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Background: The purpose of this study was to develop a deep learning-based system with a cascade feature 
pyramid network for the detection and classification of breast lesions in dynamic contrast-enhanced magnetic 
resonance imaging (DCE-MRI).
Methods: This retrospective study enrolled 191 consecutive patients with pathological confirmed breast 
lesions who underwent preoperative magnetic resonance imaging (MRI) at the Second Affiliated Hospital 
of Xi’an Jiaotong University. Patients were randomly divided into a training set comprising 153 patients 
with 126 malignant and 27 benign lesions and a validation set containing 38 patients with 31 malignant and 
7 benign lesions under 5-fold cross-validation. Two radiologists annotated the location and classification of 
all lesions. After augmentation with pseudo-color image fusion, MRI images were fed into the developed 
cascade feature pyramid network system, feature pyramid network, and faster region-based convolutional 
neural network (CNN) for breast lesion detection and classification, respectively. The performance on large 
(>2 cm) and small (≤2 cm) breast lesions was further evaluated. Average precision (AP), mean AP, F1-score, 
sensitivity, and false positives were used to evaluate different systems. Cohen’s kappa scores were calculated 
to assess agreement between different systems, and Student’s t-test and the Holm-Bonferroni method were 
used to compare multiple groups. 
Results: The cascade feature pyramid network system outperformed the other systems with a mean AP and 
highest sensitivity of 0.826±0.051 and 0.970±0.014 (at 0.375 false positives), respectively. The F1-score of the 
cascade feature pyramid network in real detection was also superior to that of the other systems at both the 
slice and patient levels. The mean AP values of the cascade feature pyramid network reached 0.779±0.152 
and 0.790±0.080 in detecting large and small lesions, respectively. Especially for small lesions, the cascade 
feature pyramid network achieved the best performance in detecting benign and malignant breast lesions at 
both the slice and patient levels. 
Conclusions: The deep learning-based system with the developed cascade feature pyramid network has 
the potential to detect and classify breast lesions on DCE-MRI, especially small lesions.
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Introduction

Breast cancer is the most common cancer in women and 
the leading cause of cancer deaths in women worldwide (1).  
Accurate, early diagnosis has an important impact on 
treatment planning and improving survival rates for breast 
cancer patients (2). Magnetic resonance imaging (MRI) plays 
a significant role in the diagnosis of breast lesions, staging 
of known cancers, screening for high-risk women, and 
evaluation of response to neoadjuvant chemotherapy (3-7). 
Dynamic contrast-enhanced (DCE)-MRI is the backbone 
of breast MRI protocol and is the most sensitive imaging 
technique for the diagnosis of breast cancer, providing 
excellent morphological and semi-quantitative enhancement 
kinetic information, even for dense breast tissue (4,6). 

The American College of Radiology (ACR) introduced 
the Breast Imaging Reporting and Data System (BI-RADS) 
for image diagnostic specifications, which standardizes the 
description, classification, and corresponding treatment 
recommendations of breast MRI (8). Breast lesions are 
classified as 0–6 based on their morphology and type of 
enhancement kinetics, which typically relies on visual 
evaluation and substantial expertise by the radiologist. As 
manual slice-by-slice analysis of breast MR images is both 
time-consuming and error-prone, various computer-aided 
detection (CAD) approaches have been proposed to assist 
radiologists in detecting and reporting the malignancy status 
of breast lesions (9,10). Deep learning (DL), which can 
obtain the best features directly from raw images through 
end-to-end learning (11,12), has been successfully used in 
many CAD systems such as photographic, pathological, 
and radiographic images, and is reported to be promising in 
diverse clinical tasks (13-15). Convolutional neural network 
(CNN) models have been widely used as a common DL 
approach for breast MRI, including segmentation (16), 
detection (17), and classification of lesions (13,18-20),  
as well as prediction of the molecular subtype (21), 
lymph node metastasis (22), and response to therapy (23). 
However, considering its independent clinical application, 
DL needs to simultaneously detect and classify lesions in 
MRI, which has not been well investigated.

The Faster region-based CNN (R-CNN) (24) is a well-
known DL model that is based on a CNN with additional 
components for detecting, localizing, and classifying objects 
in images. Faster R-CNN is employed for the detection 
and classification of breast lesions in mammography, where 
it first learns the regional proposals from mammography, 
from which it then predicts the location and classification 
of the whole images (25). Based on the Faster R-CNN, 
feature pyramid networks (FPNs) with multi-scale and 
pyramidal hierarchy architectures (26) have also been used 
to detect breast masses by reducing the false positive rate 
of DL-based systems without significantly decreasing the 
detection sensitivity (27,28). In addition, to prevent the 
overfitting problems and further reduce false positives, Cai 
et al. (29) proposed a multi-stage detection architecture 
named the cascade model, which consists of a sequence of 
detectors trained with increasing intersection over union 
(IoU) thresholds. Furthermore, the DL-based system with 
cascade FPN (CFPN) has shown promising results in the 
detection of pulmonary nodules (30). We were interested 
to determine how the CFPN performed for the automatic 
detection and classification of breast lesions in DCE-MRI. 

The detection of small breast lesions has always troubled 
radiologists and has been a challenge for CAD systems. 
Therefore, the main goal of this study was to evaluate 
the performance of the CFPN system in detecting and 
classifying breast lesions in DCE-MRI compared to 
Faster R-CNN and FPN systems and to evaluate their 
performance in detecting breast lesions of various sizes. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-22-323/rc). 

Methods

Study population

This retrospective study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was approved 
by the Institutional Review Board of the Second Affiliated 
Hospital of Xi’an Jiaotong University (No. 2018-080). The 
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requirement for informed consent was waived due to the 
retrospective nature of the study. MRI data archives of our 
Picture Archiving and Communication Systems (PACS) 

between 1 January 2016 and 31 July 2020 were searched 
consecutively to identify patients meeting the following 
criteria: (I) underwent DCE-MRI examination within  
7 days before biopsy or surgery; (II) had benign or malignant 
lesions confirmed by biopsy or pathology after surgery; (III) 
did not receive neoadjuvant chemoradiotherapy (NAC) 
before baseline biopsy or DCE-MRI examination. Finally, 
a total of 191 patients with 157 malignant and 34 benign 
lesions were enrolled for analysis, and their clinical and MRI 
features are shown in Table 1. There were no significant 
differences in fibroglandular tissue (FGT), background 
parenchymal enhancement (BPE), and lesion type between 
benign and malignant patients. We randomly divided the 
191 patients into a training set comprising ~153 patients 
with 126 malignant and 27 benign lesions and a validation 
set comprising ~38 patients with 31 malignant and 7 benign 
lesions under 5-fold cross-validation (Table 2). 

Table 1 Clinical and MRI features of the study population

Characteristics Benign (n=34) Malignant (n=157) P value

Age, years, mean (SD) 40.09 (10.8) 48.78 (10.3) <0.001

Lesion size on MRI, mm, mean (SD) 15.03 (4.5) 21.60 (7.8) <0.001

FGT classification, n (%) 0.08

Almost entirely fat 1 (2.9) 0

Scattered FGT 4 (11.8) 33 (21.0)

Heterogeneous FGT 14 (41.2) 71 (45.2)

Extreme FGT marked 15 (44.1) 53 (33.8)

BPE classification, n (%) 0.61

Minimal 7 (20.6) 19 (12.1)

Mild 16 (47.1) 83 (52.9)

Moderate 10 (29.4) 48 (30.6)

Marked 1 (2.9) 7 (4.4)

BI-RADS classification, n (%) <0.001

I 0 0

II 3 (8.8) 0

III 10 (29.4) 3 (1.9)

IV 10 (29.4) 36 (22.9)

V 11 (32.4) 118 (75.2)

Type of lesions, n (%) 0.80

Mass 33 (97.1) 151 (96.2)

Non-mass 1 (2.9) 6 (3.8)

BI-RADS, Breast Imaging Reporting and Data System; BPE, background parenchymal enhancement; FGT, fibroglandular tissue; MRI, 
magnetic resonance imaging; SD, standard deviation. 

Table 2 Training and testing data in each division under 5-fold 
cross-validation

Fold

Training data Testing data

Patients 
number

# Images before/
after augmentation

Patients 
number

# Images 

Fold-1 152 767/5,369 39 195

Fold-2 152 763/5,341 39 199

Fold-3 153 778/5,446 38 184

Fold-4 153 775/5,425 38 187

Fold-5 154 765/5,335 37 197
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MRI protocol

DCE-MRI examination was performed on a 3.0 T system 
(Signa HDxt; GE Medical Systems, Milwaukee, WI, 
USA) with a dedicated 8-channel breast coil. Pre- and 
post-contrast phases were acquired before and after the 
injection of 0.2 mmol/kg body weight of gadolinium-
diethylenetriaminepentaacetic acid (DTPA) (Magnevist, 
Schering, Germany) for 64 s, 128 s, 192 s, 256 s, and  
318 s at a rate of 2.0 mL/s with a power injector followed by 
20 mL saline solution, where the dose of gadolinium-DTPA 
followed (31). We used T1-weighted 3-dimensional (3D) 
fast spoiled gradient-recalled echo sequence with parallel 
imaging (VIBRANT) sequence on the transverse plane 
with the following parameters: repetition time/echo time/
inversion time (TR/TE/TI) =4.4/2.1/125 ms, flip angle 14°, 
matrix size =416×320, section thickness =1.6 mm, and field 
of view =350 mm × 350 mm. The contrast-enhanced MRI 
acquired at 128 s was used for the detection of breast lesions 
as it had the best signal intensity contrast.

Workflow of DL-based analysis

Figure 1 shows the framework for DL-based analysis. The 
proposed DL-based workflow included the annotation of 
breast lesions, the augmentation of training data, and the 
detection and classification by different systems, including 
the Faster R-CNN, FPN, and CFPN systems.

Pre-processing

Two radiologists (W Gao and J Zhong, with 6 and 3 years of 

experience in breast MRI, respectively) who were blinded to 
the clinical information and final pathology independently 
reviewed the MRI data of all patients and selected the 
approximately middle 5 consecutive slices for each breast 
lesion. On each slice, the bounding box was first annotated 
by drawing the minimum circumscribed rectangle of each 
lesion using LabelImg software (https://github.com/tzutalin/
labelimg), then the lesion type was labeled as malignant or 
benign based on the pathological record. 

Considering the limited sample size, the 3-channel 
artificial red, blue, green (RGB) image fusion method 
proposed by Yap et al. (32) was used to increase the training 
data. Specifically, each pseudo-color image was synthesized 
by concatenating the original MRI, the image sharpened 
by the Laplace operator and enhanced by histogram 
equalization. Changing the order of these 3 images with 
full permutation, together with the original MRI, produced 
a total of 7 (A3

3+1=7) pseudo-color images per slice. The 
training and testing images before and after augmentation 
are summarized in Table 2.

Detection and classification with Faster R-CNN, FPN, and 
CFPN system

The pseudo-color images were separately fed into the classical 
Faster R-CNN, FPN, or CFPN system for detection and 
classification of breast lesions. The classical Faster R-CNN 
developed by Ren et al. (24) was used as a comparison for 
detection performance with the other systems. 

As shown in Figure 2A, the FPN and CFPN systems 
shared the same underlying modules, including a backbone 

Figure 1 Workflow of the DL-based analysis, which consists of the annotation of breast lesions, the augmentation of training data by synthesizing 
the pseudo-color images, and the detection and classification by different systems, including the Faster R-CNN, FPN, and CFPN systems. DL, 
deep learning; R-CNN, region-based convolutional neural network; FPN, feature pyramid network; CFPN, cascade feature pyramid network.
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network for feature extraction, an FPN for multi-scale 
feature extraction (Figure 2B), and a region proposal 
network (RPN) for generating proposal boxes (candidate 
detection boxes). However, the prediction networks for 
detecting and classifying breast lesions were different, with 
the basic prediction network (Figure 2C) and the cascaded 
prediction network (Figure 2D) used for the FPN and 
CFPN systems, respectively. 

The shared backbone and FPN modules between the 2 
systems are shown in Figure 2B. Specifically, ResNet101 (33)  
pre-trained on the ImageNet dataset was used as the 
backbone network to extract features from pseudo-color 
images with 5 convolution blocks, 4 of which had residual 
blocks. Feature maps (FMs) of different scales obtained 
from the last 4 convolution blocks (C2, C3, C4, C5) were 
fed into the FPN to generate the integrated multi-scale 
FMs (P2, P3, P4, P5, P6), which were then input into 
the RPN to generate proposal boxes. The anchor sizes in 
the RPN were set as 362, 722, 1442, 2882, 5762 with aspect 
ratios of 1:1, 1:2, and 2:1, according to the statistics of 

lesion dimensions. Other details are summarized in the 
Supplementary methods section (Appendix 1).

For the FPN system, the generated proposal boxes and 
multi-scale FMs were passed into the basic prediction 
network that had 2 output paths (Figure 2C): one for 
detecting breast lesions via bounding box regression, and 
the other for classifying the lesions as benign and malignant. 
To alleviate the class-imbalance issue, the focal loss (34) was 
used to construct the classification loss of the RPN as well 
as the final classification network, as follows: 

( )
( ) ( )

'

focal

1 log ', 1

1 ' log 1 ' , 0

γ

γ

α

α

 − − == 
− − − =

y y y
L

y y y 	
[1]

where y and y' represent the ground-truth labels and 
predicted results of breast lesions. Factor α∈[0,1] was used 
to balance the uneven distribution between benign and 
malignant samples. Parameter γ (generally greater than 
zero) was used to tune the weight between the simple and 
hard samples. A larger γ indicates that more simple samples 

Figure 2 Overview of the proposed DL-based system. (A) Framework of the detection and classification system, with the basic prediction 
network and the cascaded prediction network for the FPN and CFPN systems, respectively. (B) Backbone and feature pyramid structure 
used in both the FPN and CFPN systems. (C) Basic prediction network used in the FPN system. (D) Cascade prediction network used in 
the CFPN systems. “Pool” is region-wise feature extraction, “H” is the network head, “B” is bounding box regression (detection), and “C” is 
classification. “B0” is proposal boxes in all architectures. CFPN, cascade feature pyramid network; DL, deep learning; FPN, feature pyramid 
network; FMs, feature maps. 
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are suppressed and that more difficult samples are focused 
on. In this study, we empirically set the values of α and γ as 
0.5 and 2, respectively. 

FPN systems are often challenged when determining 
the IoU threshold, namely, the division of positives and 
negatives. Low IoU thresholds usually result in false positives 
because many areas without lesions are detected, whereas 
high thresholds also degrade the performance because of the 
increase of missed detections caused by model overfitting. 
To reduce missed detections, especially false detections in 
the FPN system, we further constructed a CFPN detection 
system with sequentially increasing IoU thresholds. Based 
on the FPN model with the optimal settings, we further 
improved the prediction module to obtain a system with 
better performance. This CFPN system used the same 
underlying modules and focal loss, but replaced the basic 
prediction network of the FPN system with a cascaded 
prediction network. As detailed in Figure 2D, the cascade 
prediction network extended the single-stage prediction 
of the basic network to 3 detection stages, each with IoU 
thresholds of 0.5, 0.6, and 0.7, respectively. Specifically, the 
proposal boxes from the previous stage and the FMs were 
fed into the region of interest (ROI) pooling (Pool) and the 
prediction module to generate the classification and proposal 
boxes used to train the next stage with an increased IoU 
threshold. At inference, the same 3-stage cascade procedure 
was applied to guarantee the match between training and 
inference distributions. Other details can be found in the 
Supplementary methods section (Appendix 1). 

Detection of large and small breast lesions

According to the current eighth edition of the American 
Joint Committee Cancer Staging System for breast cancer, 
2 cm is the diagnostic threshold for stage T1 and T2  
lesions (35), and the majority of enhancing lesions larger 
than 2 cm are malignant (18). We divided all the patients in 
this study into large (>2 cm) and small (≤2 cm) breast lesion 
groups to test the detection and classification performance 
of different systems. Of the 191 patients (962 slices), there 
were 106 malignant (530 slices) and 12 benign (80 slices) 
in the large lesion group and 51 malignant (249 slices) and  
22 benign (103 slices) in the small lesion group.

Implementation

All DL systems (Faster R-CNN, FPN, and CFPN) were 
built on the PyTorch framework (v1.3.1) with Python (v3.6) 

language (https://www.python.org). The experimental 
server used the Ubuntu operating system (v16.04; 
Canonical, London, UK) with an 8-core Intel processor 
(i7-9700 k, 32 GB RAM). To improve the training speed, a 
graphics processing unit (GPU) device (RTX 2080TI, 11 
GB memory) was used for acceleration under the CUDA 
environment (v10.1). 

Since the backbone for building FPN and CFPN was 
ResNet101, the same as that for building Faster R-CNN, 
the hyper-parameter setting in our study referred to Faster 
R-CNN in the open-source code on GitHub (https://
github.com/jwyang/faster-rcnn.pytorch) and were adjusted 
according to the loss decline trend in the training set. 
Specifically, we used stochastic gradient descent (SGD) as 
the optimizer to update the parameters of each DL model. 
Following a stepwise decay strategy (StepLR), the initial 
learning rate of 0.001 was decayed by a factor of 0.1 every 
5 epochs, and the batch size and the maximum epochs were 
set as 1 and 20, respectively.

Performance evaluation and statistical analysis

All experiments were performed under 5-fold cross-
validation. Metrics including precision-recall (PR) curve, 
average precision (AP), mean AP (mAP), F1-score, free-
response receiver operating characteristic (FROC) curve, 
sensitivity, and false positives were used to evaluate different 
systems. To evaluate the performance in real detection, we 
kept only the detected box with the highest confidence level 
on each slice as the final result, and calculated the precision, 
recall, F1-score, sensitivity, and FPs per slice and per 
patient, respectively. Metrics for each patient were obtained 
by majority voting on the results of all slices for that patient. 
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where TP, FP, and FN represent the true positive, false 
positive, and false negative detection, respectively. The 
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AP is the average precision under every recall value by 
traversing the IoU threshold during detection, and the mAP 
denotes the mean average precision between benign and 
malignant lesions. 

Cohen’s kappa scores for the detection and classification 
of breast lesions were provided to assess the agreement 
between the CFPN system and the other 2 systems (Faster 
R-CNN and FPN). Student’s t-test was adopted to compare 
the performance of different systems in terms of the 
aforementioned metrics, followed by the Holm-Bonferroni 
method for adjusted P values in the comparison among 
multiple groups. A P value <0.05 was considered statistically 
significant.

Results 

Evaluation of FPN system with different settings

To evaluate the detection performance under different 
settings, we used the original FPN, the FPN augmented 
by the pseudo-color image fusion, the FPN with the focal 

loss, and the FPN with both augmentation and focal loss 
to detect different classifications of the breast lesions. As 
shown in Table S1, for both benign and malignant breast 
lesions, the area under the PR curve (AP value) was higher 
for FPN with augmentation or focal loss than the original 
FPN. Compared to FPN systems with other settings, the 
FPN with both augmentation and focal loss had the highest 
AP value and mAP value after 5-fold cross-validation. PR 
curves of the FPN system with different settings are shown 
in Figure 3. 

Detection and classification results for Faster R-CNN, 
FPN, and CFPN systems 

The CFPN and FPN systems with the optimal settings 
(including augmentation and focal loss), as well as the 
classical Faster R-CNN were used to detect and classify 
benign and malignant breast lesions. As shown in Table 3, 
the AP values of CFPN for benign and malignant lesions 
were 0.731±0.075 and 0.921±0.048, respectively, which 
were both better than or comparable to the other 2 systems. 

Figure 3 Precision-recall curves of FPN system with different settings. (A) The original FPN; (B) the FPN with augmentation; (C) the FPN 
with focal loss; (D) the FPN with both augmentation and focal loss. FPN, feature pyramid network.
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In particular, the mAP values of CFPN outperformed the 
FPN and Faster R-CNN with a value of 0.826±0.051. The 
results in Table 4 show the sensitivity of the CFPN was 
better than the other systems under the same number of 
FPs per image. The CFPN also had the highest sensitivity, 
and there was a significant difference between it and the 
Faster R-CNN systems in the highest sensitivity (P=0.008). 
The PR curves and FROC curves of median results in 5-fold 
cross-validation are shown in Figure 4.

At both the slice and patient level (Table S2), the F1-
scores of the CFPN for both benign and malignant lesions 
were superior to those of the other systems. In particular, 
the CFPN achieved the highest sensitivities in detection at 
the lowest FPs at both the slice and patient level (Table 5). 
The Cohen’s kappa scores between the CFPN system and 
the Faster R-CNN and FPN systems were 0.961 and 0.878, 

respectively. This indicated the CFPN and Faster R-CNN 
systems were similar in detecting and classifying breast 
lesions, which was consistent with the F1-scores of the  
3 systems.

Performance on large and small breast lesions

The detection and classification results for large and small 
breast lesions are shown in Figure 5 and Table 6. For both 
large and small lesions, the mAP values of CFPN were 
higher than those of FPN and Faster R-CNN systems. 
Notably, in the small lesion group, CFPN had the 
highest AP values in both benign and malignant lesions. 
Correspondingly, CFPN achieved the best performance 
across all metrics in the real detection of small lesions at 
the slice and patient level for both benign and malignant 
lesions, except for the recall of malignant lesions at the 
patient level, which was comparable to other systems (Table 
7). The Cohen’s kappa scores between the CFPN system 
and the other 2 systems were 0.933 for Faster R-CNN and 
0.835 for FPN, showing the same trend as for all breast 
lesions. For large lesions, CFPN had both higher recall and 
F1-score for benign lesions, and higher precision and F1-
score for malignant lesions at the slice level than the other  
2 systems (Table S3). The same Cohen’s kappa score of 0.866 
between the CFPN and the other systems indicated that 
the performances of the Faster R-CNN and CFPN were 
comparable to each other. 

Discussion

In this study, we compared the DL-based CFPN system 
with the FPN and Faster R-CNN systems in the detection 
and classification of benign and malignant breast lesions, 
and further evaluated their performance for detecting large 
and small breast lesions. The results demonstrated that 
the mAP values and sensitivity of the CFPN outperformed 
the FPN and Faster R-CNN systems. CFPN achieved the 
highest sensitivities in detection at the lowest FPs at both 
the slice level and the patient level. This is crucial for the 
early follow-up treatment of patients with malignancy and 
for reducing overtreatment of patients without malignant 
lesions. In addition, the mAP values in overall evaluation 
and the F1-scores at the slice level and the patient level in 
real detection demonstrated the superiority of the CFPN 
system in detecting large and especially small breast lesions. 
Considering the difficulty of detecting small lesions, the 
developed detection system was expected to achieve accurate 

Table 3 AP values of different DL-based systems

System Fold AP for benign
AP for 

malignant
mAP

Faster 
R-CNN

Fold-1 0.667 0.873 0.770

Fold-2 0.688 0.980 0.834

Fold-3 0.779 0.986 0.882

Fold-4 0.591 0.889 0.740

Fold-5 0.800 0.865 0.833

Mean ± SD 0.705±0.076 0.919±0.053 0.812±0.051

FPN Fold-1 0.695 0.871 0.783

Fold-2 0.611 0.981 0.796

Fold-3 0.667 0.987 0.827

Fold-4 0.708 0.892 0.799

Fold-5 0.557 0.876 0.717

Mean ± SD 0.648±0.056 0.921±0.052 0.784±0.037

CFPN Fold-1 0.679 0.875 0.777

Fold-2 0.654 0.965 0.809

Fold-3 0.840 0.994 0.917

Fold-4 0.681 0.887 0.784

Fold-5 0.800 0.886 0.843

Mean ± SD 0.731±0.075 0.921±0.048 0.826±0.051

AP, average precision; DL, deep learning; CFPN, cascade 
feature pyramid network; FPN, feature pyramid network; Faster 
R-CNN, faster region-based convolutional neural network; mAP, 
mean average precision; SD, standard deviation.

https://cdn.amegroups.cn/static/public/QIMS-22-323-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-323-Supplementary.pdf
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Table 4 Sensitivities of different DL-based systems

Sensitivities Fold Faster R-CNN FPN CFPN

Sensitivity (FPs =0.125) Fold-1 0.856 0.810 0.836 

Fold-2 0.905 0.905 0.900 

Fold-3 0.951 0.902 0.984 

Fold-4 0.808 0.893 0.861 

Fold-5 0.873 0.777 0.888 

Mean ± SD 0.879±0.048 0.857±0.053 0.894±0.050

Sensitivity (FPs =0.250) Fold-1 0.918 0.908 0.928 

Fold-2 0.935 0.930 0.940 

Fold-3 0.962 0.978 0.989 

Fold-4 0.909 0.925 0.931 

Fold-5 0.924 0.878 0.949 

Mean ± SD 0.930±0.018 0.924±0.033 0.947±0.022

Highest sensitivity Fold-1 0.918 (FPs =0.210) 0.954 (FPs =0.446) 0.954 (FPs =0.415)

Fold-2 0.935 (FPs =0.201) 0.950 (FPs =0.553) 0.985 (FPs =0.558)

Fold-3 0.962 (FPs =0.169) 0.984 (FPs =0.891) 0.989 (FPs =0.130)

Fold-4 0.909 (FPs =0.246) 0.947 (FPs =0.610) 0.963 (FPs =0.417)

Fold-5 0.924 (FPs =0.218) 0.944 (FPs =0.523) 0.959 (FPs =0.355)

Mean ± SD 0.930±0.018 (FPs =0.209) 0.956±0.014 (FPs =0.605) 0.970±0.014 (FPs =0.375)

DL, deep learning; Faster R-CNN, faster region-based convolutional neural network; FPN, feature pyramid network; CFPN, cascade 
feature pyramid network; FPs, false positives; SD, standard deviation.

Figure 4 PR and FROC curves of different systems. (A-C) The PR curves of Faster R-CNN, FPN, and CFPN, respectively. (D-F) FROC curves 
of the Faster R-CNN, FPN, and CFPN networks, respectively. PR, precision-recall; FROC, free-response receiver operating characteristic; FPs, 
false positives; R-CNN, region-based convolutional neural network; FPN, feature pyramid network; CFPN, cascade feature pyramid network.
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detection of breast lesions smaller than 2 cm, providing the 
possibility of detecting lesions of various size. 

In DL of breast MRI, CNN models are currently a 
popular architecture for image analysis (3,36). However, 

other DL-based systems including Faster R-CNN, FPN, 
and CFPN, which have been successfully applied to 
mammography, ultrasound, and computed tomography 
(25,27,28,30,37), have not been systematically studied. 
Although automated methods can help reduce the inter-
observer variation and improve reproducibility, automatic 
identification and object localization of breast cancers based 
on images is a challenge. Accordingly, an aim of our work 
was to perform and compare the results of using 3 different 
DL-based methods for the detection and classification of 
breast lesions. A previous study by Zhou et al. (17) showed 
that weakly supervised 3D DL could be used for breast 
cancer classification and localization in DCE-MRI. In 
contrast to their study, our study achieved simultaneous 
detecting, localizing, and classifying of the same lesion. On 
the other hand, the weakly supervised localization task could 
only detect lesions with a high malignancy probability, 
whereas our study also detected benign lesions. 

Several other studies have evaluated the DL-based 
classification of breast lesions in MRI (13,18,19). However, 
as Ribli et al. (25) found, a lesion detector is clinically more 
useful than a simple image classifier, which can only give 

Figure 5 PR for detecting and classifying large and small breast tumors with different systems. (A-C) PR curves for detecting large tumors 
with Faster R-CNN, FPN, and CFPN, respectively. (D-F) PR curves for detecting small tumors with Faster R-CNN, FPN, and CFPN, 
respectively. The red dot in each subfigure indicates the corresponding slice-level result in real detection. PR, precision-recall; R-CNN, 
region-based convolutional neural network; FPN, feature pyramid network; CFPN, cascade feature pyramid network.

Table 5 Sensitivity and FPs at patient- and slice-level in real 
detection

Systems Sensitivity FPs

Slice level

Faster R-CNN 0.784 0.102

FPN 0.902 0.105

CFPN 0.967 0.033

Patient level

Faster R-CNN 0.827 0.027

FPN 0.895 0.098

CFPN 0.974 0.026

FPs, false positives; Faster R-CNN, faster region-based 
convolutional neural network; FPN, feature pyramid; CFPN, 
cascade feature pyramid network.
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Table 6 AP values of different systems for detecting large/small breast benign and malignant lesions

System Fold AP for benign (large/small) AP for malignant (large/small) mAP (large/small)

Faster R-CNN Fold-1 0.288/0.527 0.843/0.774 0.565/0.651 

Fold-2 0.652/0.578 0.884/0.812 0.768/0.695

Fold-3 0.878/0.704 0.969/0.986 0.924/0.845

Fold-4 0.275/0.648 0.852/0.991 0.563/0.820

Fold-5 0.846/0.656 0.909/0.979 0.878/0.818

Mean ± SD 0.588±0.262/0.623±0.062 0.891±0.045/0.908±0.095 0.740±0.152/0.766±0.078

FPN Fold-1 0.373/0.552 0.844/0.742 0.609/0.647

Fold-2 0.481/0.319 0.882/0.715 0.681/0.517 

Fold-3 0.812/0.559 0.937/0.902 0.874/0.730 

Fold-4 0.008/0.467 0.930/0.979 0.505/0.723 

Fold-5 0.919/0.785 0.984/0.964 0.952/0.861 

Mean ± SD 0.519±0.325/0.531±0.143 0.915±0.048/0.860±0.111 0.717±0.166/0.696±0.113

CFPN Fold-1 0.453/0.506 0.887/0.809 0.667/0.657

Fold-2 0.720/0.660 0.903/0.852 0.811/0.756

Fold-3 0.992/0.718 0.995/0.920 0.994/0.819

Fold-4 0.235/0.658 0.882/0.985 0.559/0.821

Fold-5 0.831/0.801 0.896/0.992 0.864/0.897

Mean ± SD 0.646±0.270/0.669±0.097 0.913±0.042/0.912±0.072 0.779±0.152/0.790±0.080

AP, average precision; mAP, mean average precision; Faster R-CNN, faster region-based convolutional neural network; FPN, feature 
pyramid network; CFPN, cascade feature pyramid network; SD, standard deviation.

Table 7 Patient- and slice-level precision, recall, and F1-score for small breast lesions in real detection

System
Benign, mean ± SD Malignant, mean ± SD

Precision Recall F1-score Precision Recall F1-score

Slice level

Faster R-CNN 0.730±0.055 0.638±0.237 0.655±0.140 0.857±0.103 0.907±0.033 0.877±0.050

FPN 0.682±0.174 0.570±0.147 0.600±0.107 0.830±0.078 0.878±0.072 0.850±0.052

CFPN 0.757±0.137 0.700±0.176 0.718±0.139 0.888±0.084 0.913±0.056 0.899±0.058

Patient level

Faster R-CNN 0.773±0.137 0.700±0.253 0.709±0.156 0.880±0.100 0.902±0.063 0.887±0.060

FPN 0.693±0.155 0.650±0.138 0.658±0.117 0.851±0.056 0.862±0.081 0.854±0.052

CFPN 0.775±0.160 0.850±0.258 0.806±0.199 0.932±0.106 0.900±0.069 0.914±0.082

Faster R-CNN, faster region-based convolutional neural network; FPN, feature pyramid network; CFPN, cascade feature pyramid network; 
SD, standard deviation.
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a single score per case or breast but cannot localize cancer 
that is essential for further diagnostic testing or treatment. 
The encouraging results in our study suggest that the DL-
based CFPN system may be a candidate with promising 
development perspective for the simultaneous detection 
and classification of breast lesions in MRI. Regarding DL-
based breast MRI classification, Dalmiş et al. (19) found that 
combining all non-contrast data yielded inferior results to 
DCE-MRI, which both confirms its importance and is why 
we followed this approach in this study. In contrast to the 
study by Zhou et al. (13), which included only mass-type 
lesions with limited size, weakening its general applicability 
in clinical applications, our study included both mass and 
non-mass type lesions and did not impose a limitation on 
lesions size. Although Truhn et al. (18) investigated the 
diagnostic performance of lesions smaller than 2 cm, lesion 
detection performance was not evaluated.

Our DL-based systems provide an automatic and 
accurate method for breast detection and classification 
with high sensitivity and low FPs. In particular, the CFPN 
achieved an optimal sensitivity of 0.970±0.014 at 0.375 
FPs, which was consistent with the results of other studies 
(28,38). Regarding the low specificity and high sensitivity 
of the clinical MRI report, our proposed method could 
assist reporting systems to improve the specificity of cancer 
screening and potentially avoid unnecessary biopsy or 
overtreatment, and overfitting could be mitigated due to 
the adoption of data augmentation and focus loss strategies. 
Although the cascade model with increasing IoU thresholds 
played a significant role in the CFPN system, fewer 
samples still resulted in the inferior performance of benign 
lesions compared to malignant lesions in terms of overall 
evaluation (AP values) and real detection (F1-scores). This 
limitation can be appropriately addressed as we collect more 
samples in the future. Our results in real detection showed 
the F1-scores at patient level after majority voting were 
better than those at slice level in all DL-based systems for 
both benign and malignant breast lesions. The patient-level 
sensitivities were also improved at lower FPs compared to 
the corresponding results at the slice level. This suggested 
that the missed detection and FPs occurring on a single 
slice could be mitigated by integrating the detection results 
on all slices of each lesion. Nonetheless, the performance 
of our DL-based system will improve by increasing the 
number of training cases.

Our study had several limitations. First, the dataset 
was small for DL, with an imbalance of benign and 
malignant lesions, and a larger patient cohort is needed 

for further investigation to improve the performance of 
CFPN architecture. Second, the imaging data we used 
was collected from a single clinical center, which limits the 
robustness and generalizability of the model. Future studies 
should focus on collecting multi-institutional datasets to 
test and evaluate DL-based systems for lesion detection and 
classification. Finally, only DCE-MRI images were used 
for the DL-based systems, excluding non-enhanced MRI 
images, or a combination of both.

Conclusions

Our study shows that DL-based systems can automatically 
detect and classify breast lesions on DCE-MRI, and that 
CFPN has the highest sensitivity at the lowest FPs and 
accurately detects lesions smaller than 2 cm. These results 
illustrate the potential use of this technique in a clinically 
relevant setting.
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Appendix 1 Supplementary methods

Backbone and feature pyramid network (FPN) modules of 
the detection system

ResNet101, pre-trained on ImageNet, was used as the 
backbone for extracting image features, which consists of 5 
convolution blocks, with the last 4 blocks having 3, 4, 23, 
and 3 residual blocks, respectively. The specific structure is 
shown below. 

The multi-scale FPN was constructed based on the 
backbone model. The structure of FPN is divided into 3 
parts: bottom-up branch, top-down branch, and transverse 
connection. The bottom-up branch is the forward 
propagation process of the backbone network, which 
computes feature maps (FMs) of ResNet101 at various 
scales and levels. In the process of forward propagation, the 
size of FMs will change with the depth of layers. The top-
down branch performs bilinear interpolation for the deep 
FMs with fuzzy position information but rich semantic 
information to match the FMs of different scales. In the 
transverse connection, the FMs are fused in the form of 
element-level addition, in which 1×1 convolution is used to 
reduce the number of channels. After transverse connection 

of C2, C3, C4, C5, the fused FM set: M2, M3, M4, M5 is 
obtained. The 3×3 convolution operation is then performed 
on each fused FM to reduce the feature discontinuity 
caused by the superposition and fusion of FMs. Finally, 
the predicted FM set: P2, P3, P4, P5, P6 is obtained for 
generating candidate regions. P6 is obtained by FM P5 
through down-sampling, and is also used for generating 
candidate regions for RPN.

RPN module for generating proposal boxes 

The RPN module uses a 3×3 convolution with 2 adjacent 
1×1 convolutions as sliding windows over all scales of 
the shared feature set: P2, P3, P4, P5, P6, then combines 
9 anchors of different size to generate candidate boxes. 
Since the size and spatial location of each shared FM are 
different, it is not necessary to design multi-scale anchors 
in the FM of a specific scale. Instead, a single scale anchor 
was assigned for each scale of the shared FM. According to 
the statistics of lesion sizes, we mapped the receptive field 
corresponding to the shared FM set: P2, P3, P4, P5, P6 of 
all scales in FPN, so the anchor sizes designed in this study 
were 362, 722, 1442, 2882 and 5762. The anchor at each scale 
has aspect ratios of 1:1, 1:2 and 2:1, so the RPN contains 15 
different sizes of anchors.

Classification and regression networks

The prediction (classification and regression) module used 
in the FPN systems is named the basic prediction network. 
In the training phase, the shared FM generated by the 
backbone and PPN and the proposals (B0) generated by 
region proposal network (RPN) are fed into the region of 
interest (ROI) pooling layer, which transforms each input 
ROI and corresponding FMs into a map of fixed size. After 
passing through a convolution module identical with the 
conv5.x module in Resnet101, 2 fully connected layers are 
used for the classification and regression to generate the 
final classification (C) and regression results (B). 

The prediction module used in the cascade feature 
pyramid network (CFPN) system is termed the cascade 
prediction network. Different from the basic prediction 
network, 3 cascade detectors are used here for the 
classification and regression. The structure of each 
detector is basically the same as that in the FPN, and the 
intersection over union (IoU) thresholds of the 3 detectors 
are set as 0.5. 0.6, and 0.7, respectively. In addition, more 
accurate ROI alignment is used to replace the traditional 

Layer name Output size Structure

Conv1 112×112 7×7,64, stride 2

Conv2.x 56×56 3×3 maxpool, stride 2

1 1, 64
3 3, 64 3
1 1, 256

× 
 × × 
 × 

Conv3.x 28×28 1 1, 128
3 3, 128 4
1 1, 512

× 
 × × 
 × 

Conv4.x 14×14 1 1, 256
3 3, 256 23
1 1, 1024

× 
 × × 
 × 

Conv5.x 7×7 1 1, 512
3 3, 512 3
1 1, 2048

× 
 × × 
 × 
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ROI pooling to reduce the area migration problem. Shared 
FM and proposal (B0) generated by RPN are first fed to 
the ROI Align (“Pool”) to generate a map of the same 
size. After passing through the convolution module and 
fully connected layers, the classification result (C1) and 

regression result (B1) of the first detector are obtained. The 
regression results (B1) of the previous detector and shared 
FMs are then sent to the next detector for training, and the 
final classification results (C3) and regression results (B3) 
are obtained after the iteration process was completed. 

Table S1 AP Values of the FPN System with different settings

Settings AP for benign, mean ± SD AP for malignant, mean ± SD mAP

FPN 0.397±0.070 0.869±0.027 0.633±0.032

FPN with augmentation 0.568±0.112 0.875±0.050 0.721±0.076

FPN with focal loss 0.626±0.076 0.917±0.050 0.772±0.045

FPN with both augmentation and focal loss 0.647±0.056 0.922±0.051 0.785±0.037

AP, average precision; FPN, feature pyramid network; mAP, mean average precision; SD, standard deviation.

Table S2 Patient- and slice-level precision, recall, and F1-score in real detection

System
Benign, mean ± SD Malignant, mean ± SD

Precision Recall F1-score Precision Recall F1-score

Slice level

Faster R-CNN 0.811±0.101 0.658±0.089 0.725±0.090 0.922±0.024 0.963±0.022 0.942±0.021

FPN 0.844±0.069 0.561±0.094 0.669±0.069 0.905±0.024 0.976±0.011 0.939±0.014

CFPN 0.829±0.056 0.708±0.101 0.761±0.076 0.933±0.025 0.965±0.013 0.949±0.017

Patient level

Faster R-CNN 0.812±0.105 0.738±0.102 0.768±0.086 0.944±0.021 0.962±0.024 0.953±0.017

FPN 0.865±0.126 0.647±0.111 0.729±0.070 0.928±0.022 0.974±0.024 0.950±0.012

CFPN 0.860±0.116 0.800±0.146 0.816±0.085 0.958±0.030 0.968±0.029 0.962±0.015

CFPN, cascade feature pyramid network; FPN, feature pyramid network; Faster R-CNN, faster region-based convolutional neural network; 
SD, standard deviation.

Table S3 Patient- and slice-level precision, recall, and F1-score for large breast lesions in real detection

System
Benign, mean ± SD Malignant, mean ± SD

Precision Recall F1-score Precision Recall F1-score

Slice level

Faster R-CNN 0.814±0.223 0.559±0.266 0.621±0.186 0.936±0.044 0.975±0.026 0.953±0.019

FPN 0.778±0.187 0.503±0.146 0.600±0.141 0.925±0.023 0.977±0.019 0.950±0.013

CFPN 0.782±0.246 0.578±0.238 0.646±0.207 0.938±0.034 0.974±0.024 0.954±0.020

Patient level

Faster R-CNN 0.792±0.216 0.500±0.373 0.500±0.332 0.945±0.036 0.977±0.023 0.960±0.018

FPN 0.875±0.218 0.625±0.247 0.717±0.218 0.956±0.031 0.989±0.019 0.972±0.024

CFPN 0.833±0.289 0.625±0.247 0.700±0.243 0.955±0.032 0.977±0.039 0.963±0.034

CFPN, cascade feature pyramid network; FPN, feature pyramid network; Faster R-CNN, faster region-based convolutional neural network; 
SD, standard deviation.
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