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Background: The rest-only single photon emission computed tomography (SPECT) myocardial perfusion 
imaging (MPI) has low diagnostic performance for obstructive coronary artery disease (CAD). Coronary 
artery calcium score (CACS) is strongly associated with obstructive CAD. The aim of this study was to 
investigate the performance of rest-only gated SPECT MPI combined with CACS and cardiovascular risk 
factors in diagnosing obstructive CAD through machine learning (ML).
Methods: We enrolled 253 suspected CAD patients who underwent the 1-stop rest-only SPECT MPI 
and computed tomography (CT) scan due to stress test-related contraindications. Myocardial perfusion 
and wall motion were assessed using quantitative perfusion SPECT + quantitative gated SPECT (QPS + 
QGS) automated quantification software. The Agatston algorithm was used to calculate CACS. The clinical 
data of patients, including cardiovascular risk factors, were collected. Based on feature selection and clinical 
experience, 8 factors were identified as modeling variables. Subsequently, patients were divided randomly 
into 2 groups: the training (70%) and test (30%) groups. The performance of 8 supervised ML algorithms 
was evaluated in the training and test groups.
Results: Obstructive CAD was diagnosed by coronary angiography in 94 (37.2%, 94/253) patients. In the 
training group, the area under the receiver operator characteristic (ROC) curve (AUC) of the random forest 
was the highest, and the AUCs of Logistic, extreme gradient boosting (XGBoost), support vector machine 
(SVM), and adaptive boosting (AdaBoost) were all above 0.9. In the test group, the AUC of recursive 
partitioning and regression trees (Rpart) was the highest (0.911). Rpart and Naïve Bayes had the highest 
accuracy (0.840). Rpart had a sensitivity and specificity of 0.851 and 0.821, respectively; Naïve Bayes had 
a sensitivity and specificity of 0.809 and 0.893, respectively. Next was Logistic, with an accuracy of 0.827, 
a sensitivity of 0.872, and a specificity of 0.750. The random forest and XGBoost algorithms also had high 
accuracy, which was 0.813 for each algorithm.
Conclusions: Rest-only SPECT MPI combined with CACS and cardiovascular risk factors using an ML 
algorithm to detect obstructive CAD is feasible. Among the algorithms validated in the test group, Rpart, 
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Introduction

Currently, the global population continues to bear the 
enormous burden of coronary artery disease (CAD). 
Gated single photon emission computed tomography 
(SPECT) myocardial perfusion imaging (MPI) is a widely 
used noninvasive method for diagnosing CAD (1,2). 
SPECT MPI can show the location, extent, and severity of 
myocardial ischemia or infarction and provide information 
on myocardial perfusion and global and regional function 
(3-5). Nonetheless, the results of SPECT MPI may be 
incorrectly negative in patients with multivessel CAD, 
particularly those with 3-vessel diffuse illness, due to 
“balanced ischemia”, resulting in a missed diagnosis of 
severe CAD (6-8). At the same time, obstructive CAD 
increases with coronary artery calcium score (CACS), which 
reflects the burden of coronary atherosclerotic plaque (9,10). 
Previous research has shown that adding CACS to stress 
MPI improves the diagnosis of CAD (11).

Artificial intelligence (AI) is a growing and powerful 
technology in healthcare. In recent years, the application of 
AI in nuclear cardiology has become increasingly extensive 
(12-17). An interpretable algorithm based on deep learning 
was used to diagnose obstructive CAD in stress or stress/
rest MPI (15,18). However, stress MPI is not suitable for all 
patients, as stress tests are contraindicated in patients with 
suspected acute coronary syndrome (ACS) (19). Previous 
studies found that, despite the addition of wall motion, 
rest-only MPI had limited value in detecting CAD, with 
a sensitivity of less than 50% (20,21). To date, there have 
been no studies of resting MPI combined with CACS and 
cardiovascular risk factors using machine learning (ML) 
to detect obstructive CAD. Therefore, the purpose of this 
study was to use ML to evaluate the value of rest-only MPI 
combined with CACS and cardiovascular risk factors for 
detecting obstructive CAD in suspected CAD patients. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://qims.

amegroups.com/article/view/10.21037/qims-22-758/rc).

Methods

Study cohort and population

We recruited a retrospective cohort of suspected CAD 
patients who underwent gated SPECT MPI at the Third 
Affiliated Hospital of Soochow University from February 
2016 to April 2020. The following were the inclusion 
criteria: (I) no history of a definite myocardial infarction, 
(II) a contraindication to stress test, (III) no history of 
percutaneous coronary intervention (PCI) or coronary artery 
bypass grafting (CABG), and (IV) coronary angiography 
was completed within 3 months of the examination. Severe 
valvular disease, hypertrophic or dilated cardiomyopathy, 
severe arrhythmias, poor image quality due to motion 
artifacts, and a lack of CACS scan data were the exclusion 
criteria. Finally, 253 patients were included in the study, 
including 61 with suspected ACS, 39 with decompensated 
heart failure, 41 with bradycardia combined with restricted 
physical activity, 54 with uncontrolled hypertension (systolic 
blood pressure >200 mmHg), and 58 with asthma. The 
detailed process of patient recruitment and study design 
is shown in Figure 1. The Ethics Committee of the Third 
Affiliated Hospital of Soochow University approved the 
research protocol, which complied with the Declaration of 
Helsinki (as revised in 2013). The requirement for informed 
consent was waived since the study was retrospective.

Resting image acquisition and analysis
99mTechnetium-sestamibi (99mTc-MIBI) (740–925 MBq) 
was administered intravenously at rest. Scanning was 
started after 60–90 min of rest. A dual-head 90o gamma 
camera (Symbia T16; Siemens Medical Systems, Erlangen, 
Germany) equipped with a parallel-hole collimator with low 
energy and high resolution was used for image acquisition. 

Naïve Bayes, XGBoost, Logistic, and random forest are all highly accurate for diagnosing obstructive CAD. 
The application of ML in resting MPI and CACS may be used for screening obstructive CAD.
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Detailed scan parameters are provided in our previous  
study (22). All SPECT image acquisition procedures 
fo l lowed  the  r ecommenda t ions  o f  the  r e l evan t  
guidelines (23). Perfusion images were analyzed using an 
international 17-segment model (24), which was divided 
into territories of the left anterior descending coronary 
artery (LAD), left circumflex coronary artery (LCX), 
and right coronary artery (RCA). Quantitative perfusion 
SPECT + quantitative gated SPECT (QPS + QGS) 2009 
automated analysis software (Cedars-Sinai Medical Center, 
Los Angeles, CA, USA) were used for semi-quantification of 
perfusion and wall motion, which scored perfusion (0–4) and 
wall motion (0–5) according to the degree of abnormality. 
The detailed meaning of the scores can be found in the 
relevant studies (25,26). Quantitative analysis of images 
was performed by a nuclear cardiologist. The summed rest 
score (SRS) or summed motion score (SMS) was the sum of 

the 17-segment resting perfusion or wall motion scores. An 
SRS ≥4 or SMS ≥2 exhibited in 2 consecutive segments in 1 
territory was considered abnormal (20,25).

CACS acquisition and analysis

A chest CT for obtaining CACS was performed after 
the completion of the MPI acquisition. Scan details 
were as follows: tube voltage, 120 kV; tube current,  
100 mA; thickness, 3 mm; 60–80% of the R-R interval, 
and completed with 1 breath-hold after inhalation. The 
scanning range was from the plane below the tracheal 
carina to 1–2 cm below the heart’s diaphragmatic surface. 
Coronary artery calcifications were identified as dense areas 
in coronary arteries that exceeded the 130 Hounsfield unit 
(HU) threshold using the Agatston algorithm (27). CACS 
was measured independently by a nuclear cardiologist. The 
sum of the calcium scores of left main coronary artery (LM), 
LAD, LCX, RCA, and their branches was defined as CACS, 
and then CACS was divided into 4 categories: 0, 1–100, 
101–399, and ≥400 (28,29).

Invasive coronary angiography

All coronary angiograms were visually interpreted on-site 
by 2 cardiologists. Obstructive CAD was defined as ≥70% 
narrowing of the inner diameter of the LAD, LCX, RCA, 
or their main branches and ≥50% narrowing of the LM (30).  
If 2 physicians disagreed on the results, a third senior 
physician was invited to read the angiograms, and the final 
decision was the opinion with the most votes.

ML techniques

We performed feature selection based on clinical 
experience and actual situations before ML. Combining 
variable selection from our previous study (22) and clinical 
experience, we finally identified the following 8 variables: 
age, gender, hypertension, diabetes, hyperlipidemia, SRS, 
SMS, and CACS. The correlation between variables 
was analyzed using Spearman correlation (R package: 
corrplot). The study population included 253 suspected 
CAD patients who underwent rest-only MPI due to stress 
contraindications. Participants were divided at random 
into 2 groups: the training (70%) and test (30%) groups. 
We selected supervised ML algorithms developed in 
R statistical software (version 4.1.0, R Foundation for 
Statistical Computing, Vienna, Austria). A total of 8 ML 
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• With contraindications to stress test
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Figure 1 Flowchart of patient recruitment and study design. 
CAD, coronary artery disease; SPECT, single photon emission 
computerized tomography; MPI, myocardial perfusion imaging; 
MI, myocardial infarction; PCI, percutaneous coronary 
intervention; CABG, coronary artery bypass grafting; CAG, 
coronary angiography; CACS, coronary artery calcium score.
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algorithms were used: Logistic (31), recursive partitioning 
and regression trees (Rpart) (R package: rpart), random  
forest (32), extreme gradient boosting (XGBoost) (R 
package: xgboost), Naïve Bayes (R package: naivebayes), 
K-nearest neighbor (KNN) (R package: kknn), support 
vector machine (SVM) (R package: e1071), and adaptive 
boosting (AdaBoost) (33). Except for tree-based ML 
algorithms, we performed feature normalization. We used 
a 10-fold cross-validation approach, conducted twice, for 
the training data. We tuned the free parameters for each 
algorithm using this subset. For both the training and 
test groups, we computed accuracy, sensitivity, specificity, 
positive predictive value (PPV), negative predictive 
value (NPV), and the area under the receiver operator 
characteristic curve (AUC).

Statistical methods

All statistical analysis was performed using the R software. 
Continuous variables that conformed to the normal 
distribution were expressed as the mean ± SD, and 
continuous variables that did not conform to the normal 
distribution were expressed as the median P50 (P25, 
P75). Chi-square tests were used for categorical variable 
comparisons between groups. The unpaired t-test for 
normal continuous variables or Mann–Whitney U test for 
skewed continuous variables were used for comparisons 
between 2 groups. The receiver operator characteristic 

curve (ROC) analysis was used to assess the discrimination 
of models. The best cutoff value was calculated using 
Youden index. A 2-sided P value less than 0.05 was 
considered statistically significant.

Results

Among 253 patients with suspected CAD, 94 (37.2%, 
94/253) were diagnosed with obstructive CAD by coronary 
angiography. Participants were divided randomly into  
2 groups: the training (70%, n=178) and test (30%, n=75) 
groups. A total of 8 ML algorithms were used and validated, 
with detailed results presented below.

Demographics and clinical characteristics

The mean age was 62.7±9.0 years in the obstructive CAD 
group and 60.9±9.3 years in the nonobstructive CAD group 
(P=0.131). There was a higher proportion of males in the 
obstructive CAD group compared with the nonobstructive 
CAD group (76.6% vs. 61.0%; P=0.011). There were 
no significant differences in body mass index (BMI) and 
smoking history between the 2 groups. Cardiovascular 
risk factors, including hypertension, diabetes, and 
hyperlipidemia, were more prevalent in patients with 
obstructive CAD. There was no significant difference in 
medication history, such as angiotensin-converting enzyme 
inhibitors, beta-blockers, or calcium channel blockers, 

Table 1 Clinical characteristics of the 253 suspected CAD patients

Variables Without obstructive CAD (n=159) With obstructive CAD (n=94) P value

Age (years old) 60.9±9.3 62.7±9.0 0.131

Male 97 (61.0) 72 (76.6) 0.011

BMI (kg/m2) 25.0±3.0 24.6±3.0 0.307

Hypertension 102 (64.2) 72 (76.6) 0.039

Diabetes 26 (16.4) 35 (37.2) <0.001

Hyperlipidemia 92 (57.9) 74 (78.7) 0.001

Smoking >1 year 58 (36.5) 41 (43.6) 0.261

Medical treatment

ACEI 81 (50.9) 58 (61.7) 0.097

Beta-blockers 98 (61.6) 66 (70.2) 0.167

Calcium channel blockers 95 (59.7) 54 (57.4) 0.719

Data are shown as mean ± standard deviation or number (percentage). CAD, coronary artery disease; BMI, body mass index; ACEI, 
angiotensin-converting enzyme inhibitor.
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Table 2 The SPECT MPI variables and CACS in 253 suspected CAD patients

Variables Without obstructive CAD (n=159) With obstructive CAD (n=94) P value

Gated SPECT

EDV (mL) 83.0 (67.0 –105.0) 89.0 (71.0– 114.3) 0.075

ESV (mL) 30.0 (21.0 –41.0) 33.5 (25.8 –48.3) 0.003

LVEF (%) 65.4±8.7 58.3±12.4 <0.001

SRS 0.0 (0.0 –1.0) 2.0 (0.0– 7.0) <0.001

SMS 0.0 (0.0 –0.0) 1.0 (0.0 –9.3) <0.001

PFR 2.3±0.5 2.1±0.6 0.001

CACS 0.0 (0.0 –9.1) 152.9 (47.7 –442.5) <0.001

CACS: 0 (%) 111 (69.8) 12 (12.8) <0.001

CACS: 1–100 (%) 33 (20.8) 21 (22.3) 0.766

CACS: 101–399 (%) 11 (6.9) 36 (38.3) <0.001

CACS ≥400 (%) 4 (2.5) 25 (26.6) <0.001

Data are shown as mean ± standard deviation, median (interquartile range) or number (percentage). SPECT, single photon emission 
computerized tomography; MPI, myocardial perfusion imaging; CACS, coronary artery calcium score; CAD, coronary artery disease; EDV, 
end diastolic volume; ESV, end systolic volume; LVEF, left ventricular ejection fraction; SRS, summed rest score; SMS, summed motion 
score; PFR, peak filling rate.

between the 2 groups. The clinical characteristics are 
displayed in Table 1.

Characteristics of gated SPECT MPI and CACS

Participants with obstructive CAD had lower left ventricular 
ejection fraction (LVEF) and a peak filling rate (PFR) 
compared to the group without obstructive CAD. End-
diastolic volume (EDV), end-systolic volume (ESV), SRS, 
and SMS were higher in the obstructive CAD group than 
in the nonobstructive CAD group. In the group without 
obstructive CAD, 111 (69.8%, 111/159) patients had a 
CACS of 0 and 33 (20.8%, 33/159) had a CACS between 1 
and 100. In the obstructive CAD group, 36 (38.3%, 36/94) 
patients had a CACS between 101 and 399, and 25 (26.6%, 
25/94) had a CACS ≥400. The characteristics of gated 
SPECT MPI and CACS are displayed in Table 2. Figure 2 
shows the distribution and probability density of continuous 
variables in patient characteristics.

Diagnostic efficacy of 8 ML algorithms for predicting 
obstructive CAD in the training group

The Spearman correlation coefficients of the included 
features were calculated (Figure 3). Most features had 

weak correlations with absolute values less than 0.25. The 
correlation between SMS and SRS was moderate (ρ=0.58) 
and was the highest correlation among the features. The 
lower correlation values shown by the heatmap indicated 
the absence of redundant features.

As shown in Figure 4, The AUCs of Logistic, Rpart, 
random forest, XGBoost, Naïve Bayes, KNN, SVM, and 
AdaBoost in the training group were 0.905 [95% confidence 
interval (CI): 0.861–0.949], 0.893 (95% CI: 0.841–0.944), 
1.000 (95% CI: 1.000–1.000), 0.922 (95% CI: 0.878–0.965), 
0.897 (95% CI: 0.853–0.942), 0.874 (95% CI: 0.819–0.929), 
0.925 (95% CI: 0.883–0.967), and 0.953 (95% CI: 0.926–
0.979), respectively. The AUC of the random forest was 
the highest, and the AUCs of Logistic, XGBoost, SVM, 
and AdaBoost were all above 0.9. The accuracy, sensitivity, 
specificity, PPV, and NPV of each algorithm for diagnosing 
obstructive CAD are shown in Table 3 and Figure 5. Random 
forest, SVM, AdaBoost, and XGBoost techniques exhibited 
high accuracy, although each had advantages in terms of 
sensitivity or specificity.

Diagnostic efficacy of ML algorithms in the test group

The AUCs of Logistic, Rpart, random forest, XGBoost, 
Naïve Bayes, KNN, SVM, and AdaBoost in the test 
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Figure 3 Correlation heatmap of the features used. The numbers 
represent the Spearman correlation coefficients between the two 
features. SMS, summed motion score; SRS, summed rest score; 
HPL, hyperlipidemia; HTN, hypertension; CACS, coronary artery 
calcium score.

Figure 2 Violin plot comparing characteristics of patients between groups. BMI, body mass index; EDV, end diastolic volume; ESV, end 
systolic volume; LVEF, left ventricular ejection fraction; PFR, peak filling rate; SRS, summed rest score; SMS, summed motion score; 
CACS, coronary artery calcium score; CAD, coronary artery disease.
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group were 0.896 (95% CI: 0.817–0.975), 0.911 (95% CI: 
0.846–0.976), 0.888 (95% CI: 0.802–0.974), 0.899 (95% CI: 
0.832–0.965), 0.866 (95% CI: 0.768–0.964), 0.859 (95% 
CI: 0.768–0.950), 0.874 (95% CI: 0.784–0.964), and 0.845 
(95% CI: 0.754–0.937), respectively (Figure 4). The AUC 
of Rpart was the highest (0.911). In the test group, Rpart 
and Naïve Bayes had the highest accuracy (0.840). The 
sensitivity and specificity of Rpart were 0.851 and 0.821, 
respectively. The sensitivity and specificity of Naïve Bayes 
were 0.809 and 0.893, respectively. The algorithm with 
the next highest accuracy was Logistic, with an accuracy 
of 0.827, a sensitivity of 0.872, and a specificity of 0.750. 
A high accuracy of 0.813 was also demonstrated by the 
random forest and XGBoost algorithms. Figure 6 shows 
the importance of features in the random forest, XGBoost, 
Logistic, and Rpart algorithms.

Discussion

This study demonstrated the role of ML in detecting 
obstructive CAD with rest-only MPI combined with CACS 
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Figure 4 Comparison of ROC curves of 8 ML algorithms. (A) ML performance in the training group. (B) ML performance in the test 
group. ROC, receiver operator characteristic curve; ML, machine learning; AUC, the area under the receiver operator characteristic curve; 
KNN, K-nearest neighbor; SVM, support vector machine. Rpart, recursive partitioning and regression trees; XGBoost, extreme gradient 
boosting; AdaBoost, adaptive boosting.

Table 3 Diagnostic performance of eight ML techniques in the training and test groups

ML techniques
Training group (n=178) Test group (n=75)

Accuracy Sensitivity Specificity PPV NPV Accuracy Sensitivity Specificity PPV NPV

Logistic 0.837 0.857 0.803 0.881 0.768 0.827 0.872 0.750 0.854 0.778

Rpart 0.843 0.830 0.864 0.912 0.750 0.840 0.851 0.821 0.889 0.767

Random forest 0.994 0.991 1.000 1.000 0.985 0.813 0.894 0.679 0.824 0.792

XGBoost 0.850 0.851 0.849 0.902 0.776 0.813 0.851 0.750 0.851 0.750

Naïve Bayes 0.809 0.795 0.833 0.890 0.705 0.840 0.809 0.893 0.927 0.735

KNN 0.843 0.904 0.730 0.860 0.807 0.760 0.864 0.613 0.760 0.760

SVM 0.865 0.835 0.921 0.951 0.753 0.773 0.750 0.807 0.846 0.694

AdaBoost 0.882 0.896 0.857 0.920 0.818 0.787 0.750 0.839 0.868 0.703

ML, machine learning; PPV, positive predictive value; NPV, negative predictive value; Rpart, recursive partitioning and regression trees; 
KNN, K-nearest neighbor; SVM, support vector machine; XGBoost, extreme gradient boosting; AdaBoost, adaptive boosting.

and cardiovascular risk factors. In the training group, the 
AUC of random forest was the highest, and the AUCs of 
Logistic, XGBoost, SVM, and AdaBoost were all above 0.9. 
In the test group, the AUC of Rpart was the highest (0.911). 
Rpart and Naïve Bayes had the highest accuracy (0.840). 
The algorithm with the next highest accuracy was Logistic, 

with an accuracy of 0.827, a sensitivity of 0.872, and a 
specificity of 0.750. This present study demonstrated that 
combining CACS and cardiovascular risk factors using ML 
algorithms can improve the performance of resting-gated 
SPECT MPI for detecting obstructive CAD.

The most common cause of CAD is coronary artery 
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Figure 5 Diagnostic performance of 8 ML algorithms. (A) The sensitivity and specificity of ML algorithms in the training group. (B) The 
sensitivity and specificity of ML algorithms in the test group. ML, machine learning; KNN, K-nearest neighbor; SVM, support vector 
machine; Rpart, recursive partitioning and regression trees; XGBoost, extreme gradient boosting; AdaBoost, adaptive boosting.

stenosis due to coronary atherosclerotic plaque. As the 
degree of stenosis increases, the risk of myocardial ischemia 
also increases, with myocardial ischemia reaching more than 
80% in over 70% of stenotic coronary arteries (34). Gated 
SPECT MPI is a widely used, well-validated, noninvasive 
method for detecting myocardial ischemia and obstructive 
CAD (5,15,35). The value of stress SPECT MPI in the 
diagnosis and risk stratification of CAD has been widely 
confirmed (36). Usually, if the SRS is high and obstructive 
CAD exists, it is myocardial infarction. If the SRS is high 
yet there is no obstructive CAD, it is pseudo-positive by 
artifacts. If the SRS is low and there is no obstructive CAD, 
it is true normal. If the SRS is low and obstructive CAD is 
present, it is demand ischemia, which is difficult to detect 
without conventional stress MPI. A previous study found 

that the combination of CACS on the basis of stress MPI 
improved the sensitivity for detecting CAD from 76% 
to 86%, with no significant difference in specificity (11).  
However, many patients can still only choose resting MPI 
due to the contraindication of stress, such as ACS. In 
addition, rest-only MPI is less effective for detecting CAD, 
with a sensitivity of approximately 30% (20). Improving 
the ability of rest-only MPI to diagnose CAD is an urgent 
clinical issue, and ML is increasingly used in cardiovascular 
imaging. The present study demonstrated that the 
combination of resting MPI, CACS, and cardiovascular risk 
factors improved the diagnosis of obstructive CAD by using 
ML algorithms. We showed the importance of features in 
4 algorithms in the test set. Overall, the importance of SRS 
was relatively low among the 4 algorithms. A possible reason 
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for this might have been that, at rest, even if the coronary 
arteries significantly narrowed, the myocardial blood 
flow could still be normal due to coronary compensation. 
Meanwhile, a previous study confirmed that the sensitivity 
of rest-only perfusion abnormalities for diagnosing CAD 
was low (20). Therefore, we believe that SRS still plays a 
role in different algorithms.

Eight ML algorithms were used in this research. Rpart, 
Naïve Bayes, XGBoost, Logistic, and random forest were 
highly accurate for diagnosing obstructive CAD in the test 
group. Rpart is a decision tree algorithm that operates by 
recursively dividing the dataset into 2 parts. The features that 
best reduce the heterogeneity of the outcome variables are 
taken into account to determine the partition at each stage (37).  
XGBoost, a scalable end-to-end tree boosting technique, 
uses a weighted quantile sketch for approximate tree 
learning and a sparse-aware algorithm for sparse data (38).  
The Logistic algorithm used in this study is a part of 
generalized linear models (17). This classifier is widely 
used in clinical statistical analysis for dichotomous and 
multicategory outcome variables. The predictor variables 
and the log odds of the event were supposed to have a linear 

relationship by the equation. ADA is a classification tree 
that fits various stochastic boosting models using adaptive 
algorithms. A combination of this algorithm and other 
learning procedures can be used to enhance performance. 
The output of these procedures, known as weak learners, 
is merged into a weighted sum that reflects the boosted 
classifier’s final output (39). AdaBoost is a classifier that 
works similarly to ADA, but is not the same as ADA. Freund 
and Schapire implemented the M1 algorithm (40). Based 
on the Statistical Learning Theory, SVM is a powerful 
supervised ML model for binary and nonlinear classification 
issues (41). In this study, the sensitivity and specificity in the 
training set were calculated according to the optimal cutoff 
value found by Youden’s rule, and then the cutoff value was 
used in the test set to evaluate the sensitivity and specificity. 
The sensitivity and specificity of the 8 ML methods in the 
test set were inconsistent, showing different advantages. We 
used a 10-fold cross-validation approach for the training 
data (42-45). Ten-fold cross-validation divides the training 
set into 10 subsamples; 1 single subsample is retained as 
the data to validate the model, and the other 9 samples are 
used for training. Therefore, cross-validation can use more 
sample information to tune hyperparameters.

Computed tomography angiography (CTA) and SPECT 
MPI, according to the latest European Society of Cardiology 
(ESC) guidelines (46), are both class I recommendations 
for suspected CAD patients. CTA is an option for 
patients with contraindications to stress MPI. A previous 
study found that CTA had a sensitivity and specificity 
of 82% and 92%, respectively, for diagnosing ACS in 
patients with low-risk chest pain (47). The development 
of ML in CTA further expands its application (48).  
In this study, resting MPI combined with CACS and 
cardiovascular risk factors were over 80% accurate in 
diagnosing obstructive CAD based on the Logistic, Rpart, 
Naïve Bayes, XGBoost, and random forest algorithms. 
However, for patients with extensive coronary calcification, 
arrhythmia, severe obesity, and difficulty holding their 
breath, CTA may not be appropriate since the image quality 
will be compromised. Additionally, CTA can provide 
anatomical stenosis, whereas SPECT MPI combined with 
CACS can provide anatomical and functional information 
simultaneously. Our results show that ML can effectively 
improve the diagnosis of obstructive CAD by rest-only MPI 
and may be used for CAD screening, although there are still 
many limitations. ML and AI may be the direction of future 
development and deserve attention. 

Several limitations of this study should be taken into 

Figure 6 Importance of features for different algorithms. (A) 
Importance of features for the random forest. (B) Importance 
of features for the XGBoost. (C) Importance of features for the 
Logistic. (D) Importance of features for the Rpart. SMS, summed 
motion score; CACS, coronary artery calcium score; SRS, summed 
rest score; XGBoost, extreme gradient boosting; Rpart, recursive 
partitioning and regression trees.

A B

C D
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account. First, this study was not externally validated, and 
its extrapolation still needs to be validated. Second, patients 
with stress-related contraindications did not undergo 
CTA, so it was impossible to compare their diagnostic 
efficacy. Third, we could not analyze subgroups due to 
size limitations in the included population, which included 
multiple contraindications to stress. This study also had 
a small sample size and needs to be carried out again in a 
prospective, large sample, multicenter study to validate its 
findings.

Conclusions

Rest-only SPECT MPI combined with CACS and 
cardiovascular risk factors using ML algorithms to diagnose 
obstructive CAD is feasible. Among the algorithms tested in 
the test group, Rpart, Naïve Bayes, XGBoost, Logistic, and 
random forest are highly accurate for diagnosing obstructive 
CAD. The application of ML in resting MPI and CACS 
may be used for screening obstructive CAD.
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