
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(3):1384-1398 | https://dx.doi.org/10.21037/qims-22-330

Original Article

A deep learning model based on the attention mechanism for 
automatic segmentation of abdominal muscle and fat for body 
composition assessment

Hao Shen1,2#, Pin He3#, Ya Ren3, Zhengyong Huang1,2, Shuluan Li4, Guoshuai Wang1,2, Minghua Cong5, 
Dehong Luo3, Dan Shao6, Elaine Yuen-Phin Lee7, Ruixue Cui8, Li Huo8, Jing Qin9, Jun Liu10, Zhanli Hu1, 
Zhou Liu3, Na Zhang1

1Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; 
2University of Chinese Academy of Sciences, Beijing, China; 3Department of Radiology, National Cancer Center/National Clinical Research Center 

for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China; 
4Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, 

Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China; 5Department of Comprehensive Oncology, National 

Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical 

College, Beijing, China; 6Department of Nuclear Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 

Guangzhou, China; 7Department of Diagnostic Radiology, Clinical School of Medicine, Li Ka Shing Faculty of Medicine, University of Hong 

Kong, Hong Kong, China; 8Nuclear Medicine Department, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases 

Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, 

Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China; 9Centre for Smart Health, School of Nursing, The Hong 

Kong Polytechnic University, Hong Kong, China; 10Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 

China

Contributions: (I) Conception and design: Z Hu, N Zhang, Z Liu; (II) Administrative support: Z Hu, N Zhang, Z Liu, R Cui, L Huo, D Shao; (III) 

Provision of study materials or patients: Z Liu, P He, EY Lee, Y Ren; (IV) Collection and assembly of data: Z Liu, P He, J Qin, J Liu, Y Ren; (V) 

Data analysis and interpretation: H Shen, Z Hu, N Zhang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

#These authors contributed equally to this work.

Correspondence to: Zhou Liu. Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer 

Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China.  

Email: 443617072@qq.com; Na Zhang. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese 

Academy of Sciences, Shenzhen 518055, China. Email: na.zhang@siat.ac.cn.

Background: Quantitative muscle and fat data obtained through body composition analysis are expected 
to be a new stable biomarker for the early and accurate prediction of treatment-related toxicity, treatment 
response, and prognosis in patients with lung cancer. The use of these biomarkers can enable the adjustment 
of individualized treatment regimens in a timely manner, which is critical to further improving patient 
prognosis and quality of life. We aimed to develop a deep learning model based on attention for fully 
automated segmentation of the abdomen from computed tomography (CT) to quantify body composition.
Methods: A fully automatic segmentation deep learning model was designed based on the attention 
mechanism and using U-Net as the framework. Subcutaneous fat, skeletal muscle, and visceral fat were 
manually segmented by two experts to serve as ground truth labels. The performance of the model was 
evaluated using Dice similarity coefficients (DSCs) and Hausdorff distance at 95th percentile (HD95).
Results: The mean DSC for subcutaneous fat and skeletal muscle were high for both the enhanced CT test 
set (0.93±0.06 and 0.96±0.02, respectively) and the plain CT test set (0.90±0.09 and 0.95±0.01, respectively). 
Nevertheless, the model did not perform well in the segmentation performance of visceral fat, especially for 
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Introduction

Lung cancer is the second most prevalent malignancy 
worldwide based on 2020 World Health Organization 
(WHO) global lung cancer statistics, accounting for 11.4% 
of all cancers and 19.3 million new cases, which is only 
slightly lower than the global proportion of breast cancer at 
11.8%. In addition, lung cancer is the leading cause of death 
among all cancers, with more than 1.8 million/10 million 
people dying from lung cancer each year at a mortality rate 
of 18% (1). Approximately 70% of lung cancer patients 
are diagnosed at an advanced stage and have a dismal  
prognosis (2). Consequently, for patients with advanced lung 
cancer, identifying biomarkers that enable early accurate 
prediction of treatment-related toxicities, treatment response, 
and prognosis so that personalized treatment plans can be 
adjusted in a timely manner is the key to further improving 
patients’ prognosis and quality of life.

Muscle and fat quantification data obtained from 
body composition analysis are expected to be new stable 
biomarkers. Body composition analysis is an analytical 
method for measuring the proportion of body components 
(mainly muscle and fat); it is commonly used to assess 
nutritional status and manage obesity and its related 
problems, including metabolic diseases and cardiovascular 
diseases, such as hypertension (3). Currently, there is 
growing evidence that changes in body composition, such as 
sarcopenia (defined as decreased skeletal muscle mass) with 
intramuscular fat infiltration, are associated with a higher 
risk of cancer development, a poorer prognosis of cancer 
patients, and higher chemotherapy toxicity (4). Sarcopenia 
has a high prevalence among various cancer patients, 
especially for non-small cell lung cancer, with a prevalence 
as high as 43%. In particular, sarcopenia has been confirmed 
as an independent prognostic factor in patients with lung 
cancer (5). Therefore, how to accurately quantify muscle 
and fat has become a pressing need.

Computed tomography (CT) has emerged the gold 
standard for assessing the quantification of muscle and fat 
mass due to its ability to provide clear anatomical detail 
that allows for the direct assessment of muscle and fat 
mass volume (6). Surveys of CT are the standard of care 
for staging and monitoring a range of cancers and are 
essential in guiding diagnostic efforts (7-10). In patients 
with lung cancer, CT is one of the most widely used 
imaging modalities and is already included in the clinical 
workflow acquired for tumor staging, surgical planning, 
and treatment monitoring because CT scans are readily 
available without the need for additional ionizing radiation 
(11,12). CT is a tomographic image obtained by passing 
X-rays through body material with different attenuation 
coefficients, which clearly reveals human muscle and 
adipose tissue, allowing for the comprehensive monitoring 
and quantification of muscle loss associated with attenuation 
and sarcopenia throughout the entire course of lung 
cancer treatment. Thus, the ability to adequately use CT 
to track dynamic muscle changes can greatly improve the 
prognosis of those suffering from sarcopenia, making it 
of great value in tailoring individualized treatment plans. 
However, the development of CT-based body composition 
is still currently at the stage of manual, layer-by-layer 
segmentation and semiautomated segmentation by experts 
(13-16). How to achieve fast, accurate, and objective 
segmentation of muscles and fats on CT images is an urgent 
problem to be solved.

The expeditious development of deep learning 
techniques has shown the potential to overcome these 
limitations (17-22). Neural networks enable the automatic 
extraction of features (23), which dramatically overcomes 
the drawbacks and outperforms traditional medical image 
segmentation algorithms that rely excessively on the a priori 
knowledge of medical experts. Unlike existing methods, 
neural networks are more objective, and their generalization 
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capability and portability can be quickly extended to 
different task scenarios through transfer learning (24). 
Traditional methods of measuring the abdominal region 
are time-consuming and cumbersome to perform manually, 
so medical experts will only measure the volume of the 
abdominal region by randomly selecting a layer of slices, 
which can only measure the area of the region, and the 
method of predicting the overall volume from the local area 
is imprecise. Several studies have reported high accuracy 
of automatic quantification of abdominal muscle and/or fat 
area through deep learning (25-36).

Similar to traditional methods, these deep learning 
methods are based on a single slice for measurement, while 
there are approximately 20 slices at the L3 level, and the 
area of the region is not consistent or even varies greatly for 
each slice. The selection of the level in existing clinical trials 
is randomized, and this approach may lead to relatively 
poor reproducibility between studies and can result in 
large random errors. Therefore, to reduce randomness, 
we aimed to segment each slice for each patient at the L3 
level to calculate the regional volume more accurately and 
objectively. By segmenting all slices at the L3 level for each 
patient, we obtained 3-dimensional segmentation results 
by stacking slices and obtaining volumetric quantification 
results. 

In this study, we used U-Net as the framework to target 
subcutaneous adipose tissue (SAT), skeletal muscle (SM), 
and visceral adipose tissue (VAT) to develop an automated 
abdominal CT image segmentation system in each patient’s 
abdominal CT slice sequence. We further incorporated an 
attention mechanism that assigns weights at multiple scales 
to allow the model to adaptively focus on more informative 
features and evaluated its performance. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-330/rc).

Methods

Data acquisition and preprocessing

We retrospectively derived data derived from scans of 43 
patients with lung cancer (24 males; 19 females; age of 
55.9±10.2 years) who received standard contrast-enhanced 
CT scans from a GE Medical Systems Revolution CT 
scanner (GE Healthcare, Chicago, IL, USA) between 
October 2018 and March 2021. The patients were randomly 
grouped into a training set and a testing set (545:301). 

Two patients only received noncontrast CT scans, which 
were used for independent testing. Based on each patient’s 
body weight, contrast CT scans were performed with a 
bolus of the contrast medium (Loversol, 350 mg/mL; 
Jiangsu Hengrui Medicine, Lianyungang, China) injected 
at a standard dosage of 1.5 mL/kg and a flow rate of 2.0– 
3.0 mL/s. The venous phase of the contrast-enhanced 
CT scans was acquired 50 s after injection of the contrast 
medium.

 All the noncontrast and contrast-enhanced CT scans 
were performed under the following scanning parameter 
settings: tube voltage =120 kV, tube current selection 
from 150 to 600 mA, and matrix =512×512. The field 
of view (40–50 cm) was adapted to each patient’s size 
during scanning. The CT images were reconstructed 
using the standard algorithm with a reconstructed slice 
thickness of 1.25 mm and an adaptive statistical iterative 
reconstruction-V (ASIR-V) of 50%. All the obtained 
images were reviewed by 2 board-certified radiologists (PH 
and YR), and unsatisfactory images with a low signal-to-
noise ratio or overt motion artifacts were removed. As a 
result, a total of 846 CT contrast-enhanced images in the 
venous phase of 43 patients (with the number of CT slices 
per patient ranging from 16 to 24) were obtained from the 
Chinese Academy of Medical Sciences Cancer Hospital, 
Shenzhen Hospital. 

In our dataset, all CT scans collected covered the 
thorax, abdomen, and pelvis. However, it has been shown 
that whole-body adipose tissue and SM volumes show a 
correlation with those obtained from cross-sectional (axial) 
CT images of the third lumbar vertebra (L3) (14,25,26,37). 
Therefore, only abdominal CT images at the level of the 
third lumbar vertebra were selected for analysis. Two board-
certified radiologists (PH and YR) manually segmented 
SAT, SM, and VAT on around 16–24 consecutive abdominal 
slices as ground truth labels, which were then reviewed by 
a senior radiologist (ZL) with any discrepancy dissolved 
through discussion. Subsequently, 28 patients with a total 
of 545 enhanced CT slices were used as the training and 
validation sets (Table 1; cohort 1), 15 patients with a total 
of 301 enhanced CT slices were used as independent test 
set 1 (Table 1; cohort 2) to validate the generalization of the 
model, and 2 patients with a total of 42 plain CT slices were 
used as independent test set 2 (Table 1; cohort 3) to validate 
the robustness of the model. The specific information 
related to the dataset is shown in Table 1.

Some research shows that abdominal muscles could 
be calibrated with a predefined threshold of –29 to +150 
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Table 1 Patient information

Characteristics Cohort 1 (training and validation set) (n=28) Cohort 2 (test set 1) (n=15) Cohort 3 (test set 2) (n=2)

Number of scans 545 301 42

Age (years) 52.6±11.5 [32–72] 59.2±8.9 [39–79] 60.0±3.0 [57–63]

Male (%), (male:female) 42.9 (12:16) 80 (12:3) 100 (2:0)

Slice thickness (mm) 1.25 1.25 1.25

Height (cm) 162.5±8.8 [147–178] 166.3±5.9 [158–178] 176.0±2.0 [174–178]

Weight (kg) 58.1±9.5 [40–78] 60.7±7.9 [46–71] 68.3±4.3 [64–72.5]

Enhanced/plain Enhanced Enhanced Plain

Data are presented as mean ± standard deviation (min – max).

Hounsfield units (HU) and that abdominal adipose tissue 
could be demarcated with a predetermined threshold of 
–190 to –30 HU (38). Another study stated that setting the 
HU value to –128 for CT images above 127 and below –128 
could improve the performance of convolutional neural 
network (CNN) models for soft tissue segmentation in CT 
images (39). Hence, in this study, we preprocessed the data 
accordingly before feeding them into the model. The HU 
values below –128 and above 150 in the CT images were 
set to –128 and 150, respectively, to reduce the amount 
of information given to the CNN model, and the feature 
matrix was z score–normalized as follows:

( )' 1
i i i

i

x x µ
σ

= −  [1]

where ( ) ( ),  i ii i Var x= E xµ σ ε= + , and ε is a small constant 

used to smooth the formula to prevent division by 0. The 
feature matrix had a mean of 0 and a standard deviation of 1 
after processing.

Additionally, data augmentation was performed to the 
available training set, primarily random rotation, horizontal 
flipping, and vertical flipping, to reduce the possibility of 
network overfitting and enhance generalization (probability 
=0.5).

Training process

Figure 1 depicts an overview of the segmentation. The 
training dataset was labeled with the ground truth by 
medical experts, and the results were enhanced and 
normalized with augmentation for training images and 
labels. The ensemble technique was used to tackle the 
problem of potential overfitting in a small sample size. Due 
to the relatively small sample size, we performed a 5-fold 

cross-validation of the model to ensemble it into a more 
robust model in order to effectively use the limited data 
and obtain a more reasonable and accurate evaluation of 
the model. The training data with ground truth labels were 
used as input to the network to learn the parameters. The 
trained model was evaluated using the validation set for 
each epoch in terms of the Dice similarity coefficient (DSC) 
and network loss. The model with the highest average DSC 
in the validation set was retained for independent testing 
in cohort 2 after training. Subsequently, we normalized the 
test data and fed it into the best network model we saved (the 
model is an integration of 5 models generated through five-
fold cross-validation) to obtain the deep learning model’s 
predicted output. We computed the prediction with the 
corresponding ground truth labels for relevant comparisons 
to analyze the performance of the model.

Module description

The model was an advancement in the framework of 
supervised U-Net (40). The overall framework is shown 
in Figure 2A. Specifically, the encoder and decoder subnet 
consisted of modules with a depth of 5, each of which 
contained a residual convolution submodule (41) and an 
amended efficient channel attention (ECA) (42) submodule. 
In the residual convolution submodule, the number of 
channels of the feature map was changed by adjusting the 
number of convolution kernels, which were summed with 
the original feature map after the convolution layer, batch 
normalization, and rectified linear unit (ReLU) activation 
function. The amended ECA submodule was named the 
selective efficient channel attention (SECA) block, as shown 
in Figure 2B.

As illustrated in Figure 2B, the given feature map 



Shen et al. Automatic segmentation of abdominal muscle and fat1388

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(3):1384-1398 | https://dx.doi.org/10.21037/qims-22-330

Figure 1 Overview of segmentation workflows. GT, ground truth.
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U=(u1,u2,…,uc) was split into 2 branches. Each branch was 
implemented with a convolution operation to obtain the 
information of different receptive fields. We implemented 
2 conventional convolutions with kernel sizes of 3×3 and 
5×5 and with the activation function of ReLU in this paper. 
We fused the different information from 2 branches via an 
element-wise summation:

( ) ,U Summation U U=
 

  [2]

Then, we implemented global average pooling (Fgp) and 
dimensionality reduction in each channel to obtain channel 
attention statistics 1CS ×∈ , and the i-th element of S was 

calculated by shrinking iU  as follows:

( ) ( )
1 1

1 ,  ,
H W

i gp i i
k= l=

S F U U k l
H W

= =
× ∑ ∑   [3]

We  a v o i d e d  d i m e n s i o n a l i t y  r e d u c t i o n  u s i n g 
1-dimensional convolution and effective learning channel 
attention to obtain 1CZ ×∈ , and then Z was subjected to 
a softmax transformation to obtain the channel attention 
vectors 1Cα ×∈  and 1Cβ ×∈ . We multiplied the attention 
vectors α and β with the result of the 2 convolutions and 
then added the results to obtain the final feature map V.

Our proposed SECANet channel-wise guides for the 
model on how to assign representations focused on the 
value of convolutional kernels. This was done by using 
information aggregated from multiscale feature maps and 
by effectively capturing the cross-channel interactions 
at multiple scales by avoiding dimensionality reduction 
through 1-dimensional convolution.

Loss function and optimization methods

The loss function used Lovasz-Softmax loss (43), a direct 
optimization method for joint loss-averaged intersection 
in neural networks proposed in the context of semantic 
segmentation. Lovasz-Sotfmax loss outperformed the 
conventional cross-entropy loss function for the multiclass 
segmentation task. The optimal hyperparameters were 
experimentally determined. A batch size of 16 sections was 
used. The learning rate was initially set to 0.001 with Adam 
optimization (44), and a cosine annealing algorithm was 
used to reduce the learning rate gradually to a minimum 
of 0.000001 and by training a total of 200 epochs, setting 
the 25th epoch as the iteration position for the first restart 
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Figure 2 Model description. (A) The framework structure of model. (B) The architecture of SECANet. SECA, selective efficient channel 
attention block; SECANet, selective efficient channel attention network. Fgp and Ffc stand for global average pooling and fully connection, 
respectively. 
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of the learning rate. The network was trained on a Nvidia 
GeForce RTX 3080 (Nvidia, Santa Clara, CA, USA) and 
written in Python 3.9.6 (Python Software Foundation, 
Beaverton, OR, USA) using PyTorch 1.9.0 (open source) 
backend. We performed 5-fold cross-validation and retained 
the best model for each fold. The entire cross-validation 
model training process took approximately 35 hours.

Assessment indicators

DSC is an ensemble similarity measure, which is ordinarily 

used as the primary evaluation metric in the field of medical 
image segmentation. DSC illustrates the degree of overlap 
between the ground truth labels and the number of pixels 
of the neural network output as calculated by the following 
equation:

2 
2

TPDSC
TP FP FN

×
=

× + +
 [4]

where true positive (TP) is the number of pixels correctly 
detected (i.e., pixels included in both the ground truth 
label and the segmentation result), false positive (FP) is 
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the number of pixels judged as positive samples but that 
are actually negative samples (i.e., pixels included in the 
segmentation result but not in ground truth labels), and 
false negative (FN) is the number of pixels that are judged 
as negative samples but are truly positive samples (i.e., pixels 
that are included in the ground truth label but not in the 
segmentation result).

Dice  coef f ic ients  focus  on the  inter ior  of  the 
segmentation and have the defect of being insensitive 
to the boundary inscription. Hausdorff distance (HD) 
emphasizes the edges of the segmentation and is capable 
of complementing Dice. HD is the maximum value of the 
shortest distance from an element in one set to another set. 
Given 2 sets A=(a1,a2,…,ap) and B=(b1,b2,…,bq), the HD is the 
following:

( ) ( ) ( )( ), max , , ,H A B h A B h B A=  [5]

( ) { }{ }, max mina A b Bh A B a b∈ ∈= −  [6]

( ) { }{ }, max minb B a Ah B A b a∈ ∈= −  [7]

where   represents the distance paradigm of 2 sets, 

generally the Euclidean distance.
The Jaccard coefficient is mainly applied to the similarity 

between individuals of Boolean attributes as the ratio of 
the size of the intersection of A and B to the size of the 
concatenation of A and B, and is calculated as follows:

pJaccard
p q r

=
+ +

 [8]

where p denotes the number of pixels where both samples 
A and B have a Boolean value of 1, q represents the number 
of pixels where sample A is 1 and B is 0, and r shows the 
number of pixels for which at A is 0 and B is 1.

In particular, we also considered precision and recall 
as auxiliary evaluation metrics, which are determined as 
follows:

 TPPrecision
TP FP

=
+

 [9]

 TPRecall
TP FN

=
+

 [10]

Output of the model

Considering that the task objective of this study was to 
segment SM, SAT, and VAT, the model output was a 
4-channel probability map with dimensions of 4×512×512. 
Each dimension corresponded to a probability matrix of 
background, SAT, SM, and VAT. The probability gave the 

confidence level that the model predicted each pixel to be 
in the region of interest (ROI). For each channel, pixels 
with a probability above 0.5 were classified as the result of 
the segmentation. For each slice in the test set, 5 different 
probability maps were predicted using the 5 models from 
5-fold cross-validation. The final probability map for a test 
slice was calculated by combining the probabilities of the 5 
probability maps.

Since the output was a probability map with 4 channels, 
the ground truth label needed to be one-hot coded 
accordingly when various evaluation metrics of output 
and label were being calculated. DSC, Jaccard coefficient, 
HD95, precision, and recall were used to measure the 
similarity between the segmentation output and the ground 
truth.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the ethics committee of Cancer Hospital 
Chinese Medical Sciences, Shenzhen Hospital and 
individual consent for this retrospective analysis was waived.

Results

Ensemble learning performance

The segmentation results were successfully generated by our 
model for the independent test dataset, and the evaluation of 
the model performance was accomplished with a variety of 
metrics. The prediction accuracies are shown in Table 2 for 
the ensemble of ResUNet, the ensemble of ResECAUNet 
models, the single SECAUNet, model, and the ensemble 
of SECAUNet models. The results showed that the model 
performed satisfactorily on the test set. The ensemble 
of SECAUNet models outperformed the ensemble of 
ResUNet models in terms of segmentation results for SAT, 
SM, and VAT from a quantitative perspective. In addition, 
the performance of the ensemble model using cross-
validation was significantly better than that of the single 
model, while the performance of the single SECAUNet-
based model was comparable to that of the ensemble model 
based on ResUNet. This result suggests the preeminence of 
SECAUNet and correspondingly illustrates that ensemble 
learning outperforms individual learning.

We randomly selected 3 original slices for the result 
presentation. In Figure 3, the ensemble of SECAUNet 
models had better continuous and accurate segmentation in 
the SAT and SM area compared to each of the remaining 
models. The other models were more prone to under- and 
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Figure 3 Qualitative performance of the model on the test set (cohort 2). The red and green arrows show the segmentation differences of 
different models on SAT and SM, respectively. The yellow box focuses on the segmentation results of different models on complex areas. 
DSC, Dice similarity coefficient; SAT, subcutaneous adipose tissue; SM, skeletal muscle. 

Image Ensemble 
ResUNet

S
lic

e 
29

2
S

lic
e 

99
S

lic
e 

13
0

DSC =0.95

DSC =0.86

DSC =0.88

DSC =0.94

DSC =0.88

DSC =0.90

DSC =0.94

DSC =0.88

DSC =0.89

DSC =0.94

DSC =0.90

DSC =0.90

Ensemble 
ResECAUNet

Single 
SECAUNet

Ensemble 
SECAUNet

Table 2 Performance on the test set (cohort 2)

Measure Tissue DSC Jaccard Precision Recall HD95

Ensemble-SECAUNet SAT 0.93±0.06* 0.87±0.10* 0.98±0.02 0.88±0.11* 3.78±2.18*

SM 0.96±0.02* 0.92±0.03* 0.95±0.02* 0.96±0.02 4.47±0.95*

VAT 0.87±0.11* 0.79±0.17 0.82±0.16 0.94±0.05* 20.68±26.91

Single-SECAUNet SAT 0.91±0.06 0.85±0.10 0.98±0.02 0.87±0.10 4.19±2.11

SM 0.95±0.02 0.90±0.03 0.94±0.02 0.95±0.02 5.55±1.56

VAT 0.86±0.12 0.77±0.17 0.81±0.17 0.93±0.06 21.80±26.46

Ensemble-ResUNet SAT 0.91±0.05 0.84±0.08 0.98±0.01 0.85±0.09 4.71±1.51

SM 0.95±0.02 0.91±0.03 0.94±0.03 0.97±0.02* 4.70±1.36

VAT 0.87±0.11* 0.79±0.16* 0.83±0.16* 0.93±0.06 20.78±26.78

Ensemble-ResECAUNet SAT 0.92±0.06 0.86±0.10 0.99±0.01* 0.87±0.10 3.81±2.16

SM 0.95±0.02 0.91±0.03 0.94±0.02 0.96±0.02 4.64±1.05

VAT 0.87±0.12 0.78±0.17 0.82±0.16 0.94±0.06 20.26±26.28*

Data are presented as mean ± standard. *, the numbers indicate the best values in the same group of attributes. SAT, subcutaneous 
adipose tissue; SM, skeletal muscle; VAT, visceral adipose tissue; DSC, Dice similarity coefficient; HD95, Hausdorff distance at 95th 
percentile.
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oversegmentation in the SAT and SM areas. By comparing 
the yellow boxed areas of slice 99 and slice 130, it can be 
observed that, in the complex area, SECAUNet shows less 
miss-segmentation and exhibits superior performance.

We independently tested the segmentation performance 
of the model on plain CT slices with training exclusively 
using the enhanced CT slices in cohort 1. Table 3 illustrates 
the segmentation results of the ensemble ResUNet, 
ResECAUNet, and SECAUNet models on 42 plain CT 
slices. The quantitative results revealed that the model 
trained using only enhanced CT slices could also obtain 
superior segmentation results on plain CT slices during 
testing, which substantiated the robustness of the model. 
The qualitative results are shown in Figure 4A, which 
presents the slices of high DSC, median DSC, and low DSC 
in the plain CT dataset. In addition, Figure 4B illustrates 
the zoomed-in details of the ROIs for SM and VAT in 
Figure 4A. The qualitative results showed that our model 
outperformed the others in details compared to the ground 
truth.

Difference between output and ground truth

In the low metric slices, we found that the model 
predictions differed qualitatively from the ground truth. 
Representative examples of SECAUNet-based segmentation 
are demonstrated in Figure 5. In Figure 5A, the model 
excludes the skin when segmenting the SAT area, but the 
ground truth classifies it as part of the SAT (Figure 5D,5G). 

In the SM area, the ground truth includes part of the cone, 
but prediction screened it as a region of no interest. The 
VAT area was at the lowest level of each of the metrics 
evaluated in our model output compared to ground truth. 
We found that slices with a more segmented area of VAT 
(Figure 3, Slice 292; overall DSC =0.94; DSC of VAT =0.96) 
had a correspondingly high metric, while slices with a less 
or extremely undersized segmented area of VAT (Figure 
5C; overall DSC =0.92; DSC of VAT =0.49) had a lower or 
exceptionally low metric.

The Bland-Altman plots for all test datasets indicated 
good agreement between ground truth measurements and 
those of the SECAUNet-based segmentations for SAT, 
SM, and VAT, with mean differences of –14.42, 1.8, and 
6.7 cm2, respectively (Figure 6). the consistencyof muscle 
was the best, in contrast to the SAT, which was slightly 
worse, probably due to the difference between ground truth 
with the segmentation results at the skin level. Overall, 
our results showed that the majority of test cases (n=299, 
99.34%) were within the 95% consistency limits.

Discussion and conclusions

Our proposed ensemble model of SECAUNet based on the 
attention mechanism accurately segmented subcutaneous 
fat, SM, and visceral fat on abdominal CT images. The 
model was well-trained to perform on all evaluation 
metrics, which was in accordance with the previous deep 
learning studies on abdominal muscle and/or fat (32-35). 

Table 3 Performance on the test set (cohort 3)

Measure Tissue DSC Jaccard Precision Recall HD95

Ensemble-SECAUNet SAT 0.90±0.09 0.82±0.01 0.99±0.01* 0.83±0.02 5.26±0.36*

SM 0.95±0.01* 0.90±0.02* 0.95±0.02* 0.94±0.02 5.61±1.64*

VAT 0.92±0.03* 0.86±0.05* 0.93±0.03* 0.92±0.04* 7.40±3.38*

Ensemble-ResUNet SAT 0.91±0.01* 0.84±0.01* 0.99±0.01 0.85±0.01* 5.27±0.38

SM 0.93±0.01 0.88±0.02 0.93±0.03 0.95±0.02* 7.13±2.53

VAT 0.92±0.03 0.85±0.05 0.93±0.03 0.91±0.04 7.73±3.44

Ensemble-ResECAUNet SAT 0.90±0.01 0.82±0.01 0.99±0.01 0.83±0.02 5.28±0.38

SM 0.92±0.02 0.86±0.03 0.91±0.03 0.94±0.02 14.88±9.33

VAT 0.92±0.03 0.86±0.05 0.93±0.04 0.92±0.04 7.81±3.59

Data are presented as mean ± standard. *, the numbers indicate the best values in the same group of attributes. SAT, subcutaneous 
adipose tissue; SM, skeletal muscle; VAT, visceral adipose tissue; DSC, Dice similarity coefficient; HD95, Hausdorff distance at 95th 
percentile.
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Figure 4 Qualitative performance of the model on the test set (cohort 3). (A) Verification of the robustness of the model on 3 selected plain 
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Shen et al. Automatic segmentation of abdominal muscle and fat1394

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(3):1384-1398 | https://dx.doi.org/10.21037/qims-22-330

SAT

Image

Fusion image  
of  

Prediction

Fusion image  
of  

ground truth

SM VATB

E

H

C

F

I

A

D

G
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Additionally, fully automated segmentation using a deep 
learning model only took a few seconds, while manual 
segmentation required more than 3 min, indicating 
comparable measurement performance of the model.

The SAT areas segmented by our model did not differ 
significantly from the ground truth for the slices of patients 
with thin skin areas that made up the majority of the test 
set. For the slices from patients with thick skin, our model 
excluded these when generating segmentation results. The 
SAT area of ground truth contained skin, which resulted 
in low values of DSC, especially in slices with few SAT 
areas. The inclusion or exclusion of skin in the SAT area 
greatly affected the DSC of SAT, resulting in the output of 
the segmentation model being actually more accurate than 
ground truth but showing a low DSC. In the SM area, the 
output of the segmentation model in the small target area 
was discordant with the ground truth. 

We observed that, in the VAT area, our model did not 
perform well enough; hence we focused on analyzing the 
causes of this issue. In our test dataset, slices with less VAT 
area accounted for a large ratio, which led to the problem 
of unbalanced pixel proportions and seriously affected the 
segmentation of the VAT area. Additionally, comparing 
Figure 5F and Figure 5I showed that the VAT area derived 
from our model segmentation was more objective than the 
VAT area of ground truth, while in this case, the DSC of 
VAT was only 0.49, which greatly and wrongly affected the 
performance of evaluating our model.

In several previous studies that used deep learning to 
segment abdominal muscle and/or fat, the models were 
trained, validated, and tested using enhanced CT and 
plain CT (32-36). Our model was trained and validated 
on enhanced CT images only and independently tested 
on enhanced CT images and plain CT images, both of 
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Figure 6 Bland-Altman plots of SAT (A), SM (B), VAT (C), and overall (D) for the test datasets. SAT, subcutaneous adipose tissue; SM, 
skeletal muscle; VAT, visceral adipose tissue.

which had high accuracy results, which demonstrated the 
robustness of our model. In clinical practice, deep learning 
models may need to assess medical data generated by 
different scanners and acquisition protocols, and differences 
in machine vendors and data acquisition may interfere 
with the deep learning model, leading to inconsistent 
performance (45). But the performance and generalization 
of our model were further improved by the ensemble 
technique. Our model was trained, validated, and tested 
on a dataset containing all slices at the L3 level for each 
patient. Considering the results, our model can predict 
segmentation in the future if there is a new dataset of 
patients with CT slices at any position at the L3 level.

Our study had a number of limitations. Since the area of 
ROI is very small (e.g., SAT and skin), the model is prone 
to incorrect segmentation in some cases. There were large 
differences between individuals, especially in the VAT 
area, which suggested that the model had not been fully 

trained with diverse and heterogeneous images, which is a 
limitation of the model in the absence of extensive training. 
The proposed model can overcome such shortcomings 
by increasing the variability and heterogeneity of the 
training images, as well as by including images from a wider 
range of institutions. We used CT imaging to develop a 
deep learning model instead of using magnetic resonance 
imaging (MRI) or a combination of both, which might be 
more effective (46). The segmentation of small targets also 
remains a class of challenges to be solved. Images with little 
VAT were prone to the problem of category imbalance. 
One possible solution is to adjust the weight of the 
foreground and background in the loss function to amplify 
the weight of the foreground and suppress the weight of the 
background. Another possible solution is to minimize the 
amount of downsampling for the model to avoid excessive 
information loss in the target region after multiple instances 
of downsampling.
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In this study, we proposed a method for the automatic 
outlining of subcutaneous fat, SM, and visceral fat areas 
on L3 cross-sectional CT images. We obtained better 
segmentation results compared to U-Net by proposing 
an improvement for the attention mechanism, which was 
accurate in terms of DSC and other assessment metrics. 
Our model was completely trained on enhanced CT 
images, and it obtained good results on plain CT images, 
demonstrating high robustness. Our model can be used for 
body composition analysis with minimal manual effort. It 
may be valuable for identifying new biomarkers of health 
and disease and in developing personalized treatment plans.
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