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Background: It is clinically important to accurately assess the pulmonary function of patients with lung 
cancer, especially before surgery. This knowledge can help clinicians to monitor patients pre- and post-
surgery, predict the impact of surgery on pulmonary function, and help to optimize postsurgical recovery. 
We used a deep learning approach for assessing pulmonary function on computed tomography (CT) scans in 
patients with lung cancer before they underwent surgery.
Methods: A total of 188 patients with lung cancer whose diagnoses had been pathologically confirmed were 
enrolled in this study. We used a software to automatically delineate regions of interest (ROIs) throughout 
the airways, lobes, and the whole lungs. We then used AK software to extract radiomics features of the 3 
types of ROIs. We randomly separated these cases into a training cohort and a test cohort at a ratio of 7:3. 
We next constructed a logistic regression model to assess pulmonary function from the radiomics features. 
The machine learning outcomes were compared with established clinical criteria for pulmonary function. 
including forced expiratory volume in the first second/forced vital capacity (FEV1/FVC), FVC, and 
maximum vital capacity (VCmax) to evaluate the accuracy of the machine learning model.
Results: In the ROIs of the lobes, our results showed that the machine learning model had good 
performance in predicting FVC and VCmax, attaining a Spearman correlation r value of 0.714 with P<0.001 
for FVC and a r value of 0.687 with P<0.001 for VCmax. Using the airway ROIs, our model achieved a r of 
0.603 with P=0.001 for VCmax. Using the whole lung ROIs, our model achieved a r of 0.704 with P<0.001 
for FVC and a r of 0.693 with P<0.001 for VCmax.
Conclusions: Preoperative CT may provide a means for evaluating pulmonary function in patients with 
lung cancer. With radiomics features extracted from the airway, lobes, and the whole lung region, and a 
properly trained machine learning model, it is possible to obtain accurate estimation for metrics used in 
clinical criteria and to offer clinicians imaging-based indicators for the status of pulmonary functions.
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Introduction

Among all cancer types, the prevalence and fatality rate of 
lung cancer rank first (1). Surgical removal of the affected 
lobe is one of the main therapies for lung cancer. However, 
as many patients with lung cancer are of advanced ages, 
heavy smokers, or have chronic obstructive pulmonary 
disease (COPD), they bear a high risk for postsurgical 
complications (2). Hence, preoperative pulmonary function 
test (PFT) is of great significance to pass patients through 
the perioperative period safely (3). However, due to 
variations in patient compliance and underlying diseases, 
some patients have low tolerance and compliance to routine 
PFT. Studies on preoperative evaluation of pulmonary 
function of patients with lung cancer are lacking. A few 
researchers have evaluated the pulmonary function of 
patients with lung cancer from the aspect of quantitative 
computed tomography (CT) parameters (4). However, 
there are no reports focusing on preoperative evaluation of 
pulmonary function in patients with lung cancer through 
lung CT imaging using machine learning approaches. 
Based on CT scans of patients with lung cancer, we have 
developed and verified a method which automatically 
extracts the radiomics features and uses a machine learning 

model to evaluate pulmonary function using the CT images. 
The method can supplement current pulmonary function 
assessment, which has several limitations, including long 
detection time, difficult patient cooperation, a high rate of 
false negatives, and frequent contraindications (5,6). Our 
long-term goal is to maximize the value of CT imaging of 
patients with lung cancer by developing a rapid and simple 
method for assessing pulmonary function.

Radiomics is an accurate and noninvasive tool that can 
be used to attain quantitative features based on images 
from regions of interest (ROIs) and analyzing them to 
develop decision-support tools (7). Being widely used in the 
assessment of lung nodules, radiomics can be performed 
to extract image features from each nodule and predict 
secondary cancers (8). Radiomics has shown great promise 
in extracting information from clinical images (9,10). An 
important field of radiomics is in cancer imaging, in which 
radiomics has been used for staging cancer, assessing 
treatment efficacy, and predicting patient survival (11). In 
lung cancer, radiomics has been used for differentiating 
between benign and malignant lesions (12), predicting 
histological subtypes of lung cancer (13), assessing the 
effect of cancer treatment such as radiation-induced lung  
injury (14), and estimating patient prognosis (15,16). 
As a newly developed methodology, radiomics in its 
development is closely associated with machine learning 
(17,18). We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-70/rc).

Methods

Data sets

We enrolled 188 patients from our hospital, including 24 
with COPD, in this study. The patients were admitted to 
our hospital between 2016 and 2019. The demographic and 
clinical characteristics of the cohort are displayed in Table 1. 
The inclusion criteria were as follows: (I) having undergone 
preoperative PFT with good coordination, (II) having 
obtained a preoperative thoracic CT scan without obvious 
artifacts, and (III) an interval time between PFT and CT 
scanning not exceeding 3 days. The exclusion criteria were 
as follows: patients who met the above inclusion criteria 
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Table 1 Demographic and clinical characteristics of the cohort

Characteristics Median (range) or n (%)

Male: female 64:124 (34%:66%)

Age (years) 59.0 (50.0, 65.0)

Height (cm) 161.00 (155.5, 167.0)

Weight (kg) 60.20 (54.59, 67.91)

BMI (kg/m2) 23.15 (21.56, 25.12)

FEV1 (% of predicted) 100.65 (89.74, 110.44)

FVC (L) 3.04 (2.57, 3.60)

FEV1/FVC 79.65 (74.22, 82.90)

VCmax (L) 3.11 (2.61, 3.61)

BMI, body mass index; FEV1 (% of predicted), the percentage 
of measured forced expiratory volume in the predicted value; 
FVC, forced vital capacity; FEV1/FVC, forced expiratory volume 
in the first second/forced vital capacity; VCmax, maximum vital 
capacity.

https://qims.amegroups.com/article/view/10.21037/qims-22-70/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-70/rc
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but failed to be segmented by LK software (19). We 
collected preoperative pulmonary function examination 
data of patients, including forced vital capacity (FVC), the 
percentage of measured forced expiratory volume in the 
predicted value [FEV1 (% of predicted)], forced expiratory 
volume in the first second/forced vital capacity (FEV1/
FVC), maximum vital capacity (VCmax), and CT data. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 

by the institutional ethics board of The First Affiliated 
Hospital of Guangzhou Medical University (No. 2022-70), 
and informed consent was provided by all the patients.

Figure 1 shows some typical cases included in our cohort. 
Figure 1A is a 71-year-old male with invasive adenocarcinoma 
(T1N0M0) of the upper right lung. Figure 1B is a 79-year-old 
male with invasive adenocarcinoma (T1N0M0) of the upper 
left lobe. Figure 1C is a 59-year-old female with invasive 
adenocarcinoma (T1aN0M0) of the upper right lung.
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C1

A2

B2

C2

A3

B3
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A4

B4
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Figure 1 Chest CT images of 3 representative cases. (A1-A4) Infiltrating adenocarcinoma of the right upper lung (T1N0M0). PFT showed 
moderate to severe ventilation dysfunction with an FEV1/FVC of 65.50% and FEV1 (% of predicted) of 59%. Multiple penetrating 
shadows without walls can be seen on CT images. (B1-B4) Infiltrating adenocarcinoma of the upper left lung (T1N0M0). PFT showed 
moderate to severe ventilation dysfunction with an FEV1/FVC of 57.06% and an FEV1 (% of predicted) of 58.29%. CT images showing 
scattered mural opacity and small subpleural bullae. (C1-C4) Infiltrating adenocarcinoma of the right upper lung (T1aN0M0). PFT showed 
moderate ventilation dysfunction with an FEV1/FVC of 62.59% and an FEV1 (% of predicted) of 64.97%. There were no visual signs of 
ventilatory disturbance on CT images. CT, computed tomography; PFT, pulmonary function test; FEV1/FVC, forced expiratory volume in 
the first second/forced vital capacity; FEV1 (% of predicted), the percentage of measured forced expiratory volume in the predicted value.
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Clinical PFT

We carried out PFT by using the Cosmed Quark PFT 
series (Cosmed, Rome, Italy) pulmonary function 
instrument. All PFTs met the instrument quality control 
standards recommended by the American Thoracic Society 
(ATS)/European Respiratory Association (ERS). During the 
examination, patients adopted the sitting position while the 
main parameters, including FVC, FEV1 (% of predicted), 
FEV1/FVC (%), and VCmax, were measured.

CT imaging protocol and parameters

We used CT scanners from two manufacturers: Siemens 
SOMATOM Definition AS+ 128-slice CT or 64-slice CT 
(Siemens, Erlangen, Germany) and GE Revolution 256-slice 
CT (GE Healthcare, Chicago, IL, USA). Spiral CT was 
performed from head to foot under deep inspirations and 
breath-holding state, ranging from the upper edge of the 
lung apex to the lower edge of the costal diaphragmatic 
angle. The Siemens SOMATOM scanning parameters were 
as follows: tube voltage 120 kV, tube current automatic 
tube current modulation technology, field of view (FOV) 
400 mm × 400 mm, matrix 512×512, slice thickness 1 mm, 
and slice spacing 1 mm. The GE Revolution scanning 
parameters were as follows: tube voltage 120 kV, tube 
current automatic tube current modulation technology, 
FOV 350 mm × 350 mm, matrix 512×512, slice thickness 
0.625 mm, and slice spacing 0.625 mm. All patients only 

received one preoperative CT scan in our study. The quality 
of all the CT images obtained in our study was verified by 
two independent chest radiologists.

Experimental procedure

First, for the CT images of the 188 patients, the whole 
lung lobe and airway were segmented by the automatic 
segmentation module of LK software and 3 ROIs were 
obtained. Second, 107 radiomics features were extracted 
from the 3 ROIs using the PyRadiomics module of AK 
software (Artificial Intelligence Kit v.3.3.0; GE Healthcare). 
For the extracted features, we used the median method to 
replace missing values, the cap method to process outliers, 
and Z score to standardize. The 188 cases were randomly 
grouped in a ratio of 7:3, 70% of which were used to train 
the machine learning model and 30% to test the model. 
Third, we adopted Spearman correlation and stepwise 
regression to reduce the dimension of features and used 
logistic regression machine learning models to construct 
the prediction models evaluated by correlation coefficient 
and root-mean-square error (RMSE). All statistical analyses 
were performed using the R language, version 3.6.3 (R 
Foundation for Statistical Computing, Vienna, Austria). A 
P value <0.05 was considered statistically significant. The 
flowchart of our image processing and validation is shown 
in Figure 2. The major steps included extracting the CT 
images of the 188 patients, separating them into a training 

	Segment lobes, airway, and 
whole lung

	Extract 107 radiomics features
	Pre-processing
	Abnormal value and missing 

value processing
	Feature standardization
	Dimension reduction
	Spearman correlation 

analysis (r>x, P≤0.05)

Train the machine learning
model

Model construction

Spearman r correlations and root 
mean square error between the 
three models (lobe model, airway 
model, whole lung model) and 
pulmonary function scores

Pulmonary function
	FVC
	FEV1 (% of predicted)
	FEV1/FVC
	VCmax

ValidationGround truth

	188 lung cancer patients
	Collect clinical information and 

pulmonary function data

Patient cohort Chest CT images

Figure 2 Flowchart of image processing and validation. CT, computed tomography; FVC, forced vital capacity; FEV1 (% of predicted), the 
percentage of measured forced expiratory volume in the predicted value; FEV1/FVC, forced expiratory volume in the first second/forced 
vital capacity; VCmax, maximum vital capacity.
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set and test set, preprocessing all the CT images, and 
training a machine learning model. The ground truth was 
the results of the PFT measurements of the patients. The 
machine learning model was evaluated on the test set using 
Spearman r correlation coefficient and RMSE.

Image preprocessing

Our image pre-processing included several steps. The 
first step was to segment the lung CT images. We used 
the automatic segmentation module of the LK software 
to segment the lobes, airway, and the whole lung region. 
Then, three types of ROIs were marked: the lobes, 
airway, and the whole lungs. All segmentation results were 
reviewed by two experienced radiologists, and images with 
poor segmentation were excluded. There were 75 cases 

with poor extraction of airway in grades 3–4 in the airway 
segmentation results, so they were excluded from the airway 
model. The whole lung segmentation is a combination of 
airway and lobe segmentation regions. All 188 included 
cases were accurately segmented. Figure 3 shows the 
segmentation results of a typical case.

We then used the PyRadiomics module in the AK software 
to extract 107 radiomics features, including 18 first-order 
features, 14 shape characteristics, 16 gray-level size zone 
matrix (GLSZM) features (20), 24 gray-level cooccurrence 
matrix (GLCM) features (21), 5 neighborhood gray-tone 
difference matrix (NGTDM) features (22), 14 gray-level 
dependence matrix (GLDM) features (23), and 16 gray-level 
run-length matrix (GLRLM) features (24). For the extracted 
features, we used the median method to replace missing 
values and used the cap method to process outliers. All the 

A B C

D E

Figure 3 Results of automatic segmentation by LK software. (A-C) Segmentation of the lung and airways are shown from transverse, 
coronal, and sagittal positions, respectively. Different colors represent each lung lobe, while the airways have no color filling. (D) 3D display 
of the segmented lobe and airway. (E) 3D display of the segmented airway. 3D, three-dimensional.
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features were standardized by the Z score. Figure 4 shows 
some radiomics features.

Feature reduction

Spearman correlation analysis and stepwise regression 
analysis were used to select the valuable features. In 
Spearman correlation analysis, the correlation coefficient 
and corresponding P value of each feature and the ground 
truth were calculated. When the correlation coefficient was 
greater than the specific threshold and the corresponding P 
value was less than 0.1, this feature was retained. In order to 
keep the number of features eventually included in the model 
at the same level to maintain comparability between models, 
the correlation coefficient thresholds were different under 
different models and prediction tasks. The thresholds for 
different models and prediction tasks are shown in Table 1.  

Then, both backward and forward stepwise selection was 
performed by using the likelihood ratio test with Akaike 
information criterion (AIC) as the stopping rule.

The remaining features of each model after stepwise 
regression analysis are shown in Table 2. There were 5, 6, 
6, and 6 features remaining in the lobe model predicting 
FEV1 (% of predicted), FVC, FEV1/FVC, and VCmax, 
respectively. There were 4, 7, 8, and 5 features remaining in 
the airway model predicting FEV1 (% of predicted), FVC, 
FEV1/FVC, and VCmax, respectively. There were 5, 5, 6, 
and 5 features remaining in whole-lung model predicting 
FEV1 (% of predicted), FVC, FEV1/FVC, and VCmax, 
respectively.

Training and testing the machine learning model

We used linear regression (LR) (25) as the machine learning 

Figure 4 The PyRadiomics module of AK software was used to extract 107 radiomic features from the three ROIs after segmentation. (A) 
Histogram of CT value in ROI. (B) GLCM. (C) Shape. (D) GLRLM. CT, computed tomography; HU, Hounsfiled unit; ROI, region of 
interest; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix.
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Table 2 The remained features of each model in predicting PFT results

Pulmonary function indicators Lobe model Airway model Whole-lung model

FEV1 (% of predicted) (I) glrlm_GLNUN (I) shape_Sphericity (I) glcm_JointEnergy

(II) glszm_SZNUN (II) glszm_SZNUN (II) glcm_Idn

(III) glszm_GLV (III) glcm_DA (III) glrlm_LRE

(IV) glszm_SAE (IV) glcm_Contrast (IV) glrlm_RunVariance

(V) firstorder_Kurtosis (V) glszm_GLNUN

FVC (I) shape_LAL (I) shape_VoxelVolume (I) shape_LAL

(II) shape_SurfaceArea (II) shape_MeshVolume (II) shape_MiAL

(III) shape_M2DDS (III) glszm_SALGLE (III) shape_SurfaceArea

(IV) shape_MiAL (IV) glszm_SZNU (IV) glszm_GLNU

(V) shape_MV (V) firstorder_TotalEnergy (V) gldm_DNU

(VI) firstorder_TotalEnergy (VI) firstorder_Energy

(VII) glcm_InverseVariance

FEV1/FVC (I) shape_SVR (I) firstorder_Mean (I) shape_SVR

(II) glrlm_LRHGLE (II) glrlm_HGLRE (II) firstorder_10Percentile

(III) glszm_HGLZE (III) glrlm_RunEntropy (III) firstorder_Mean

(IV) glszm_SAHGLE (IV) glcm_SumAverage (IV) firstorder_RMS

(V) firstorder_10Percentile (V) glcm_DifferenceEntropy (V) glrlm_LRHGLE

(VI) firstorder_Median (VI) glcm_SumEntropy (VI) gldm_LDHGLE

(VII) gldm_HGLE

(VIII) gldm_SDE

VCmax (I) shape_LAL (I) shape_SurfaceArea (I) shape_MaAL

(II) shape_SurfaceArea (II) shape_MiAL (II) shape_MiAL

(III) shape_M2DDS (III) shape_MaAL (III) shape_SurfaceArea

(IV) shape_MiAL (IV) shape_VoxelVolume (IV) glszm_GLNU

(V) shape_MeshVolume (V) firstorder_TotalEnergy (V) gldm_DNU

(VI) firstorder_TotalEnergy

PFT, pulmonary function test; FEV1 (% of predicted), the percentage of measured forced expiratory volume in the predicted value; glrlm, 
gray-level run length matrix; GLNUN, GrayLevelNonUniformityNormalized; glcm, gray-level co-occurrence matrix; glszm, gray-level size 
zone matrix; SZNUN, SizeZoneNonUniformityNormalized; GLV, GrayLevelVariance; DA, DifferenceAverage; LRE, LongRunEmphasis; SAE, 
SmallAreaEmphasis; FVC, forced vital capacity; LAL, LeastAxisLength; MiAL, MinorAxisLength; M2DDS, Maximum2DDiameterSlice; 
SALGLE, SmallAreaLowGrayLevelEmphasis; SZNU, SizeZoneNonUniformity; GLNU, GrayLevelNonUniformity; MV, MeshVolume; 
gldm, gray-level dependence matrix; DNU, DependenceNonUniformity; FEV1/FVC, forced expiratory volume in the first second/forced 
vital capacity; SVR, SurfaceVolumeRatio; LRHGLE, LongRunHighGrayLevelEmphasis; HGLRE, HighGrayLevelRunEmphasis; HGLZE, 
HighGrayLevelZoneEmphasis; SAHGLE, SmallAreaHighGrayLevelEmphasis; RMS, RootMeanSquared; LDHGLE, LargeDependenceH
ighGrayLevelEmphasis; HGLE, HighGrayLevelEmphasis; SDE, SmallDependenceEmphasis; VCmax, maximum vital capacity; MaAL, 
MajorAxisLength.
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technique for predicting pulmonary functions from lung 
CT. We used FVC, FEV1 (% of predicted), FEV1/FVC (%), 
and VCmax of PFTs as the ground truth. We randomly 
selected 70% of the cases for training and the remaining 
30% for testing. We applied the trained LR on the test 
set. Our criteria for evaluation were Spearman correlation 
coefficient r and RMSE.

Statistical analysis

All statistical analyses were performed in R language version 
3.6.3 software. A P value of <0.05 was considered statistically 
significant. The nominal variables are represented by 
frequency and percentage, and the continuous variables are 
represented by the median and interquartile range (IQR). 
The correlation between the actual lung function index 
and the predicted results was calculated using Spearman 
correlation coefficient. The RMSE was calculated as the 
difference between the actual lung function index and the 
predicted results as follows:

( )2

1

1 ˆ
m

i i
i

RMSE y y
m =

= −∑ 	 [1]

where yi the actual value and ˆiy  is the predicted results.

Results

The baseline characteristics of 188 patients included are 
summarized in Table 1. Patients had a median in age of 59.00 
(IQR, 50.00–65.00) years, height of 161.00 (IQR, 155.50–
167.00) cm, weight of 60.20 (IQR, 54.59–67.91) kg, and 
body mass index (BMI) of 23.15 (IQR, 21.56–25.12) kg/m2,  
and there were 64 males (34%). In clinical lung function, the 
results showed that the median FEV1 (% of predicted) was 
100.65 (IQR, 89.74–110.44), the FVC was 3.04 (IQR, 2.57–

3.60), the FEV1/FVC was 79.65 (IQR, 74.22–82.90), and the 
VCmax was 3.11 (IQR, 2.61–3.61).

In the lobe model, 113 of the 188 cases were included to 
train and test the model, and the remaining 75 cases were 
excluded due to poor segmentation results. There were  
76 cases in the training set and 37 cases in the test set. 
We used the FEV1 (% of predicted), FVC, FEV1/FVC, 
and VCmax given by the PFTs as the ground truth and 
calculated the Spearman correlation coefficient r and 
RMSE. The results are shown in Table 3. Both r and 
RMSE indicated that the lobe model performed better in 
predicting FVC and VCmax than in predicting FEV1 (% of 
predicted) and FEV1/FVC.

In the airway model, 113 of the 188 cases were included 
to train and test the model, and the remaining 75 cases were 
excluded due to poor segmentation results. There were  
76 cases in the training set and 37 cases in the test set. The 
results are shown in Table 4, from which we can see that 
the model performed better in predicting FEV1/FVC and 
VCmax.

In the whole-lung model, all 188 cases were included 
to train and test the model. There were 132 cases in the 
training set and 56 cases in the test set. The result is shown 
in Table 5. From the table, we can see that the whole-lung 
model had better performance in predicting FVC and 
VCmax.

The scatter diagram of Figure 5 shows the results of LR 
analysis of the whole-lung model for predicting FVC. From 
this figure, we can see that the FVC results obtained by the 
model are linearly positively correlated with the clinical 
results in both the training set and the test set.

In Figure 6, we present the scatter plots of the correlation 
between the predicted and true values of lung function 
indices with good correlation between the results obtained 
in different models and clinical outcomes.

Table 3 Spearman correlation r and RMSE between the prediction by the lobe model and PFT

Pulmonary function 
indicators

Train Test

r P RMSE r P RMSE

FEV1 (% of predicted) 0.413 <0.001 17.627 0.018 0.915 18.133

FVC 0.794 <0.001 0.499 0.714 <0.001 0.582

FEV1/FVC 0.611 <0.001 7.933 −0.08 0.613 109.878

VCmax 0.800 <0.001 0.464 0.687 <0.001 0.573

RMSE, root-mean-square error; PFT, pulmonary function test; FEV1 (% of predicted), the percentage of measured forced expiratory 
volume in the predicted value; FVC, forced vital capacity; FEV1/FVC, forced expiratory volume in the first second/forced vital capacity; 
VCmax, maximum vital capacity.
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Discussion

In this study, we have developed a machine learning-based 
method to predict pulmonary functions from CT scans 
of patients with lung cancer. It is only in recent years that 
quantitative analysis of CT for assessing pulmonary function 
has been recognized (26). We hypothesized that, with the 
careful extraction of radiomics features from lung CT and 
the appropriate design of a machine learning model, we 
could use lung CT to predict the pulmonary functions 
of patients with lung cancer. In this study, we employed 
the LR as the machine learning technique for predicting 
pulmonary functions from CT images. We trained the LR 
based on three types of structural delineations of the lungs: 
the lobes, the airway, and the whole lungs. Our test results 
showed that the three types of delineations had different 
performance in predicting the PFT results.

(I)	 When using the lobe model, we found that the 
machine learning model had higher accuracy in 
predicting FVC and VCmax than in predicting 
FEV1/FVC and FEV1 (% of predicted).

(II)	 When using the airway model, we found that 

the machine learning model had higher accuracy 
in predicting FEV1/FVC and VCmax than in 
predicting FVC and FEV1 (% of predicted). The 
results of Gawlitza et al. (27) showed that the 
accuracy of predicting FEV1/FVC was higher than 
that of the other three metrics, which is slightly 
different from our results.

(III)	 When using the whole-lung model, we found that 
the machine learning model had higher accuracy 
in predicting FVC and VCmax than in predicting 
FEV1/FVC and FEV1 (% of predicted). We 
believe the reason behind the high prediction 
accuracy of FVC and VCmax is that the CT images 
were obtained at maximum inhalation, which 
can best reflect the maximum air content of lung 
tissues, whereas FVC and VCmax emphasize the 
activities initiated after maximum inhalation.

(IV)	 The prediction accuracy of the whole-lung 
model was similar to that of the lobe model. We 
believe this is because the pathological process 
of our case mostly manifested as changes at the 

Table 4 Spearman correlation r and RMSE between the prediction by the airway model and PFT

Pulmonary function 
indicators

Train Test

r P RMSE r P RMSE

FEV1 (% of predicted) 0.450 <0.001 17.268 0.370 0.024 14.713

FVC 0.720 <0.001 0.569 0.509 0.001 0.695

FEV1/FVC 0.520 <0.001 8.564 0.603 <0.001 6.268

VCmax 0.650 <0.001 0.588 0.642 <0.001 0.538

RMSE, root-mean-square error; PFT, pulmonary function test; FEV1 (% of predicted), the percentage of measured forced expiratory 
volume in the predicted value; FVC, forced vital capacity; FEV1/FVC, forced expiratory volume in the first second/forced vital capacity; 
VCmax, maximum vital capacity.

Table 5 Spearman correlation r and RMSE between prediction by the whole-lung model and PFT

Pulmonary function 
indicators

Train Test

r P RMSE r P RMSE

FEV1 (% of predicted) 0.344 <0.001 16.499 0.315 0.018 14.863

FVC 0.777 <0.001 0.494 0.704 <0.001 0.584

FEV1/FVC 0.393 <0.001 8.010 −0.028 0.839 8.109

VCmax 0.746 <0.001 0.494 0.693 <0.001 0.594

RMSE, root-mean-square error; PFT, pulmonary function test; FEV1 (% of predicted), the percentage of measured forced expiratory 
volume in the predicted value; FVC, forced vital capacity; FEV1/FVC, forced expiratory volume in the first second/forced vital capacity; 
VCmax, maximum vital capacity.
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Figure 5 Scatter plot of predicted and real value of FVC in the lung model. (A) Scatter diagram of the correlation between the predicted 
value and real value of FVC in the training set (r=0.801; P<0.001). (B) Scatter diagram of the correlation between the predicted value and 
real value of the FVC in the test set (r=0.777; P<0.001). (C) Scatter diagram of the difference between the predicted value and the true value 
of the FVC in the training set and the mean value. (D) Scatter plot of the difference between the predicted value and the true value of FVC 
and the mean value of FVC in the test set. GLM, gray-level matrix; FVC, forced vital capacity.

Figure 6 A scatter plot with good correlation between the predicted and real values of pulmonary function in different models. (A) The 
correlation between predicted and actual values of FVC in the test set in the whole-lung model (r=0.704; P<0.001). (B) The correlation 
between the predicted value and the real value of FEV1/FVC in the test set in the airway model (r=0.604; P<0.001). (C) The correlation 
between the predicted and true values of the test set FVC in the lung model (r=0.777; P<0.001). GLM, gray-level matrix; FVC, forced vital 
capacity; FEV1/FVC, forced expiratory volume in the first second/forced vital capacity.
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level of lung parenchyma, making the changes in 
lung parenchyma the dominant changes of the 
whole lung lesions. Therefore, these two models 
had similar performance. Overall, except for the 
better prediction accuracy of FEV1/FVC in the 
airway model, the prediction accuracies of FVC 
and VCmax were better in the lobe model and 
the whole-lung model. Across the three models, 
it appeared that FEV1 (% of predicted) had the 
lowest accuracy of being predicted by the machine 
learning model. FEV1 (% of predicted) is an 
important basis for the preoperative evaluation of 
lung cancer surgery and is also a parameter that 
clinicians should pay more attention to in PFT. 
The poor correlation of our machine evaluation 
with FEV1 (% of predicted) is unfortunate and 
perhaps occurred because of the difference in the 
number of predicted positions, such as recumbent 
position on CT and a seated position on PFT.

The rich information contained in images offers us a 
new opportunity for us to explore to disease behaviors and 
prognosis (28,29). Radiomics has shown its potential in the 
extraction of useful evidence from CT and other modalities 
for diagnosis, classification, prediction, and assessment of 
diseases. Due to the large amount of information present 
in radiomics, the analysis of the information is closely 
integrated with machine learning (10). Machine learning, 
including deep learning, can apply highly nonlinear analysis 
to the input, from which knowledge can be learned and 
applied to predict the research object (30).

In this work, we used PFT results as the ground truth 
to evaluate the accuracy of the radiomics approach. 
However, it is fair to note that, in practice, there are many 
factors affecting the PFT readings, including a patient’s 
demographic characteristics (e.g., age, gender, height, 
and weigh) and clinical presentation (e.g., the size and 
location of the tumor and the presence of comorbidities like 
diabetes), which can affect lung function (31). Therefore, 
it is recommended that characteristics about an individual 
should be taken into consideration when interpreting 
the PFT results (32-34). The chest anatomical structures 
of patients also display certain group-wise physiology 
characteristics, so care must be taken when establishing 
reference values for normal or abnormal PFT readings (35).

Our study had some limitations that should be noted. 
First, the sample size was rather small, and further studies 
with larger sample sizes are required to confirm our 

findings. It should be noted that, although sophisticated 
machine learning models like deep learning models can 
achieve better performance, we chose a linear model 
because of the small sample size, which limited the learning 
ability of sophisticated models. Future research could 
focus on sophisticated machine learning models with large 
sample sizes to obtain higher accuracy. Second, only 60% of 
patients had their airways accurately segmented by the LK 
software. One of the reasons is that our inclusion criteria 
were relatively strict, and only the segmentation results of 
the grade 3–4 airway that had been successfully extracted 
were included in the tracheal model. Another reason may be 
that the accuracy of LK airway segmentation is affected by 
many factors, such as image quality and the segmentation 
algorithm. The application of the airway model and the lobe 
model to the general population requires the development 
of imaging techniques with high spatial and temporal 
resolution and robust airway segmentation techniques. 
Fortunately, LK has good accuracy and generalization in the 
whole-lung segmentation. Third, owing to the limitation 
of a single site, the outcomes of this study might have been 
affected and may not be widely applicable to other hospitals. 
This study also has a few clinical limitations. Usually, 
physicians use preoperative FEV1 and then estimate the 
predicted postoperative FEV1 based on preoperative CT 
scans (quantitative CT or tomographic densitometry), but 
this study was limited to only comparing preoperative lung 
function. In addition, the lack of evaluation for diffusing 
capacity for carbon monoxide (DLCO) is also a limitation of 
this study. In the European Respiratory Society/European 
Society of Thoracic Surgery (ERS/ESTS) guidelines (36), 
DLCO should be a routine preoperative examination for 
patients undergoing pneumonectomy. However, whether 
DLCO should be a routine preoperative examination for all 
patients or only for patients with a low preoperative FEV1 
is still controversial.

Conclusions

At present, most applications of machine learning on the 
lungs focus on the detection of abnormalities and the 
classification of the status of the abnormalities, such as 
pulmonary nodules, pulmonary embolism assessment, and 
COPD (37-39). Recently, researchers have been working 
to use machine learning in other aspects of lung disease 
diagnosis (40). For example, Walsh et al. developed an 
algorithm with the ability to classify pulmonary fibrotic 
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lesions on CT images (41). González et al. developed a 
convolutional neural network that can distinguish patients 
with COPD and predict the risk of adverse events (42).

At present, biphasic respiratory CT images provide more 
abundant information for COPD, which provides better 
evaluation and identification of COPD. In future study, we 
aim to use the CT image information of biphasic respiration 
to model and predict lung function and determine whether 
this effect can better reflect the real clinical situation.
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