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Background: Predicting the mutation status of the epidermal growth factor receptor (EGFR) gene based 
on an integrated positron emission tomography/computed tomography (PET/CT) image of non-small cell 
lung cancer (NSCLC) is a noninvasive, low-cost method which is valuable for targeted therapy. Although 
deep learning has been very successful in robotic vision, it is still challenging to predict gene mutations in 
PET/CT-derived studies because of the small amount of medical data and the different parameters of PET/
CT devices.
Methods: We used the advanced EfficientNet-V2 model to predict the EGFR mutation based on fused 
PET/CT images. First, we extracted 3-dimensional (3D) pulmonary nodules from PET and CT as regions 
of interest (ROIs). We then fused each single PET and CT image. The network model was used to predict 
the mutation status of lung nodules by the new data after fusion, and the model was weighted adaptively. The 
EfficientNet-V2 model used multiple channels to represent nodules comprehensively.
Results: We trained the EfficientNet-V2 model through our PET/CT fusion algorithm using a dataset 
of 150 patients. The prediction accuracy of EGFR and non-EGFR mutations was 86.25% in the training 
dataset, and the accuracy rate was 81.92% in the validation set.
Conclusions: Combined with experiments, the demonstrated PET/CT fusion algorithm outperformed 
radiomics methods in predicting EGFR and non-EGFR mutations in NSCLC.
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Introduction

Currently, the incidence and mortality rates of lung 
cancer remain high. Lung cancer is divided into non-
small cell lung cancer (NSCLC) and small cell lung 
cancer. Adenocarcinoma is a common type of NSCLC 
(1,2). A prevalent histological form of lung cancer is lung 
adenocarcinoma, and the identification of the epidermal 
growth factor receptor (EGFR) mutation has completely 
changed how it is treated (3-8). Patients with lung cancer 
with certain EGFR gene mutations can have their prognosis 
improved by using EGFR tyrosine kinase inhibitors (TKIs) 
(9,10). Therefore, the detection of EGFR mutations is 
critical in first-line treatment. In EGFR mutation detection, 
biopsy sequencing is the most common method.

However, because of the wide heterogeneity of lung 
tumors, biopsies to detect EGFR mutations must locate 
tissue regions precisely (11,12). Also, biopsies may increase 
the risk of cancer metastasis (13). In addition, the difficulty 
of repeatedly sampling tumors, obtaining tissue samples, 
poor DNA quality, and higher costs limit the applicability 
of biopsies (14,15). In these cases, a noninvasive and easy-
to-use method is needed to predict EGFR mutations.

Currently, researchers typically employ conventional 
radiomics, machine learning, or statistics to predict gene 
mutations from computed tomography (CT) images. Most 
researchers anticipate genetic variation using radiomics 
(15-19). Digumarthy et al. (16) explored the possibility of 
predicting EGFR mutations in NSCLC using CT images. 
They performed a quantitative Pearson correlation analysis 
on the CT images of 93 NSCLC patients. The findings 
demonstrated that radiomics and clinical features could 
effectively predict EGFR mutation. A correlation between 
image characteristics and gene mutations has been shown in 
other studies, and these investigations also looked at imaging 
genomics in NSCLC and evaluated the viability of predicting 
EGFR mutations from CT images (17,18). The relationship 
between radiologic characteristics and EGFR mutations in 
lung cancer was examined by Liu et al. (19). They concluded 
that combining radiomicrological characteristics with 

clinical data could significantly enhance EGFR mutation 
prediction. Rios Velazquez et al. (15) investigated the 
relationship between lung cancer imaging phenotypes and 
gene mutations. They contend that increasing prediction 
accuracy can be achieved by fusing imaging information with 
clinical models. The most effective features locate cancers 
with EGFR mutations.

Deep learning has a promising future in feature 
extraction and classification, allowing users to bypass 
laborious manual feature extraction (20-23). Additionally, 
techniques for image-based gene mutation prediction using 
deep learning are being explored. Wang et al. (24) proposed 
to train a deep learning model using CT images to predict 
EGFR mutations in lung adenocarcinoma. They gathered 
CT scans from 844 lung cancer patients and then used 
the CT images to build a deep learning model for EGFR 
gene mutation. According to several studies, deep learning 
models can predict gene alterations in lung cancer (25-28).

Deep learning has made great achievements in the 
field of robotic vision, but there are still many problems 
in medical image processing. First, huge datasets are 
necessary for high-performance deep learning models; 
however, obtaining large amounts of medical picture data 
is frequently challenging (29,30). Second, lung nodules 
of different mutant types have extensive changes in 
morphology, texture, and vision. As shown in Figure 1, a 
typical convolutional neural network (CNN) has difficultly 
extracting features from all types of lung nodules.

Researchers have carried out many studies attempting 
to solve the problem of medical image datasets. First, 
through transfer learning, it is possible to apply the image 
representation ability discovered in large-scale natural 
images to medical small-sample images (31-33). Esteva  
et al. (31) used Large-Scale ImageNet to pre-train 
GoogleNet Inception-3 CNN to identify skin cancer. 
Second, it is possible to extract multiple slices from 
3-dimensional (3D) nodules, and 2-dimensional (2D) 
CNN may be expanded to handle each slice’s pictures 
in medical imaging (34,35). Setio et al. (35) proposed a 
multiview architecture based on 3D nodules and trained 
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them with 2D CNN. The researchers studied the use of an 
improved deep learning model to deal with small samples 
of medical imaging problems (36,37). Inception-ResNet 
Network was used by Kang et al. (36) to categorize benign 
and malignant lung nodules. According to the experimental 
findings, lung nodule feature extraction may be greatly 
aided by the multiscale convolution nuclei and residual 
structures of Inception-ResNet. A residual attention 
learning network was suggested by Guan et al. (37) for 
the multiple categorizations of chest X-ray pictures. The 
feature extraction performance of CNN is significantly 
enhanced by this technique, which adds the attention 
mechanism and allows the CNN to concentrate on the 
lesion regions pertinent to the prediction job. The benefit 
of applying the attention mechanism in multiple chest X-ray 
image categorization tasks is shown by experimental data. 
Fourth, a study employed multitasking to resolve the issue 
of small sample size in medical imaging (38). Pellegrino  
et al. (39) used next-generation sequencing (NGS) to screen 
mutations, and the resulting data were predicted by a 
machine learning method.

In this paper, we present a novel method for predicting 
EGFR mutation and non-EGFR mutation from both 
positron emission tomography/CT (PET/CT) fused images 
and patients’ personal information. First, we cut 32 2D 
views of each 3D cube of lung nodules. Then, we built 
an EfficientNet-V2 model to extract deep features from 
32 views. Finally, we used the EfficientNet-V2 model for 
learning to predict both EGFR and non-EGFR mutations. 
In addition, we used Naive Bayes to determine the different 
types of patients. An adaptive weighting scheme was 
adopted in the training process so that the EfficientNet-V2 
model could be trained end-to-end.

The main contribution of the proposed model is a 
fusion method for extracting 2D multiview slices. To 
our knowledge, this is one of the first studies to use a 
deep learning model to forecast multiple gene mutations 
concurrently. A single predicting job can benefit from 
multitasking due to the EfficientNet-V2 model’s enhanced 
ability to define nodules, which raises the predictive 
accuracy. Additionally, the whole model can be trained via 
an end-to-end methodology, negating the need for human 

No EGFR mutation

EGFR mutation

Figure 1 Examples of PET/CT images of EGFR and non-EGFR mutations. The first row of images are CT images, and second row of 
images are PET images. EGFR, epidermal growth factor receptor; PET/CT, positron emission tomography/computed tomography.



Quantitative Imaging in Medicine and Surgery, Vol 13, No 3 March 2023 1289

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(3):1286-1299 | https://dx.doi.org/10.21037/qims-22-760

interaction. The model’s learning process can assimilate a 
variety of patient data points pertinent to the predicting job. 
Furthermore, the suggested initial-attention-re-network 
model is capable of successfully extracting characteristics 
from different kinds of lung nodules. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-760/rc).

Methods

Our approach consists of 3 steps. First, we use torchIO 
(https://torchio.readthedocs.io/) to cut out the region of 
interest (ROI) cube of PET and CT in turn according to 
the imaging specialist’s label, with a cube size of 64×64×3. 
Second, we cut the PET cube and the CT cube into Z-score 
normalization, normalized the data of PET and CT per 
the same data area, then fused the PET cube after Z-score 
normalization with the CT cube to obtain a new cube 
of fusion. Third, we cut the cube of the ROI pulmonary 
nodules fused with PET/CT into 2D grayscale and merged 
it with the adjacent 2 pieces to form a red, green, and blue 
(RGB) map. Then, we input the data of PET and CT into 

the model of EfficientNet-V2. The output of the model 
was the characteristic quantity of each kind. After statistical 
calculation, we concluded whether the PET or EGFR cube 
contained a mutation.

Data preprocessing and ROI extraction

Figure 2 shows the fusion of the PET dataset and CT 
dataset. Due to the variable spatial resolution of different 
instruments in PET/CT images, we resampled them 
by spline interpolation and rendered them a uniform 
size of 1.0×1.0×1.0 mm3. Then, an experienced imaging 
surgeon labeled the pulmonary nodules. We calculated the 
coordinates of the cube center of the nodules, made a cube 
of 64×64×32, and cut out the ROI of the pulmonary nodules. 
Using this method, we obtained ROIs for PET and CT 
separately, and performed the first Z-score normalization 
on these 2 ROIs. The mean value of the processed data was 
0, and the variance was 1. The main goal was to unify the 
data of different orders of magnitude into the same order 
of magnitude and to use the calculated Z-score value to 
measure the data, which ensured the comparability of data.

Combining PET and CT with normal distribution in 

Step 1:
BOX to extract PET and CT

Step 2:
Perform normalization on each 
of the two BOXes

Step 3:
Merge the two BOX, and 
perform 2d slicing, and 
overlay the adjacent 2d 
images into an RGB image

Step 4:
Data augmentation of the imageData augmentation

PET/CT fused

CT PET

Overlay of 
adjacent 
images

Figure 2 Fusion of PET dataset and CT dataset. CT, computed tomography; PET, positron emission tomography; RGB, red, green, and blue.

https://qims.amegroups.com/article/view/10.21037/qims-22-760/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-760/rc
https://torchio.readthedocs.io/
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the same patient, new lung nodule data were obtained that 
contained all the information of PET and CT. This data has 
many advantages over direct CT. PET was used to visualize 
the metabolism of tumor cells from the point of view of 
pathophysiology. CT was used to see the shape, which was 
a relatively indirect sign. We cut 3D data into 2D grayscale 
images sized 64×64×1 and combined them with 2 adjacent 
grayscale images to form an RGB image sized 64×64×3.

Data enhancement technology enhances the dataset. 
We used RandomGrayscale, RandomHorizontalFlip, 
RandomVerticalFlip, and RandomRotation. All images 
were then uniformly resized to 64×64×3 to accommodate 
the following model input. Before transferring the data 
to the deep neural network, we normalized the data using 
Z-score normalization. After normalization, the data were 
adjusted to a normal distribution with a mean of 0 and a 
variance of 1. Before activating a function, performing 
normalization returned an increasingly skewed distribution 
to a normalized distribution.

Deep learning model

The squeeze exception (SE) module consisted of 

compression and excitation, and the compression module 
was a global average pooling. After the compression 
operation, the feature map was compressed to a 1×1×C 
vector. C is defined channel.

In order to pay more attention to the characteristics, 
the last step was a scale operation. After obtaining a 1×1×C 
vector, the original characteristic graph represented the 
scale operation, which was a channel weight multiplication. 
The original characteristic vector was width (W) × height 
(H) × C. Afterward, the SE module’s characteristic graph 
became a brand-new characteristic graph, which was the 
channel attention mechanism.

Figure 3 depicts the SE module, where the squeeze 
operation is the global average pooling. In order to 
simulate the correlation between channels and provide the 
same amount of weights as the input features, the 2 fully  
connected layers were combined to form a bottleneck 
structure. In order to ascend back via a fully connected layer 
following rectified linear unit (ReLu) activation, we first 
lowered the feature dimension to 1/16 of the input. More 
nonlinearity, better fitting of complicated relationships 
between channels, and a much lower number of parameters 
and computations were its main advantages compared to 

1*1*C

1*1*C

1*1*C

1*1*C

Relu  
1*1*C

Fully connected layer 
1*1*C

Relu 
1*1*C*SERadio

Fully connected layer 
1*1*C*SERadio

W*H*C

1*1*C

Global average pooling

Squeeze

Squeeze

Excitation

Excitation

Feature map

New feature map

Scale operate

Figure 3 SE module. SE, squeeze exception; ReLu, rectified linear unit; W, width; H, height; C, channel.
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employing a fully connected layer. After that, a sigmoid 
gate was used to acquire the normalized weights in the 
range of 0 to 1, and a scale operation was used to weight 
the normalized weights according to the attributes of each 
channel. The formula is as follows:

( ) ( )s
1 1

1 ,
H W

c q c c
i j

F u u i j
H W

ζ
= =

= =
× ∑∑  [1]

where ζc is the statistic pooled by global average, and the 
feature graph’s dimensions are H for height, W for width, 
and uc for the feature map of the c filter. Next came the 
excitation operation, which was a gate mechanism similar to 
a recurrent neural network. Its operation formula is:

( ) ( )( ) ( )( )2 1s , ,exF z W g z W W W zσ σ δ= = =  [2]

The channel weights were obtained by 2 fully joined 
operations and a sigmoid activation function. δ is at ReLU 
function, W1 is the first fully concatenated operation that 
is intended to reduce the dimension, and it has a reduction 
cofactor r, which is a superparameter. W2 is the parameter 
for the second fully joined operation, restoring the 
dimension to the input dimension. After 2 full connections, 
we used the sigmoid activation function to normalize the 

weights of each feature graph. The output feature map 
with weight was then created by multiplying the original 
feature map by the weight matrix of the sigmoid activation 
function’s output. The resulting formula is as follows:

( ),c scale c c c cx F u s s u= =  [3]

According to Eqs. [2,3], the weight coefficients of each 
feature map on the channel dimension were added to make 
the channel features of the feature map more capable of 
extracting features, amplifying the effective features and 
reducing the invalid feature information.

The MBConv module (Figure 4) consists of an SE 
module, 3 convolution modules, and a dropout module. 
The first convolution raises the dimension of the feature 
and passed through Depwise Conv. Depwise Conv consists 
of 2 convolutions to form the first of 2 steps, then passes 
through the SE module and passes through 1×1 convolution 
reduction and dropout. Finally, it joins with the primary 
feature residuals to form a new feature, and all outputs can 
be stitched together into a depth feature map. Convolution 
kernels vary in size and differ in the size of the accepted 
domain; therefore, different types of information can be 
obtained from the input image. The model will be able to 

Dropout Dropout

Project Conv 3*3 
stride1/stride2

Expand Conv 3*3 
stride1/stride2

Project Conv 1*1 
stride1

Feature map

Feature map Feature map

Expansion =1 Expansion ≠1

Feature 
map

Fused-MBConv

SiLU 
BN

SiLU 
BN

BN

Expand Conv 1*1  
stride1

Depwise Conv 3*3 
stride1/stride2

Project Conv 1*1  
stride1

SE

Dropout

Feature map

Feature map

MBConv

SiLU activation 
function BN

SiLU activation 
function BN

BN

Figure 4 MBConv module and Fused-MBConv module. SE, squeeze exception; BN, Batch Normalization; SiLU, sigmoid linear unit.
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represent images more accurately through convolution and 
splicing of several output feature maps in simultaneously. 
The residual module fixes the gradient disappearance issue 
that arises during training and prevents performance loss 
brought on by the depth network.

The Fused-MBConv module (Figure 4) consisted of a 
convolution module and dropout module, in which the 
specific structure was different in different cases. When the 
expansion ratio =1, the feature only passed through Project 
Conv 3×3, in which Project Conv consists of 2 convolutions, 
the first step is 1, the second step is 2, and then dropout 
was carried out. Finally, it connects with primary feature 
residuals, formed new features, and all outputs can be 
stitched together into a depth feature mapping. When 
the expansion ratio ≠1, the feature needs to enter Expend 
Conv 3×3 first, in which Expend Convolution consists of 2 
parts: the first step is 1 and the second step is 2. Then, in 
1×1 convolution, the dropout occurs, and finally it connects 
with primary feature residuals to form a new feature, and 
all outputs can be stitched into a depth mapping feature. 
The improvement of the MBConv module can make the 
network obtain different types of information from the 
output image under different circumstances and further 
enhance the network’s robustness. The model will be able 
to represent images more accurately through convolution 
and splicing several output feature maps simultaneously.

The EfficientNet-V2 model (Figure 5) is composed of 
3 Fused-MBConv modules, 2 MBConv modules, 1 Conv 
module, and a classifier. First, the input image is convolved 
into 3×3 dimensions, then 3 Fused-MBConv 3×3 modules 
are processed to extract the initial features, then 2 MBConv 
modules are used to obtain the final features. Finally, the 
features are input into the classifier for EGFR and non-
EGFR classification. Note that there is a shortcut when the 
stride =1 and input/output (I/O) Channels are equal, and 
there is a dropout layer only when shortcut connects. Here, 
the dropout layer is Stochastic Depth, which randomly 

drops the main branch of the block to reduce the depth of 
the network.

Neural architecture search (NAS)

We learned a variety of design choices to improve training 
speed. To find the best combination of these options, we 
employed a training-aware NAS. Our design space was as 
follows: convolutional operation type, MBConv, and Fused-
MBConv; number of layers and kernel size, 3×3 and 5×5; 
and expansion ratio (the first expand conv 1×1 in MBConv 
or in Fused-MBConv the first expand conv 3×3), 1, 4, 
and 6. On the one hand, we did this (NAS) by removing 
unwanted search options, such as pooling skip operations. 
On the other hand, we reused the channel sizes searched in 
EfficientNet. Next, 1,000 models were randomly sampled in 
the search space, and each model was trained for 10 epochs 
using a smaller image scale. The search reward combined 
the model accuracy rate A, the standard training time S 
required for a step, and the model parameter size P. The 
reward function can be written as: A·Sω·Pν. where ω=−0.07, 
ν=−0.05.

We added a 3×3 kernel convolution layer after the input 
picture since our CT-PET images were grayscale, and the 
pre-trained EfficientNet-V2 network used 3 channels as its 
color image input.

General deep learning settings and computation 
environment

Using the Python package Pytorch1.7 (https://pytorch.
org/), we implemented and enhanced the model. In our 
fully connected neural networks, a neuron’s output (yi) for 
neuron j is determined by:

0

n

i ij i j
i

y F w x b
=

 = + 
 
∑  [4]

Fused-
MBConv 

3*3

Fused-
MBConv 

3*3

Conv 
3*3

Fused-
MBConv 

3*3

MBConv 
3*3

MBConv 
3*3

No EGFR mutation

EGFR mutation

Figure 5 EfficientNet-V2 model. EGFR, epidermal growth factor receptor. 
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Where F stands for the activation function, wij and bj for 
the weight and bias, respectively, and xj for the output of 
neuron i in the previous layer. Thus, the total number of 
neurons at a layer may be expressed as:

( )y F wx b= +  [5]

Weights and biases were modified during training to 
reduce a loss function. We used an AdamW optimizer to 

improve the model with a CrossEntropyLoss loss function. 
The sigmoid linear unit (SiLU) F was established.

All analyses were performed on a Window10 with 
GeForce RTX 3080 processors. The initial learning rate 
was 1e−3. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Board of Yunnan Cancer Hospital, 
and individual consent for this retrospective analysis was 
waived.

Results

Datasets

The hospital responsible for our study collected datasets 
from Yunnan Cancer Hospital of China that included  
150 patients with EGFR mutations between 2016 and 2019. 
There were 59 women and 91 men. Their median age was 
58, and their ages varied from 31 to 80. There were 93 wild 
type, 57 EGFR mutations, 64 smokers, and 86 non-smokers. 
The dataset included 121 patients split into training datasets 
and 29 patients split into testing datasets. Table 1 displays the 
clinical characteristics of the training and testing datasets.

Confusion matrix

To test the performance of the model, we used 3,794 PET/
CT  fusion datasets after 2D slicing, where we controlled 
the number of wild type and EGFR datasets, of which 1,913 
datasets were wild type and 1,881 datasets were EGFR. 
Figure 6 shows the confusion matrix of the predicted results.

Comparison with traditional methods

Earlier studies used clinical and radiological features to 
predict gene mutations (17-19). Age, sex, smoking status, 
and tumor stage were used in the clinical validation process. 
Radiologists with more than 8 years of experience manually 
segmented nodules as part of the radiomics feature 
extraction procedure, which also involves extracting 1,108 
radiomics features using the PyRadiomics toolkit (40) and 
choosing 8 features via recursive feature elimination. The 
radiomics model’s EGFR mutation was finally predicted 
using a random forest with 100 trees. In order to predict 
EGFR, the clinical models build a random forest of  
100 trees using the clinical features.

To avoid overfitting, we used cross-validation with  
10 folds. In the training phase, we divided the training 

Table 1 Patient information in the training dataset and the testing 
dataset

Parameter Training dataset (n=121) Testing dataset (n=29)

Sex

Male 76 15

Female 45 14

Smoking

Yes 57 7

No 64 22

Age (year)

Minimum 31 34

Maximum 80 78

Median 56 60

EGFR

Mutant 52 5

Wild type 69 24

EGFR, epidermal growth factor receptor.
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Figure 6 The confusion matrix of the predicted results. EGFR, 
epidermal growth factor receptor; Wild, no EGFR mutations.
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dataset into training (90%) and validation (10%) to train 
100 epochs per fold, selected the 10 best models according 
to the lowest value of loss of 100 epochs per fold, tested the 
test set with these models, and then calculated the average. 
Figure 7 shows results of the experiment.

The area under the curve (AUC), accuracy (ACC), 
and F1 indices were our main metrics for comparison 
with conventional radiomics and clinical models. Table 2 
demonstrates that, in terms of predicting, the model we used 
was superior than the conventional methods. The validation 
dataset’s AUC value for the anticipated EGFR mutation was 
83.64%, and the ACC value was 81.92%. The outcomes 
predicted by the radiomics and clinical models were then 
compared. The validation data’s ACC was 80.62%. This 
occurred because a radiomics model extracts more effective 
features from PET/CT fusion images. However, radiomics 
models require radiologists to artificially segment tumor 
regions, requiring more labor and time.

Model visualization

Our model seeks to investigate the associations between 
EGFR mutations and tumor imaging characteristics. To 
illustrate the prediction process and determine the tumor 
locations most useful for finding EGFR mutations, we 
employed deep learning visualization. Since our model is 
an end-to-end model, physicians may concentrate on the 
tumor regions that require care by using tumor region 
visualization.

We visualized the intermediate layer of our model in 
order to assess the feature extraction performance of our 
model and comprehend why the PET/CT fusion picture 
has outstanding feature extraction performance. A total of 
7 nodules from the EGFR mutation/wild type were chosen 
at random. The class activation map (CAM) of the stem 
layer is visualized, where CAM is a thermodynamic diagram 
that reveals regions associated with prediction (41). Figure 8 
shows the results of EGFR and wild type activation. Rows 
(A) and (B) represent tumor regions and CAM, respectively. 
When used correctly, the model activates the corresponding 
nodules of EGFR.

Comparison with different types of datasets

In order to evaluate the advantage of PET/CT fusion 
image on the model, we compared the performance of 
CT, PET, and PET/CT image datasets on the model, 
respectively. The results are shown in Table 3. Compared 

Figure 7 Performance of our model with 10 folds of cross-validation.

Table 2 Performances of our model, the clinical model, and the 
radiomics model in the validation dataset

Methods AUC (%) ACC (%) F1 (%)

Clinical model 79.27±2.87 76.35±3.36 71.22±2.74

Radiomics model 82.41±2.34 80.62±2.51 76.35±2.61

Our model 83.64±2.41 81.92±2.86 81.90±2.27

AUC, area under the curve; ACC, accuracy; F1, weighted 
harmonic average of precision rate and recall rate.
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with PET, the CT image had a higher resolution and could 
extract the relevant features better. However, the CT image 
mainly observed the shape of tumor cells, and the tumor 
cells sometimes appeared as a smaller block, resulting in 
the characteristic information of the tumor being lost. By 
fusing CT and PET images, we obtained the characteristic 

information of tumor morphology and tumor cell 
metabolism, which was the advantage of molecular image 
and anatomical image.

Comparison with different training strategies

In order to demonstrate that pre-training could improve 
the predictive performance of the model, we evaluated the 
model’s performance under pre-training conditions. We 
trained the EfficientNet-V2 model in 25 epochs using cat 
versus dog. Table 4 and Figure 9 show that the pre-trained 
EfficientNet-V2 model performs better than the scratch (un 
pre-trained) EfficientNet-V2 model.

Discussion

In our study, we proposed a deep learning framework based 
on the EfficientNet-V2 model to predict EGFR mutations 

A

A

B

B

CT-PET2 CT-PET3 CT-PET4 CT-PET5 CT-PET6 CT-PET7CT-PET1

CT-PET2 CT-PET3 CT-PET4 CT-PET5 CT-PET6 CT-PET7CT-PET1

EGFR wild type

EGFR mutation

Figure 8 Mutations in the EGFR and the wild type: (A) tumor image, (B) CAM. EGFR, epidermal growth factor receptor; CT, computed 
tomography; PET, positron emission tomography; CAM, class activation map.

Table 3 Performance of our model in the validation dataset on 
patches that were extracted from different type of datasets

Dataset AUC (%) ACC (%) F1 (%)

PET 77.38±2.61 76.34±3.25 74.62±2.68

CT 81.40±2.17 79.21±2.51 77.36±1.94

PET/CT 83.64±2.41 81.92±2.86 81.90±2.27

AUC, area under the curve; ACC, accuracy; F1, weighted 
harmonic average of precision rate and recall rate; PET, positron 
emission tomography; CT, computed tomography.
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by noninvasively fusing PET and CT images. The results 
show that our model can feasibly predict EGFR mutation. 
The main advantage of our model is that it can acquire 
more features by fusing PET and CT images, and it can 
automatically learn the features of PET/CT images without 
extracting features manually.

Our method is a noninvasive assay designed to avoid 
invasive injury when surgery or biopsy are inconvenient. 
In addition, CT and PET images are readily available 
throughout the treatment period to detect EGFR 
mutations. The acquisition of CT and PET images spends 
relatively few resources of cost and time. Our method does 
not need the doctor’s domain knowledge; it can predict 
EGFR mutations more economically and conveniently.

Previous studies have shown that EGFR mutations can 
be reflected based on quantitative radiomics characteristics 
(42,43) and CT characteristics (15,44). However, these 
can only reflect simple visual traits. Some EGFR abrupt 
states are difficult to be represented by artificial feature 

engineering. In this case, the introduction of a PET/CT 
fusion image can better reflect some abstract features and 
pathological features. Deep learning also demonstrates its 
benefits by being able to extract more abstract features that 
are challenging to articulate but necessary for detecting 
EGFR mutations.

The deep learning approach has the following benefits 
compared to artificial feature extraction: (I) the deep 
learning model can extract the abstract multilevel features 
associated with the EGFR mutation information from the 
visual data using the hierarchical neural network structure; 
(II) the deep learning model does not need to label the 
tumor boundary artificially, which is a great advantage 
compared with the artificial feature extraction; and (III) 
the deep learning algorithm is quick and simple to use and 
only requires the original CT and PET images as input in 
order to predict the EGFR mutation without the need for 
additional artificial input.

Our study used a deep learning model to predict 
EGFR mutations. In validated dataset predictions, EGFR 
mutations were detected in 83.64% of AUC, 81.92% 
of ACC, and 78.37% of F1. The AUC of the radiomics 
model was 82.41%, the ACC was 80.62%, and the F1 was 
76.35%. Our model was superior to the radiomics model. 
In addition, radiomics models require radiologists to 
identify lesion areas in advance. These results indicate that 
our model method can predict EGFR mutation effectively 
and feasibly. However, using noninvasive image analysis 
to predict gene mutations cannot always replace biopsies. 
The main advantage of image analysis over pathological 
biopsy is that image analysis can be supplementary to biopsy 
if the patient’s body is in an unsuitable condition. The 
model method used can be tracked repeatedly during the 
exploration of tumor therapy.

Although we obtained satisfactory prediction results in 
predicting EGFR mutations, our model still has limitations. 
First, the datasets were small, and some were incomplete. 
Furthermore, very few public datasets contain PET and 
CT images; therefore, the model’s generalizability needs 
to be further improved. In future studies, we will collect 
additional datasets and use image data augmentation to 
build our model to avoid situations such as overfitting.

Finally, we also need to optimize the model itself. The 
model we used can adopt the spatial attention mechanism 
in terms of the attention mechanism, and the preprocessing 
part of the image still needs to be optimized. In future 
research, we will collect more relevant methods for model 
optimization, such as using particle swarm optimization, 

Table 4 Performance of our model with scratch and pre-trained for 
the prediction of EGFR mutations

Training strategy AUC (%) ACC (%) F1 (%)

Scratch 80.64±2.64 78.67±2.71 79.46±2.04

Pre-trained 83.64±2.41 81.92±2.86 81.90±2.27

EGFR, epidermal growth factor receptor; AUC, area under 
the curve; ACC, accuracy; F1, weighted harmonic average of 
precision rate and recall rate.

Scratch

Pre-trained
100

80

60

40

20

0

%

AUC ACC F1

Figure 9 Performance of our model with scratch and pre-trained 
for the prediction of EGFR mutations. AUC, area under the curve; 
ACC, accuracy; F1, weighted harmonic average of precision rate 
and recall rate; EGFR, epidermal growth factor receptor.
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genetic algorithm (45), and Bayesian optimization.

Conclusions

In our work, we developed a deep learning approach to 
detect EGFR mutations using a noninvasive fusion of PET 
and CT images. The model was built using a dataset of 
150 patients obtained from a partner institution, and its 
accuracy in identifying EGFR mutations was 81.92%. The 
outcome suggests that our model approach is a workable 
method for predicting EGFR mutations. The integration 
of PET and CT images in our model maximizes the 
extraction of feature information. It provides a noninvasive 
supplementary diagnostic tool appropriate for preventing 
intrusive harm in situations where both surgery and biopsy 
are unfeasible. Additionally, because our technique does not 
require medical field knowledge, it is a more affordable and 
practical way to identify EGFR mutations.
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