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Background: This study developed and validated an ultrasound nomogram based on conventional 
ultrasound and dual-mode elastography to differentiate breast masses.
Methods: The data of 234 patients were collected before they underwent breast mass puncture or surgery 
at 4 different centers between 2016 and 2021. Patients were divided into 5 datasets: internal validation 
and development sets from the same hospital, and external validation sets from the 3 other hospitals. In 
the development cohort, age and 294 different ultrasound and elastography features were obtained from 
ultrasound images. Univariate logistic regression and least absolute shrinkage and selection operator (LASSO) 
regression were used for data reduction and visualization. Multivariable logistic regression analysis was used 
to develop the prediction model and ultrasound nomogram. Receiver operating characteristic (ROC) curve 
analysis, calibration curves, integrated discrimination improvement, and the net reclassification index were 
used to evaluate nomogram performance; decision curve analysis (DCA) and clinical impact curves were used 
to estimate clinical usefulness.
Results: In the development cohort, margin, posterior features, shape, vascularity, (the mean shear 
wave elastography value of 1.5 mm surrounding tissues in a breast mass) divided by (the mean shear wave 
elastography value of the breast mass)—shell mean/A mean1.5(E), (the ratio of strain elastography of adipose 
tissue near a breast mass) divided by [the ratio of strain elastography of (the breast mass adds the 1.5 mm  
surrounding tissues in the breast mass)]—B/A'1.5 were selected as predictors in multivariable logistic 
regression analysis, comprising Model 1. Among the 5 cohorts, Model 1 performed best, with areas under 
the curve (AUC) of 0.92, 0.84, 0.87, 0.93, and 0.89, respectively. The AUCs were 0.90, 0.82, 0.83, 0.91, and 
0.85, respectively, in Model 2 (margin + posterior features + shape + vascularity) and 0.80, 0.76, 0.77, 0.87, 
and 0.80, respectively, in Model 3 [shell mean/A mean1.5(E) + B/A'1.5].
Conclusions: Our ultrasound nomograms facilitate exposure to the features and visualization of breast 
cancer. Shell mean/A mean1.5(E), B/A'1.5 integrated with margin, posterior features, shape, and vascularity 
are superior at identifying breast cancer, and are worthy of further clinical investigation.
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Introduction

Among cancers affecting females, breast cancer ranks first 
in incidence (31%) and second in mortality (15%) (1). 
Breast cancer mortality has decreased as treatments have 
improved (2). An effective population-based screening study 
showed that early detection of breast cancer can lead to 
reduced local and distant recurrence rates, as well as better 
5-year survival rate (3). Breast masses can be diagnosed 
via ultrasound, mammography, and magnetic resonance 
imaging (4,5). Although each of these modalities has its 
advantages, ultrasound is particularly attractive due to 
its lack of radiation, high patient acceptance, and ability 
to detect lesions in dense breasts that would otherwise 
be obscured on mammography (6,7). However, the main 
drawbacks of ultrasound are the vast number of false 
positives identified and the low specificity of biopsies. In 
previous studies, the specificity of ultrasound has ranged 
from 60% to 75% (8,9).

Elastography, a new technique, can monitor the 
response of tissue to acoustic energy (10,11). As a breast 
mass progresses, it can affect the stiffness of the tissue, 
providing new imaging targets to assess biological features 
of the disease (12). By detecting the stiffness of the mass 
and its surrounding tissue, strain elastography (SE) and 
shear wave elastography (SWE) can be used to differentiate 
between benign and malignant breast masses, improving the 
efficiency and accuracy of breast cancer detection (13-15). 

The “shell” is defined as the tissue surrounding breast 
masses. Previous studies have investigated the importance of 
different shell sizes (e.g., 1, 2, and 3 mm) in distinguishing 
benign from malignant breast masses (16-20). However, the 
prediction value of different shear modulus values combined 
with SE and conventional ultrasound in differentiating 
benign from malignant breast masses has not been explored. 
Furthermore, some radiologists regard elastography as 
an unreliable method for which they are unsure how 
to interpret results; consequently, they are hesitant to 
use elastography in regular practice to diagnose breast  
tumors (21).

To overcome these barriers to using elastography, the 
primary aim of the present study was to develop and validate 
an ultrasound nomogram based on conventional ultrasound 
and dual-mode elastography for the diagnosis of breast 
masses. A secondary aim was to validate our findings using 
various validation sets. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-22-237/rc). 

Methods

Patients

This retrospective study included patients from 4 different 
hospitals in 4 distinct regions of China. The study period 
was from 2016 to 2021. 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Regional Ethics Board of Shenzhen 
People’s Hospital. All patients provided informed consent.

Initially, 499 patients met the inclusion criteria and 
were enrolled in the study. Specifically, to be eligible for 
inclusion, patients had to have had: (I) an ultrasound-
detected mass; (II) a solid or nearly solid (<20% cystic) 
mass; (III) a mass between 5 and 50 mm in size; (IV) at least 
a 3-mm tissue margin surrounding the lesions; and (V) 
surgery or biopsy within a week after ultrasound detection 
of the mass.

Patients were excluded if they had no pathology results 
(n=15), lacked clinical information (n=6), had unsatisfactory 
elastography images (n=7), had received neoadjuvant 
chemotherapy (n=3), and/or had missing values for 
elastography data (n=234), leaving 234 patients for analysis. 
These 234 patients were separated into 5 datasets according 
to hospital: the internal validation and development 
sets came from the same hospital, whereas the external 
validation sets came from the 3 other hospitals. 

Patient inclusion and exclusion pathways are shown in 
Figure S1.
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Image acquisition

For image acquisition, patients were placed in the supine 
position with the breast fully exposed. Sonographers noted 
the size, shape, margin, echogenicity, posterior features, and 
vascularity of the suspected mass using a Mindray Resona 7 
(L11-3U probe) (Mindray, Shenzhen, China).

Conventional ultrasound features are based on the 
American College of Radiology descriptions (22). In the 
present study, the final conventional ultrasound features 
considered included the following: shape (regular =0; 
irregular =1); margin (distinct =0, indistinct =1); echo 
(saccadic echo =0, iso-echo =1, heterogeneous echo =2, 
hypo-echo =3); posterior features (enhancement =0; 
no posterior acoustic features =1; shadowing =2); and 
vascularity (no =0; little =1, rich =2).

During SWE measurements ,  probes were kept 
perpendicular to the skin and the skin was touched gently 
with as little additional pressure as possible. A shear wave 
quality mode quality control chart (QCC) was used to assess 
the reliability of the SWE image. When 95% of the QCC 
was filled with green (indicating high quality of the SWE 
image) and the largest diameter was located, the image 
was stored for further analysis. Then, the breast mass was 
segmented and the edge was outlined manually. The tissue 
surrounding the edge of the breast mass was automatically 
circled to obtain Young’s modulus (E), shear wave velocity 
(Cs), and shear modulus (G) data for –0.5-, 0.5-, 1.0-, 1.5-, 
2.0-, 2.5-, and 3.0-mm shells.

D u r i n g  S E  m e a s u r e m e n t s ,  p r o b e s  w e r e  k e p t 
perpendicular to the skin and the skin was gently touched 
with as little additional pressure as possible. Images were 
saved after 3 seconds of image stabilization. For image 
analysis, the breast mass was segmented and the edge was 
outlined manually, and, as a reference point, the adipose 
tissue was manually delineated at the same depth as the 
mass. The tissue surrounding the edge of the breast mass 
was automatically circled to obtain the strain ratios for –0.5-,  
0.5-, 1.0-, 1.5-, and 2.0-mm shells.

In summary, we gathered E, Cs, and G data for –0.5-,  
0.5-, 1.0-, 1.5-, 2.0-, 2.5-, and 3.0-mm shells (i.e., tissue 
surrounding the breast mass), A (mass), and A' (shell + 
mass), as well as for –0.5-, 0.5-, 1.0-, 1.5-, and 2.0-mm 
shells, A, B (adipose tissue near the lesions), and A' on SE. 
In all, 287 ultrasound elastography features were included 
for analysis.

The image acquisition process is shown in Figure 1.
In this study, ultrasound images were captured, stored, 

and analyzed by sonographers with 5 years of experience in 
breast ultrasound at 4 centers. The senior sonographer-F.D, 
with 15 years of breast ultrasound experience, then assessed 
image quality and analysis findings. To reduce the impact of 
subjective factors, a single-blinded approach was adopted, 
meaning that until the 5 sonographers had acquired and 
analyzed the images or evaluated them, they were unaware 
of the patients’ pathology findings and other imaging data.

Statistical analysis

Normally distributed continuous variables were presented 
as the mean ± SD, whereas categorical data were presented 
as numbers and percentages.

Statistical  analyses were performed using R (R 
Foundation for Statistical Computing, Vienna, Austria). 
Univariable logistic regression was used to select 
conventional ultrasound features. The R packages “glmnet”, 
“rms”, “pROC”, “ggplot2”, “rmda”, and “nricens” were 
used for least absolute shrinkage and selection operator 
(LASSO) regression (23), to draw nomograms, receiver 
operating characteristic (ROC) curves, decision curve 
analysis (DCA), and clinical impact curves, as well as to 
calculate the net reclassification index (NRI), respectively. It 
is important to note that for SWE and SE features, LASSO 
regression was performed and the variable with the highest 
lamda value was chosen for the multivariable logistic 
regression analysis.

Multivariate logistic regression was used in the 
development cohort to calculate the prediction model. To 
provide physicians with a quantitative and visual tool to 
predict the incidence of individual breast cancer, we built 
an ultrasound nomogram based on multivariate logistic 
analysis in the development cohort (24).

Prediction performance of the nomogram

First, we used data from the 4 validation cohorts to draw 
calibration curves, and the calibration performance of the 
nomogram was assessed using the unreliability test. Second, 
the area under the curve (AUC), integrated discrimination 
improvement (IDI) (25), and NRI were used to evaluate the 
model in the development and validation cohorts. 

Clinical use

DCA can obtain one-to-one correspondence between 
threshold probability and net benefit value, and can also 

https://www.sciencedirect.com/topics/medicine-and-dentistry/radiology
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draw this relationship as a line graph (26). DCA and 
clinical impact curves were used to evaluate the additional 
diagnostic value of dual-mode elastography.

Results

Patient characteristics

The study initially included a total of 499 breast mass 

samples. After application of the exclusion criteria,  
234 patients were retained the data analysis.

The development cohort consisted of 116 patients 
(mean age 44.9±13.7 years) and 116 lesions (58 benign, 
58 malignant). The Breast Imaging-Reporting and Data 
System (BI-RADS) was used to classify benign and 
malignant breast masses in the development cohort. Of 
the benign breast masses, 35 (60.3%) were BI-RADS 3, 11 

Figure 1 A 59-year-old woman with invasive ductal carcinoma. (A,B) There is a mass at 10 o'clock in the right breast, with a length of 
approximately 12 mm, irregular shape, indistinct margin, heterogeneous echo, no posterior acoustic features, and rich vascularity within 
the mass. (C) The value of the shell mean/A mean1.5(E) is 1.16; the area between the red and white lines is the shell, which is 1.5 mm.  
(D) The value of B/A'1.5 is 3.35; the area between the green and white lines is the shell, which is 1.5 mm. According to the nomogram, 
the probability of breast cancer is 0.88. shell mean/A mean1.5(E): (in Young’s modulus, the mean shear wave elastography value of 1.5 mm 
surrounding tissues in a breast mass) divided by (in Young’s modulus, the mean shear wave elastography value of the breast mass). B/A'1.5: 
(the ratio of strain elastography of adipose tissue near a breast mass) divided by (the ratio of strain elastography of (the breast mass adds the  
1.5 mm surrounding tissues in the breast mass).

A B

C

D
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(19.0%) were BI-RADS 4A, 8 (13.8%) were BI-RADS 4B, 
and 4 (6.9%) were BI-RADS 4C. Of the malignant breast 
masses 1 (1.7%) was BI-RADS 3, 8 (13.8%) were BI-RADS 
4A, 8 (13.8%) were BI-RADS 4B, 40 (69.0%) were BI-
RADS 4C, and 1 (1.7%) was BI-RADS 5.

The internal validation cohort consisted of 24 patients 
(mean age 46.2±13.8 years) and 24 lesions (13 benign, 
11 malignant). There were 3 external validation cohorts. 
Cohort 1 consisted of 35 patients (mean age 40.7±11.7 years)  
and 35 lesions (19 benign, 16 malignant); Cohort 2 
consisted of 29 patients (mean 44.3±12.4 years) and  
29 lesions (16 benign, 13 malignant); Cohort 3 consisted 
of 30 patients (mean age 46.3±11.2 years) and 30 lesions  
(14 benign, 16 malignant).

Patient characteristics in the development and validation 
cohorts are provided in Table 1.

Selection of ultrasound features

According to univariable logistic regression, posterior 
features [if=2, odds ratio (OR) 22.65, 95% confidence 
interval (CI): 7.62–77.88], shape (if=1, OR 11.36, 95% 
CI: 4.27–36.27), margin (if=1, OR 26.70, 95% CI 10.40–
76.95), vascularity (if=2, OR 10.33, 95% CI: 3.50–4.65) 
are appropriate predictors because their OR values are 
higher than that of age (OR 1.09, 95% CI: 1.05–1.14; 
Table 1). Based on the results of LASSO regression, 264 
SWE features were reduced to 7 (Figure S2A,S2B) and 
23 SE features were reduced to 1 (Figure S2C,S2D) in 
the development cohort. Finally, in Young’s modulus, 
(the mean shear wave elastography value of 1.5 mm 
surrounding tissues in a breast mass) divided by (the mean 
shear wave elastography value of the breast mass)-shell 
mean/A mean1.5(E), (the ratio of strain elastography of 
adipose tissue near a breast mass) divided by [the ratio of 
strain elastography of (the breast mass adds the 1.5 mm 
surrounding tissues in the breast mass)]—B/A'1.5, posterior 
features, shape, margin, and vascularity were used to 
construct Model 1, the nomogram (Table 2).

Ultrasound nomogram and prediction models

The diagnostic performance of the different variables used 
in Model 1 is presented in the Table S1. Model 1 included 
all the selected features [i.e., margin + posterior features + 
shape + vascularity + shell mean/A mean1.5(E) + B/A'1.5]; 
the nomogram according to Model 1 is plotted in Figure 2.  
To better compare the diagnostic value of dual-mode 

elastography imaging in breast masses, we built another  
2 models: Model 2 contained margin + posterior features 
+ shape + vascularity and Model 3 contained shell mean/A 
mean1.5(E) + B/A'1.5.

Model validation

Using data from the development and validation cohorts, 
we performed ROC curve analysis for the 3 models (Table 2;  
Figure 3) and used the validation data to draw calibration 
curves (Figure 4). Table 2 presents the sensitivity and 
specificity of cut-off values determined using each of the  
3 models in all 5 cohorts (development, internal validation, 
and external Cohorts 1, 2, and 3). Across the 5 cohorts, 
Model 1 had the best AUC compared to Model 2 and 
Model 3.

Across the 5 cohorts, Model 1 obviously improved the 
reclassification performance compared with Models 2 and 3, 
with the results presented in Table 3.

Prediction performance of the nomogram

As shown in the DCA (Figure 5), although the threshold 
probability is 0.4, all models performed better than all-
negative samples or all-positive samples. This also reveals 
that, when the high risk threshold above 0.6, the Model 1  
had the highest net benefit among the 3 models. In addition, 
the clinical impact curve of Model 1 performed best.

Discussion

We have developed and validated a diagnostic nomogram 
based on conventional ultrasound and dual-mode 
elastography ultrasound to differentiate between benign 
and malignant breast masses. The nomogram combines 
2 elastography features with 4 conventional ultrasound 
features. The accuracy of differentiating between benign 
and malignant breast masses is greatly improved by dual-
mode elastography ultrasound.

In this study, 264 SWE features were reduced to 7 
features and 23 SE features were reduced to 1. The number 
of survivals and deaths should be more than 10-fold the 
number of variables used to generate the nomogram 
in order to lower the predicted error in the prediction 
probability to <10% (24). In particular, our case load was 
too small to build a 12-variable logistics model because the 
number of case samples needed to be more than 10-fold  
the number of control samples (24). So, we only chose 

https://cdn.amegroups.cn/static/public/QIMS-22-237-Supplementary.pdf
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Table 1 Patient characteristics in the development and validation cohorts

Characteristics
Development cohort

Validation cohorts

Internal External 1 External 2 External 3

Benign (n=58) Malignant (n=58) P value OR (95% CI) Benign (n=13) Malignant (n=11) Benign (n=19) Malignant (n=16) Benign (n=16) Malignant (n=13) Benign (n=14) Malignant (n=16)

Age (years)a 38.53±12.18 51.33±12.22 1.09 (1.05–1.14) 39.62±10.21 54.00±13.90 35.68±9.24 46.69±11.75 41.94±12.57 47.23±11.97 41.86±11.04 50.19±10.13

Size of mass (mm)a 16.71±6.70 18.14±7.35 0.27 18.92±8.77 25.45±11.63 17.01±7.50 21.58±21.58 16.26±8.10 24.20±10.14 18.41±6.87 21.10±8.31

Shapeb <0.01

Regular 30 (85.7) 5 (14.3) 3 (100.0) 0 (0) 10 (83.3) 2 (16.7) 7 (87.5) 1 (12.5) 8 (88.9) 1 (11.1)

Irregular 28 (34.6) 53 (65.4) 11.36 (4.27–36.27) 10 (47.6) 11 (52.4) 9 (39.1) 14 (60.9) 9 (42.9) 12 (57.1) 6 (28.6) 15 (71.4)

Marginb <0.01

Distinct 50 (82.0) 11 (18.0) 8 (88.9) 1 (11.1) 11 (73.3) 4 (26.7) 10 (100.0) 0 9 (100.0) 0 

Indistinct 8 (14.5) 47 (85.5) 26.70 (10.40–76.95) 5 (33.3) 10 (66.7) 8 (40.0) 12 (60.0) 6 (31.6) 13 (68.4) 5 (23.8) 16 (76.2)

Echob <0.01

Saccadic echo 2 (3.5) 0 2 (15.4) 0 3 (15.8) 0 2 (12.5) 1 (7.7) 2 (14.3) 0

Iso-echo 20 (34.5) 3 (5.2) 8.64×105 (2.36×10–64–NA) 7 (53.8) 3 (27.3) 6 (31.6) 2 (12.5) 5 (31.3) 3 (23.1) 6 (42.9) 3 (18.8)

Heterogeneous echo 17 (29.3) 17 (29.3) 5.76×106 (4.90×10–64–NA) 1 (7.7) 3 (27.3) 8 (42.1) 5 (31.3) 6 (37.5) 2 (15.4) 4 (28.6) 4 (25.0)

Hypo-echo 19 (32.8) 38 (65.5) 1.15×107 (8.98×10–64–NA) 3 (23.1) 5 (45.5) 2 (10.5) 9 (56.3) 3 (18.8) 7 (53.8) 2 (14.3) 9 (56.3)

Posterior featuresb <0.01

Enhancement 37 (84.1) 7 (15.9) 2 (22.2) 7 (77.8) 16 (57.1) 12 (42.9) 14 (77.8) 4 (22.2) 13 (48.1) 14 (51.9)

No posterior acoustic features 14 (40.0) 21 (60.0) 7.93 (2.88–24.14)

Shadowing 7 (18.9) 30 (81.1) 22.65 (7.62–77.88) 11 (73.3) 4 (26.7) 3 (42.9) 4 (57.1) 2 (18.2) 9 (81.8) 1 (33.3) 2 (66.7)

Vascularityb 0

None 22 (66.7) 11 (33.3) 8 (72.7) 3 (27.3) 15 (78.9) 4 (21.1) 11 (25.0) 3 (75.0) 6 (85.7) 1 (14.3)

A little 30 (65.2) 16 (34.8) 1.07 (0.42–2.79)

Rich 6 (16.2) 31 (83.8) 10.33 (3.50–4.65) 5 (38.5) 8 (61.5) 4 (25.0) 12 (75.0) 5 (33.3) 10 (66.7) 8 (37.8) 15 (65.2)

Pathology

Intraductal papilloma 3 (5.2) 1 (7.7) 1 (5.3) 1 (7.1)

Atypical hyperplasia 3 (5.2) 0 1 (5.3) 1 (6.25) 0 

Mammary duct expansion 1 (1.7) 2 (15.4) 0 0 

Inflammation 1 (1.7) 1 (7.7) 0 1 (6.25) 1 (7.1)

Adenosis 10 (17.2) 2 (15.4) 5 (26.3) 4 (25.0) 2 (14.3)

Fibroadenoma 40 (70.0) 7 (53.8) 12 (63.2) 10 (62.5) 10 (71.4)

Ductal carcinoma in situ 1 (1.7) 2 (18.2) 0 1 (7.7) 2 (12.5)

Invasive ductal carcinoma 53 (91.4) 7 (63.6) 14 (87.5) 12 (92.3) 14 (87.5)

Lymphoma 0 0 1 (6.3) 0 

Mucinous carcinoma 2 (3.4) 0 0 0 

Breast invasive lobular carcinoma 2 (3.4) 2 (18.2) 1 (6.3) 0 
a
, continuous variables are presented as the mean ± SD and were compared using t-tests. 

b
, categorical variables are presented as n (%) and were compared using chi-squared tests. SD, standard deviation; NA, missing value.
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the maximum coefficient correlation variable in the shear 
wave elastography and the strain elastography into the 
multivariable logistic model based on the results of LASSO 
regression. Surprisingly, Model 1 outperformed Models 2 
and 3 in terms of AUC, sensitivity, and specificity across all 
5 data cohorts. This demonstrates that the ability of Model 
1 to predict breast cancer is credible, reducing biopsies and 
the physical and mental toll on patients.

Studies have shown that elastography plays an important 
role in discriminating breast masses (27-29). Zhang et al. (20)  
found that G and Cs parameters of SWE can guide the 
differentiation of benign and malignant breast masses. Xie 
et al. (16) showed that the shell of maximum elastography 

value (Emax) can help to identify breast masses. Xu et al. (18)  
reported that within a shell range of 1–3 mm, the 2.5-mm  
Emax shell performs best in the differential diagnosis 
of non-mass lesions in the breast. Yang et al. (17) found 
that among the 1-, 2-, and 3-mm shells, the 3-mm shell 
combination of Emax and minimum elastography value 
(Emin) differentiated breast masses most effectively. 
However, to the best of our knowledge, the proportions 
of the maximum, minimum, mean, and standard deviation 
of different shells and lesions in E, Cs, and G, such as (the 
mean shear wave elastography value of 1.5 mm surrounding 
tissues in a breast mass) divided by (the mean shear wave 
elastography value of the breast mass), have not been 

Table 2 Diagnostic performance of multivariable combined diagnosis

Model Cut-off Sensitivity (%) Specificity (%) AUC 95% CI

Development cohort

Model 1 0.51 87.9 86.2 0.92 0.87–0.97

Model 2 0.65 81.0 89.7 0.90 0.84–0.96

Model 3 0.62 63.7 91.4 0.80 0.71–0.88

Internal validation cohort

Model 1 0.73 90.9 76.9 0.84 0.66–1.00

Model 2 0.48 100.0 61.5 0.82 0.65–0.99

Model 3 0.50 100.0 53.8 0.76 0.55–0.96

External validation cohort 1

Model 1 0.44 87.5 68.4 0.87 0.75–0.98

Model 2 0.48 87.5 63.2 0.83 0.70–0.96

Model 3 0.55 68.8 89.5 0.77 0.60–0.95

External validation cohort 2

Model 1 0.62 100.0 75.0 0.93 0.84–1.00

Model 2 0.78 92.3 87.5 0.91 0.80–1.00

Model 3 0.64 92.3 81.3 0.87 0.74–1.00

External validation cohort 3

Model 1 0.70 100.0 71.4 0.89 0.77–1.00

Model 2 0.80 93.8 78.6 0.85 0.69–1.00

Model 3 0.42 87.5 71.4 0.80 0.63–0.97

Model 1 consisted of margin, posterior features, shape, vascularity, shell mean/A mean1.5(E), and B/A'1.5. Model 2 consisted of margin, 
posterior features, shape, and vascularity. Model 3 consisted of shell mean/A mean1.5(E) and B/A'1.5. shell mean/A mean1.5(E): (in 
Young’s modulus, the mean shear wave elastography value of 1.5 mm surrounding tissues in a breast mass) divided by (in Young’s 
modulus, the mean shear wave elastography value of the breast mass). B/A'1.5: (the ratio of strain elastography of adipose tissue near 
a breast mass) divided by (the ratio of strain elastography of (the breast mass adds the 1.5 mm surrounding tissues in the breast mass). 
AUC, area under the curve; CI, confidence interval.
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Figure 2 Breast cancer rate nomogram. The ultrasound nomogram was developed in the development cohort, with margin, posterior 
features, shape, vascularity, shell mean/A mean1.5(E), and B/A'1.5. shell mean/A mean1.5(E): (in Young’s modulus, the mean shear wave 
elastography value of 1.5 mm surrounding tissues in a breast mass) divided by (in Young’s modulus, the mean shear wave elastography value 
of the breast mass). B/A'1.5: (the ratio of strain elastography of adipose tissue near a breast mass) divided by (the ratio of strain elastography 
of (the breast mass adds the 1.5 mm surrounding tissues in the breast mass).

studied yet. We examined the significance of these factors 
in the ultrasound detection of breast cancer, and found that 
the combination of shell mean/A mean1.5(E) and B/A'1.5 
performed best in the diagnosis of breast masses. 

In terms of using conventional ultrasound to diagnose 
breast masses, many studies have used BI-RADS (30-32);  
however,  the AUCs in those studies ranged from 
approximately 0.79 to 0.83, which is not that different 
from the AUC of Model 2 in the present study. In the 
present study, the conventional ultrasound features were 
derived from the fifth edition of the BI-RADS lexicon, so 
Model 2 (margin, posterior features, shape, and vascularity) 
can represent the results of BI-RADS classification to a 
certain extent. Furthermore, the diagnostic AUC value of 
the BI-RADS classification is 0.90, lower than that of the 
nomogram derived from the present study. In addition, it 
has been shown that for BI-RADS categories, the highest 
concordance was typically found in the benign group, 
with generally lower concordance in the malignant and 
suspicious groups (33). Therefore, we used conventional 
ultrasound features and color Doppler features instead of 
the BI-RADS classification to construct our model.

Age is known to play a significant role in predicting 
breast cancer (34). However, according to univariate 

logistic regression analysis, the OR for age is 1.091, which 
is much lower than the ORs for margin, shape, vascularity, 
and posterior features. Therefore, age was not included in 
the multivariate logistic regression analysis in this study. 
A possible explanation for this strange phenomenon may 
be that Shenzhen is a young one, and most of the patients 
treated at the Shenzhen People’s Hospital are young. 
Another reason could be that our case load was too small, 
indicating that the study should be repeated with a larger 
sample size.

In the development cohort, Model 1 reduced the rate 
of misdiagnosis of benign and malignant breast masses, 
with an estimated net gain of 3.85–34.08% of patients 
compared with Model 2. This finding implies that dual-
mode elastography can help with breast cancer diagnosis. 
Moreover, compared with Model 3, Model 1 lowered 
the rate of incorrectly diagnosed benign and malignant 
breast masses, with an estimated net gain of 35.08–75.26% 
of patients. We used the IDI to reflect the overall 
improvement of the model (25). In the development cohort, 
Model 1 had a better prediction ability than Model 2 based 
on the IDI of Model 1 versus Model 2, which was 4.04% 
(P=0.05). All these results were well validated in all the 
validation cohorts, which supports the wide applicability of 
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Figure 3 ROC curves of the (A) development, (B) internal validation, and (C-E) external validation cohorts (C, Cohort 1; D, Cohort 2; 
E, Cohort 3). Red, green, and blue lines indicate Models 1, 2, and 3, respectively. Model 1 consisted of margin, posterior features, shape, 
vascularity, shell mean/A mean1.5(E), and B/A'1.5. Model 2 consisted of margin, posterior features, shape, and vascularity. Model 3 consisted 
of shell mean/A mean1.5(E) and B/A'1.5. shell mean/A mean1.5(E): (in Young’s modulus, the mean shear wave elastography value of 1.5 mm 
surrounding tissues in a breast mass) divided by (in Young’s modulus, the mean shear wave elastography value of the breast mass). B/A'1.5: 
(the ratio of strain elastography of adipose tissue near a breast mass) divided by (the ratio of strain elastography of (the breast mass adds the  
1.5 mm surrounding tissues in the breast mass). ROC, receiver operating characteristic.

our results.
To assess clinical value, we used DCA and clinical 

impact curves (26) because the aforementioned results were 
explored with statistical rigor. The results of these analyses 
showed that the net benefit rate of Model 1 was higher 
than those of Models 2 and 3, suggesting that Model 1 has 
better clinical utility and is worthy of consideration for  
clinical use.

This study has several limitations. First, retrospective 
study designs have inherent limitations, such as selection 
bias and recall bias. In addition, our case load was too small. 

Finally, shell functionality was limited to 1 instrument, 
which is not conducive to the generalization of the results.

Conclusions

Our ultrasound nomograms provide exposure to the 
features and visualization of breast cancer. Dual-mode 
elastography plays an important role in the diagnosis of 
breast cancer; in particular, shell mean/A mean1.5(E),  
B/A'1.5 integrated with margin, posterior features, shape, 
and vascularity may be more helpful in differentiating breast 
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Figure 4 Calibration curves in the internal validation cohort (A1,B1,C1) and external validation cohorts 1 (A2,B2,C2), 2 (A3,B3,C3), and 
3 (A4,B4,C4). (A-C) Calibration curves for Models 1 (A), 2 (B), and 3 (C). P>0.05 as the standard, all the models mentioned above passes 
unreliability test.

Table 3 The net reclassification index and integrated discrimination improvement in the five cohorts

Cohort
NRI (%) categorical  

(95% CI)
P value

NRI (%) continuous  
(95% CI)

P value IDI, % (95% CI) P value

Development cohort

Model 1 vs. Model 2 18.97 (3.85, 34.08) 0.01 75.86 (42.19, 109.54) <0.01 4.04 (0.04, 8.01) 0.05

Model 1 vs. Model 3 55.17 (35.08, 75.26) <0.01 131.03 (103.57, 158.50) <0.01 30.42 (22.02, 38.83) <0.01

Internal validation cohort

Model 1 vs. Model 2 30.77 (–2.16, 63.70) 0.07 74.13 (10.16, 138.1) 0.02 4.29 (–3.92, 12.5) 0.31

Model 1 vs. Model 3 30.77 (–2.16, 63.70) 0.07 104.90 (42.03, 167.76) <0.01 20.83 (7.03, 34.63) <0.01

External validation cohort 1

Model 1 vs. Model 2 14.80 (–13.07, 42.67) 0.30 95.40 (37.02, 153.77) <0.01 6.51 (–2.85, 15.87) 0.17

Model 1 vs. Model 3 8.22 (–26.34, 42.79) 0.64 78.29 (19.68, 136.89) 0.01 10.73 (–3.76, 25.21) 0.15

External validation cohort 2

Model 1 vs. Model 2 25.00 (–2.39, 52.39) 0.07 122.12 (68.24, 175.99) <0.01 8.76 (0.78, 16.74) 0.03

Model 1 vs. Model 3 25.00 (–11.75, 61.75) 0.18 97.12 (40.52, 153.71) <0.01 17.65 (2.62, 32.68) 0.02

Table 3 (continued)
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Figure 5 DCA (A) and clinical impact curves of Models 1 (B), 2 (C), and 3 (D) in the development cohort. In the DCA, the y-axis shows 
the net benefit and the x-axis shows the threshold probability. The horizontal black line indicates that all samples were negative, none were 
treated, and the net benefit was 0. The slanting black line means that all the samples are positive, all are treated. Red, blue, and yellow 
lines indicate Models 1, 2, and 3, respectively. On the clinical impact curves, red represents the number of people classified as positive by 
the model under each threshold probability, and the blue represents the number of people who are true positives under each threshold 
probability. DCA, decision curve analysis.

Table 3 (continued)

Cohort
NRI (%) categorical  

(95% CI)
P value

NRI (%) continuous  
(95% CI)

P value IDI, % (95% CI) P value

External validation cohort 3

Model 1 vs. Model 2 28.57 (4.91, 52.24) 0.02 83.93 (23.04, 144.82) 0.01 2.8 (–2.39, 7.98) 0.29

Model 1 vs. Model 3 55.36 (18.93, 91.78) <0.01 114.29 (62.44, 166.13) <0.01 30.01 (12.97, 47.06) <0.01

NRI categorical refers to the net reclassification index (NRI) of clinically meaningful categories (the thresholds are 0.2 and 0.4). For NRI 
continuous, no classifications are considered. Model 1 consisted of margin, posterior features, shape, vascularity, shell mean/A mean1.5(E), 
and B/A'1.5. Model 2 consisted of margin, posterior features, shape, and vascularity. Model 3 consisted of shell mean/A mean1.5(E) and 
B/A'1.5. shell mean/A mean1.5(E): (in Young’s modulus, the mean shear wave elastography value of 1.5 mm surrounding tissues in a 
breast mass) divided by (in Young’s modulus, the mean shear wave elastography value of the breast mass). B/A'1.5: (the ratio of strain 
elastography of adipose tissue near a breast mass) divided by (the ratio of strain elastography of (the breast mass adds the 1.5 mm  
surrounding tissues in the breast mass). CI, confidence interval; IDI, integrated discrimination improvement. 
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masses and are worthy of consideration for clinical use.
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Supplementary

Figure S1 Flowchart of patient selection. US, ultrasound.

Figure S2 LASSO binary logistic regression results of shear wave elastography (A) and strain elastography (C) characteristics. The optimal 
penalization coefficient, λ, of shear wave elastography (B) and strain elastography (D) characteristics was selected by repeated procession of 
the 10-fold cross validation. LASSO, least absolute shrinkage and selection operator.
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Table S1 Diagnostic performance of multivariable diagnosis in the development cohort

Variable Odds ratio (95% CI) Wald P value

Shape =1 3.393 (0.846–15.452) 1.68 0.093

Margin =1 8.742 (2.561–33.294) 3.36 0.001

Posterior features =2 1.828 (0.445–7.289) 0.86 0.389

Vascularity =2 3.705 (1.041–14.333) 1.99 0.047

Shell mean/A mean(1.5)E 6.194 (0.888–57.836) 1.71 0.087

B/A’1.5 1.357 (0.901–2.113) 1.44 0.151


