on MRI. 

Analysis of radiomics feature

In total, 838 radiomics features were extracted from the CE-

T1WI image. Among these, 783 radiomics features were 
regarded as stable features after being assessed with ICC. 
In all, 622 radiomics features showed significant differences 
between the high and low expression groups according 
to ANOVA. These features were then imported into the 
LASSO regression with 10-fold cross-validation to select 
the most important features (Figure 2). Finally, 14 radiomics 
features with nonzero coefficients were selected (Table 3). 

Predictive performance of the models

The LR classifier demonstrated the best predictive 
performance in the training, test, and validation cohorts, 
with an AUC of 0.784, 0.779, and 0.800, respectively. The 
ROC and predictive performances of the 4 classifiers are 
shown in Figure S1 and Table 4. The odds ratio (OR) and P 
values of the 14 radiomics features are shown in Table S1.  
The combined model achieved the highest predictive 
performance in the training, test, and validation cohorts, 
with an AUC of 0.817, 0.822, and 0.845, respectively 
(Figure 3 and Table 5). Moreover, the DCs showed that the 
combined model consistently exhibited higher overall net 
benefits than did conventional radiological characteristics 
in the training (Figure 3), test, and validation cohorts 
(Figure S2). 

With the coefficients weighted by the LR algorithm, a 
radiomics score was calculated for each patient as follows: 
radiomics score = 16.884 + 0.962 × X1 – 3.176 × X2 – 2.661 × 
X3 – 1.418 × X4 – 7.242 × X5 – 0.418 × X6 + 0 × X7 – 0.922 

Table 1 Clinical and pathological characteristics

Characteristics
Training cohort Test cohort

Ki-67≤4% Ki-67>4% t/χ
2

P value Ki-67≤4% Ki-67>4% t/χ
2

P value

Gender 0.544 0.461 0.071 0.789 

Male 21 (25.0) 17 (20.2) 9 (25.0) 10 (27.8)

Female 63 (75.0) 67 (79.8) 27 (75.0) 26 (72.2)

Age (years) 52.8±11.4 52.6±11.6 −0.067 0.947 52.2±11.9 50.5±15.0 0.549 0.585 

Ki-67 PI (%) 1.82±0.81 7.41±5.74 −6.886 <0.01 2.04±0.83 10.43±8.55 −4.683 <0.001

Pathological grade (WHO) 11.087 0.002 8.824 0.011

I 76 (90.5) 59 (70.2) 33 (91.7) 23 (63.9)

II 8 (9.5) 23 (27.4) 3 (8.3) 8 (22.2)

III 0 (0) 2 (2.4) 0 (0) 5 (13.9)

Numerical data are presented as mean ± standard deviation, categorical data as numbers (%). PI, proliferation index; WHO, World Health 
Organization.

https://cdn.amegroups.cn/static/public/QIMS-22-689-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-689-Supplementary.pdf
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× X8 + 0.717 × X9 + 2.355 × X10 + 0 × X11 + 0.289 × X12 
+ 0 × X13 – 5.429 × X14. A t-test confirmed that there were 
significant differences between Ki-67 PI high expression and 
low expression of the radiomics score in each cohort (Figure 4).

Development and validation of nomogram

The above analysis revealed that the radiomics score and 

enhanced homogeneity were significant predictive factors 

Table 2 Radiological characteristics

Characteristics
Training cohort Test cohort

Ki-67≤4% Ki-67>4% t/χ
2

P value Ki-67≤4% Ki-67>4% t/χ
2

P value

Number of lesions 1.701 0.192 0.860 0.354 

Single 81 (96.4) 77 (91.7) 32 (88.9) 35 (97.2)

Multiple 3 (3.6) 7 (8.3) 4 (11.1) 1 (2.8)

Location 6.655 0.225 5.461 0.242 

Cerebral convexity 55 (65.5) 62 (73.8) 22 (61.1) 17 (47.3)

Deep brain 2 (2.4) 3 (3.6) 0 (0) 0 (0)

Cerebellar hemisphere 11 (13.1) 6 (7.1) 1 (2.8) 3 (8.3)

Peri skull base 6 (7.1) 9 (10.7) 8 (22.2) 8 (22.2)

Cerebellopontine angular 9 (10.7) 3 (3.6) 5 (13.9) 4 (11.1)

Lateral ventricle 1 (1.2) 1 (1.2) 0 (0) 4 (11.1)

Shape 0.867 0.351 0.000 1.000 

Round-like 50 (59.5) 44 (52.4) 20 (55.6) 20 (55.6)

Irregular 34 (40.5) 40 (47.6) 16 (44.4) 16 (44.4)

Peritumoral edema 0.902 0.337 0.900 0.343 

Yes 50 (59.5) 56 (66.7) 18 (50.0) 22 (61.1)

No 34 (40.5) 28 (33.3) 18 (50.0) 14 (38.9)

Enhanced degree 0.256 0.613 0.514 0.473 

Mild/moderate 1 (1.2) 3 (3.6) 0 (0) 2 (5.6)

Marked 83 (98.8) 81 (96.4) 36 (100.0) 34 (94.4)

Enhanced homogeneity 9.665 0.008 9.533 0.009 

Homogeneous 55 (65.5) 37 (44.0) 25 (69.4) 14 (38.8)

Less homogeneous 19 (22.6) 23 (27.4) 9 (25.0) 11 (30.6)

Heterogeneous 10 (11.9) 24 (28.6) 2 (5.6) 11 (30.6)

Diffusion limited 4.550 0.033 0.000 1.000 

Yes 8 (9.5) 18 (21.4) 2 (5.6) 3 (8.3)

No 76 (90.5) 66 (78.6) 34 (94.4) 33 (91.7)

Dural tail sign mater 1.532 0.216 0.223 0.637 

Yes 49 (58.3) 41 (48.8) 20 (55.6) 18 (50.0)

No 35 (41.6) 43 (51.2) 16 (44.4) 18 (50.0)

Maximum diameter 3.66±1.76 4.61±1.81 −3.446 0.001 3.82±1.57 4.26±1.52 −1.226 0.224 

Numerical data are presented as mean ± standard deviation, categorical data as numbers (%).
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of Ki-67 expression in meningioma. The odds ratio (OR) 
and P values of the 2 variables are shown in Table S2.  
To facilitate the use in clinical practice, a nomogram 
was constructed for the combined model (Figure 5). 

In addition, the CCs of the radiomics nomogram 
demonstrated a good agreement between the predictive 
and actual performance of the Ki-67 expression status in 
each cohort (Figure 5). 
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Figure 2 LASSO regression model. (A) Tuning parameter log (λ) selection in the LASSO regression used 10-fold cross-validation via the 
minimum criterion. Dotted vertical lines were drawn at the optimal values by using the minimum criterion and the 1 standard error of 
the minimum criterion, and a value λ of 0.063 was chosen. (B) LASSO coefficient profiles, displaying 622 radiomics features of contrast-
enhanced T1-weighted imaging. A coefficient profile plot was produced against the log (λ) sequence. Finally, 14 radiomics features with 
nonzero coefficients were selected. LASSO, least absolute shrinkage and selection operator.

Table 3 Characteristics of radiomics features

Numbers Sequence Feature type Feature name LASSO coefficient

X1 CE-T1WI Shape Max 3D diameter 0.382

X2 CE-T1WI Shape Spherical disproportion −0.423

X3 CE-T1WI Shape Sphericity 0.058

X4 CE-T1WI Gradient orient histogram 5th percentile −0.133

X5 CE-T1WI Intensity direct Local entropy max −0.497

X6 CE-T1WI Intensity direct 10th percentile −0.037

X7 CE-T1WI Intensity histogram 10th percentile −2.025e-16

X8 CE-T1WI Intensity histogram 10th percentile area −0.324

X9 CE-T1WI GLCM 333-4 correlation 0.009

X10 CE-T1WI GLCM 0-1 correlation 0.548

X11 CE-T1WI GLCM 180-1 correlation 1.993e-14

X12 CE-T1WI GLCM 270-7 correlation −0.419

X13 CE-T1WI GLCM 45-7 difference entropy −1.686e-14

X14 CE-T1WI GLRLM 0 short run low gray-level emphasis −0.661

CE-T1WI, contrast-enhanced T1-weighted imaging; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; 
LASSO, least absolute shrinkage and selection operator.

https://cdn.amegroups.cn/static/public/QIMS-22-689-Supplementary.pdf
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Discussion

In this study, we found the CE-T1WI–based radiomics 
features were predictive of Ki-67 expression in patients with 
meningioma. Subsequently, we developed and validated 
a radiomics nomogram, which combined a radiomics 
signature with radiological features to achieve higher 
sensitivity and accuracy than have previous models for 
individualized prediction of Ki-67 status (33).

The status of Ki-67 expression is recognized as a 
complementary factor, which reflects the biological 
behavior of meningioma. Preoperative assessment of Ki-
67 expression can provide additional information for 
clinical decision-making (17-19,30). Previous studies have 
confirmed that using 4% as the cutoff value of Ki-67 in 
patients with meningioma can predict prognosis (18,26,27). 
However, since evaluation of Ki-67 is easily influenced by 
tumor heterogeneity, the whole specimen, and not only the 
core biopsy specimen, must be evaluated and correlated with 
mitotic count (31). A related study showed that the apparent 
diffusion coefficient (ADC) value of DWI was negatively 
correlated with Ki-67 level in meningioma (34). In another 
study, the metric kurtosis (MK) and radial kurtosis (RK) 
values of diffusion kurtosis imaging (DKI) were positively 
correlated with the Ki-67 level in meningioma (32). It 
appears that these quantitative parameters can be used as 

imaging biomarkers for predicting the expression of Ki-67 
PI in meningioma. However, functional MRI sequences are 
not commonly used in clinical practice and merely provide a 
few quantitative parameters. In contrast, radiomics analysis 
cannot only extract thousands of quantitative radiomics 
features from routinely acquired images but can also 
evaluate the biological behavior of tumors in a timely and 
noninvasive manner (35,36). 

Fourteen effective radiomics features were selected 
to construct classification models in this study. The 
correlations between the selected quantitative radiomics 
features and Ki-67 expression status can be interpreted 
on the basis of the biological behavior of tumors (37). 
Among the selected features, 3 were related to shape and 
size features because higher Ki-67 PI means the faster 
growth of tumors (33,38). In addition, 5 features were first-
order statistical features, including entropy and percentile. 
Entropy, as one of the most representative parameters 
of tumor heterogeneity, can reflect the unpredictability 
of the information content in images (39). In general, 
entropy is positively correlated with signal dispersion, and 
the more scattered the tumor signals are, the stronger the 
uncertainty of the signals and the higher the entropy value 
in the ROI of the tumor (40). Entropy can make up for the 
deficiency of the resolution of the human eyes, which is not 
sufficiently high for identifying tumor heterogeneity in CE-

Table 4 Predictive performance of 4 classifiers

Classifiers Cohort AUC (95% CI) Sensitivity Specificity Accuracy

LR Training 0.784 (0.716–0.852) 69.0% 69.0 % 69.0%

Test 0.779 (0.673–0.886) 63.9% 75.0% 69.4%

Validation 0.800 (0.651–0.949) 75.0% 80.0% 77.5%

DT Training 0.839 (0.781–0.898) 78.6% 79.8% 79.2%

Test 0.605 (0.477–0.733) 58.3% 58.3% 58.3%

Validation 0.764 (0.614–0.913) 60.0% 85.0% 72.5%

SVM Training 0.998 (0.994–1.000) 96.4% 95.2% 95.5%

Test 0.769 (0.648–0.891) 61.1% 75.0% 68.1%

Validation 0.765 (0.601–0.929) 50.0% 95.0% 72.5%

AdaBoost Training 0.732 (0.667–0.797) 61.9% 84.5% 73.2%

Test 0.444 (0.333–0.556) 75.0% 35.0% 55.0%

Validation 0.450 (0.305–0.595) 75.0% 35.0% 55.0%

AdaBoost, adaptive boost; AUC, area under curve; CI, confidence interval; DT, decision tree; LR, logistic regression; SVM, support vector 
machine.
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T1WI images (41). The remaining features are texture-
based features, including GLCM and GLRLM. As the 
second- or higher-order features pairwise relations between 
2 or multi-neighboring pixels, GLCM and GLRLM can 
provide better results (42). It is conceivable that 2 kinds of 
meningioma with different Ki-67 expression statuses have 
a similar distribution of intensities with different spatial 
interrelationships. In such a situation, second- or higher-
order features may be the preferred predictive factors. 

Based on the selected radiomics features, we constructed 
and validated the radiomics models to predict the expression 

status of Ki-67 in meningioma. Among the 4 radiomics 
models, the LR-based model was superior at predicting 
status of Ki-67 expression with AUCs of 0.779 and 0.800 
in the test cohort (internal validation) and validation 
cohort (external validation), respectively. In a recent 
study, a multiparametric MRI-based radiomics model was 
established to predict the Ki-67 expression of meningioma. 
This multiparametric model achieved an excellent 
performance in both the training and internal validation 
cohorts, with AUCs of 0.84 and 0.83, respectively (33).  
However, the robustness of the selected radiomics features 
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and the generalization of the predictive model have not 
been proven due to a lack of external verification. In 
contrast, our result of external validation demonstrated that 
the predictive model established has a good stability and 
is valuable for preliminarily generalization. Furthermore, 

a previous study suggested that multiparametric MRI 
images can provide more radiomics features and achieve 
a better performance in the predictive model (33). 
Therefore, we extracted numerous radiomics features 
from multiparametric MRI images, including T1WI, 
T2WI, FLAIR, ADC, and CE-T1WI, to construct 
relative models for predicting Ki-67 expression in the pre-
experimental setting. Unfortunately, the results showed 
that performances of the multiparametric MRI-based 
models were not as good as that of a CE-TIWI–based 
model even though we tried ANOVA, max-relevance, min-
redundancy (mRMR), and LASSO regression to reduce the 
dimension of radiomics features. The main reason for this 
may be that too many radiomics features extracted from the 
multiparametric images led to poor fitting of the classifiers. 
Additionally, a multiparametric model requires patients to 
undergo additional MRI examinations, which could increase 
patients’ economic burden and hinder clinical practice 
(33,43). By contrast, our study demonstrated that the fewer 
radiomics features were included from CE-T1WI images, 
the better the efficacy was for predicting KI-67 expression 
in meningioma.

To further improve the accuracy and practical value 
of our model, we combined the radiomics signature with 
conventional radiological characteristics to construct a 
nomogram. Interestingly, the conventional radiological 
characteristic formed a good fit with the radiomics signature, 
and the AUCs of the combined model rose to 0.822 and 
0.845 in the test and validation cohorts, respectively. It has 
been suggested that enhanced homogeneity could reflect the 
degree of damage to the blood–brain barrier and identify 

Table 5 Predictive performance of 3 models

Models Cohort AUC (95% CI) Sensitivity Specificity Accuracy

Radiology Training 0.623 (0.547–0.699) 56.0% 65.4% 60.7%

Test 0.682 (0.571–0.794) 61.1% 69.4% 65.3%

Validation 0.649 (0.495–0.802) 55.0% 70.0% 62.5%

Radiomics Training 0.784 (0.716–0.852) 69.0% 69.0% 69.0%

Test 0.779 (0.673–0.886) 63.9% 75.0% 69.4%

Validation 0.800 (0.651–0.949) 75.0% 80.0% 77.5%

Combined Training 0.817 (0.753–0.881) 79.8% 71.4% 75.6%

Test 0.822 (0.727–0.916) 80.6% 75.0% 77.8%

Validation 0.845 (0.708–0.982) 75.0% 85.0% 80.0%

AUC, area under curve; CI, confidence interval.
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Figure 4 A t-test showed significant differences in the radiomics 
scores between the Ki-67+ and Ki-67− groups in the training, 
test, and validation cohorts (training cohort: 0.630±1.097, vs. 
−0.634±1.175, P<0.001; test cohort: 0.722±1.267 vs. −0.484±0.972, 
P<0.001; validation cohort: 1.232±2.270 vs. −0.763±1.867, 
P=0.004); considering all the data, the radiomics scores were 
significantly higher in the Ki-67+ group than in the Ki-67− group; 
**, P<0.01; ***, P<0.001.
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the heterogeneity of meningioma (42) in similar fashion 
to selected radiomics features. Compared with a previous 
study (44), the nomogram we established had a higher 
sensitivity (0.75 vs. 0.31, respectively) and a higher accuracy 
(0.80 vs. 0.56, respectively). In addition, this previous study 
was limited to predicting the status of Ki-67 of I grade 
meningioma (33), while the internal and external validations 
of the present nomogram showed that it has good predictive 
accuracy for Ki-67 status for various meningioma grades. 
Finally, the visual and quantitative prediction of Ki-67 
expression was assessed using logistic regression to weight 
2 predictors, and the usage of the nomogram is shown in 
Figure 6. 

There are several limitations to our study. First, the 

design was retrospective and therefore had potential bias, 
and so additional studies that can prospectively validate our 
radiomics signature are needed. Second, we only validated 
whether the 1.5-Tesla–based model could be suitably 
applied in different machines (other 1.5-Tesla MR scanners) 
but did not validate different field strengths (3.0-Tesla). 
Third, we only constructed the radiomics signature based 
on CE-T1WI images due to the existence of overfitting, 
and further studies should address poor fitting to obtain 
better predictive effectiveness based on multiparametric 
images. Finally, the present study included only a relatively 
small number of participants enrolled from only 2 centers. 
To confirm the generalizability and the stability of the 
predictive model, future studies should be multicentered in 
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Figure 5 Development and validation of the nomogram. (A) The radiomics nomogram based on the training cohort. Calibration curves 
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design and recruit larger samples (35,45).
In conclusion,  the CE-T1WI–based radiomics 

nomogram is a valuable reference tool for the preoperative 
assessment of cell proliferation during the onset of 
meningioma. It can accurately and robustly predict high Ki-
67 expression in meningioma and provide supplementary 
information for accurate medical treatment and clinical 
decisions. However, extensive multicenter validations of the 
proposed approach are required prior to clinical application.
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Supplementary

A B

C D

Figure S1 The ROC curves of LR (A), DT (B), SVM (C), and AdaBoost (D) in the training cohort (blue line), test cohort (red line), and 
validation cohort (green line), respectively. AdaBoost, adaptive boost; AUC,area under curve; DT, decision tree; LR, logistic regression; 
ROC, receiver operating characteristic curve; SVM, support vector machine. 
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A B

Figure S2 The decision curve of the 3 models in the test (A) and validation (B) cohorts.
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Table S1 The logistic regression parameters of the radiomics features

Numbers OR (95% CI) Z value P value

X1 2.618 (0.540-2.701) 1.195 0.232

X2 0.042 (0.000-266.155) −0.711 0.477

X3 0.070 (0.000-1124.381) −0.538 0.590

X4 0.242 (0.045-1.294) −1.659 0.097

X5 0.001 (0.000-1.938) −1.796 0.073

X6 0.658 (0-5.655e+56) −0.006 0.995

X7 NA NA NA

X8 0.398 (0-4.481e+55) −0.014 0.989

X9 2.048 (0.956-4.388) 1.844 0.065

X10 10.535 (0.232-478.233) 1.210 0.226

X11 NA NA NA

X12 1.335 (0.186-9.571) 0.288 0.774

X13 NA NA NA

X14 0.004 (0.000-1.318) −1.865 0.062

CI, confidence interval; NA, not applicable; OR, odds ratio. 

Table S2 The logistic regression parameters of the nomogram variables

Variables OR (95% CI) Z value P value

Radiomics score 2.923 (2.031-4.208) 5.771 <0.001

Enhanced homogeneity 2.287 (1.413-3.701) 3.369 0.001

CI, confidence interval; OR, odds ratio.


