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Background: Precise T staging is an important prerequisite for the treatment decisions of patients with 
renal cell carcinoma (RCC). We aimed to predict the pathological T1–3 staging of RCC with an automatic 
multiclass T staging prediction mode.
Methods: We retrospectively enrolled 100 consecutive patients with pathologically proven RCC that 
was newly diagnosed and untreated from Sun Yat-sen University Cancer Center and randomly split these 
patients into a training set (70%) and an internal testing set (30%). We enrolled additional 29 patients with 
pathologically proven RCC from The Third Affiliated Hospital of Shenzhen University as the external 
testing set. We used the training set data to establish a prediction model for pathological T1–3 staging of 
RCC and validated the effect of the training model using the internal and external testing sets. Quantitative 
decomposition of the prediction model was conducted to explore the contribution of each extracted feature.
Results: The computed tomography (CT) images of 100 patients (37, 29, and 34 patients with T1, T2, 
and T3 staging, respectively, according to the eighth tumor-node-metastasis staging system) were used to 
establish the prediction model for T staging using delineation of the target area, image segmentation, and 
feature extraction. The micro area under the curve (AUC) and macro-AUC of the model were 0.90 [95% 
confidence interval (CI): 0.84–1.00] and 0.91 (95% CI: 0.86–1.00), respectively. In terms of validation with 
the external testing set, the micro-AUC and macro-AUC were 0.72 (95% CI: 0.66–0.84) and 0.78 (95% CI: 
0.69–0.88), respectively. 
Conclusions: Our prediction model showed good performance in predicting the pathological T1–3 
staging of RCC. 
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Introduction

Worldwide, renal cell carcinoma (RCC) is the ninth most 
frequently diagnosed cancer in men, accounting for 2.7% 
of all tumor diagnoses (1). The T staging of RCC is an 
important auxiliary tool to guide clinical treatment, predict 
tumor prognosis, and communicate between different 
medical units (2). The main factors that impact the T 
staging of RCC include the tumor size; invasion of the 
perinephric fat, renal sinus, and Gerota fascia; development 
of tumor thrombus of the renal vein and/or inferior vena 
cava (IVC); and invasion of the ipsilateral adrenal gland (3). 
Pathological assessment is the gold standard for determining 
staging. However, the fact that the pathological diagnosis 
of the tumor relies on postoperative specimens impedes 
clinicians from making precise preoperative judgments on 
the T staging of RCC (4).

Computed tomography (CT) plays an important role 
over the course of RCC treatment, from diagnosing and 
staging the disease to assessing the response to treatment (5). 
However, CT as a clinical staging tool has limitations; for 
example, conventional CT scanning has low definition and 
resolution for soft tissue imaging. These limitations result 
in some RCCs being wrongly staged compared to the final 
pathological review, and there is often confusion between 
stages T3 and T1–2 (6,7). This discrepancy of radiological 
staging is not conducive to the precise treatment of RCC.

Recently, the potential of machine learning methods to 
improve the working efficiency of radiologists in complex 
medical image analysis has been demonstrated (8-10). In 
the field of RCC, the application of machine learning has 
focused on the identification and segmentation of medical 
images. It has also been dedicated to the purposeful 
classification of RCC by using its texture features, such 
as the differential diagnosis of benign and malignant 
renal tumors, the differential diagnosis of the histological 
subtypes of RCC, and the prediction of the Fuhrman grade 
of RCC (11-14). However, few studies have reported the 
value of CT texture features based on machine learning for 
the T staging of RCC.

With the increasing use of multidisciplinary treatment of 
RCC, precise T staging will continue to be a critical feature 
in treatment decision-making (4). Therefore, it is important 
to accurately predict the pathological T staging with CT, 
especially the T1–3 staging of RCC. In this study, we aimed 
to develop a framework that automatically segmented the 
CT images and extracted the CT texture features of RCC to 
predict the pathological T1–3 staging. Internal and external 

validation were subsequently conducted. The internal 
decision-making process of the prediction model may serve 
as reference for the diagnostic process of clinical imaging. We 
also analyzed the contribution of features to the particular 
decision of the model using a visualization strategy. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.com/
article/view/10.21037/qims-22-1043/rc) (15).

Methods

Patient cohorts and data preparation

We performed a comprehensive retrospective review 
of the medical records of patients with pathologically 
proven RCC treated at Sun Yat-sen University Cancer 
Center between May 2018 and March 2021. Patients were 
included if they were newly diagnosed, untreated, and had 
undergone unenhanced and enhanced CT imaging 2 weeks 
before the operation (Figure 1). Finally, 100 consecutive 
patients (64 men and 36 women; median age 55 years; 
range, 16–83 years) were enrolled, including those with 
clear cell carcinoma (n=78), papillary RCC (pRCC) (n=11), 
chromophobe renal carcinoma (n=6), and translocated renal 
carcinoma in the MIT family (n=5). The patients were 
classified according to the eighth tumor–node–metastasis 
(TNM) staging system as follows: T1 (n=37), T2 (n=29), 
and T3 (n=34). Additionally, we collected data from The 
Third Affiliated Hospital of Shenzhen University for 
external validation, including data from 29 consecutive 
patients with pathologically proven RCC who were treated 
in this hospital between October 2018 and May 2021  
(15 men and 14 women; median age 58 years; range,  
37–83 years; T1, n=16; T2, n=7; T3, n=6; Figure 2). See 
Table 1 for information about these patients.  

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Institutional Review Boards at Sun 
Yat-sen University Cancer Center and the Third Affiliated 
Hospital of Shenzhen University, and informed consent for 
this retrospective analysis was waived. All data have been 
deposited at Sun Yat-sen University Cancer Center (https://
www.researchdata.org.cn/; Research Data Deposit; No. 
RDDA2021358130). 

CT scanning protocol

The 100 patients from Sun Yat-sen University Cancer 

https://qims.amegroups.com/article/view/10.21037/qims-22-1043/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-1043/rc
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Center underwent CT scanning on a dual-source spiral 
CT system (SOMATOM Force, Siemens Medical System, 
Forchheim, Germany; 120 kV; 200 mA; section thickness 
5 and 1 mm). Data acquisition was performed in 3 phases: 
the precontrast phase (PCP), the corticomedullary phase 
(CMP; 30-second delay after contrast injection), and the 
nephrographic phase (NP; 90-second delay after contrast 
injection). Multiplanar reconstruction was performed for 
axial, coronal, and sagittal planes. After the unenhanced 
scan, an intravenous bolus injection of nonionic contrast 
media (350 mg/mL; 1.5 mL/kg) was administered at a rate 
of 4 mL/s through the median cubital vein.

CT scanning was also performed on the 29 patients at 

The Third Affiliated Hospital of Shenzhen University (see 
Appendix 1 for details).

Delineation of the gross target area

The CT images were manually segmented as the kidney 
and tumor (the renal vein was annotated in the NP) with 
ITK-SNAP software v.3.8.0 (16). This manual process was 
conducted by 2 radiologists with more than 10 years of 
experience in imaging diagnosis of abdominal tumors who 
accurately delineated the kidney and tumor boundaries. The 
segmentation results were then checked and amended by a 
specialist and observers repeatedly to ensure the accuracy of 

A comprehensive retrospective review of the medical records of 
patients with pathologically proven RCC, treated in Sun Yat-Sen 
University Cancer Center between May 2018 and March 2021. 
(n=168 consecutive cases)

Patients with newly diagnosed and untreated, underwent 
unenhanced and enhanced CT examination. (n=100 cases)

Patients with newly diagnosed and untreated. (n=132 cases)

Some patients have received surgery 
or neoadjuvant therapy. (n=36 cases)

Some patients have undergone only 
unenhanced CT examination. 
(n=32 cases)

Figure 1 The enrollment process of the training and internal 
testing sets. The training and internal testing sets included 
consecutive patients from May 2018 to March 2021 with newly 
diagnosed, untreated, and pathologically proven RCC in Sun 
Yat-sen University Cancer Center who underwent unenhanced 
and enhanced CT examinations. RCC, renal cell carcinoma; CT, 
computed tomography.

Figure 2 The enrollment process of the external testing set. 
The external testing set included consecutive patients from 
October 2018 to May 2021 with newly diagnosed, untreated, and 
pathologically proven RCC at The Third Affiliated Hospital of 
Shenzhen University who underwent unenhanced and enhanced 
CT examinations. RCC, renal cell carcinoma; CT, computed 
tomography.

A comprehensive retrospective review of the medical records 
of patients with pathologically proven RCC, treated in The Third 
Affiliated Hospital of Shenzhen University between October 2018 
and May 2021 (n=70 consecutive cases)

Patients with newly diagnosed and untreated RCC who underwent 
unenhanced and enhanced CT examinations (n=29 cases)

Some patients who received surgery 
or neoadjuvant therapy (n=12 cases)

Some patients who had undergone 
only unenhanced CT examination 
(n=29 cases)

Patients with newly diagnosed and untreated (n=58 cases)

Table 1 Description of the patients with RCC for training and validation purposes

Items Training (n=70) Internal testing (n=30) External testing (n=29) P value

T1, n [%] 24 [34] 13 [43] 16 [55] 0.858

T2, n [%] 21 [30] 8 [27] 7 [24] 0.383

T3, n [%] 25 [36] 9 [30] 6 [21] 0.598

RCC, renal cell carcinoma.

https://cdn.amegroups.cn/static/public/QIMS-22-1043-supplementary.pdf
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Figure 3 Analytical framework. The end-to-end framework of the kidney cancer analysis and evaluation. A 3-dimensional-UNet model 
(A) was used to locate and identify lesions, kidney, and inferior vena cava, and then the extracted features were used for classification and 
prediction. (B) Examples of raw images with 3 views of the regions of interest (left) and the 3-dimensional reconstruction of the regions of 
interest (right).

the delineation and prepare for future training.

Image segmentation and feature extraction

A 3-dimensional (3D) UNet-based structure was trained to 
automatically segment the CT images. For each enhanced 
CT image of the CMP, only the kidney and tumor were 

segmented on the image. For each enhanced CT image of 
the NP, the kidney, renal tumor, renal vein, and IVC below 
the diaphragm were segmented (Figure 3A,3B). We drew 
lesions with a well-known segmentation framework, nnU-
Net (17), which was adapted to a given data set without 
user intervention. Hyperparameters, including the patch 
size, batch size, and some pooling operations, were chosen 
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based on the properties of the data set. We combined 5 
data sets and used 5-fold cross-validation to evaluate the 
model’s performance. The patients were randomly split into 
a training set (70%) and an internal testing set (30%).

The segmentation results were used to extract the texture 
features with PyRadiomics v.3.0.1 (18), which is an open-
source Python package for the extraction of texture features 
from medical images. The radiomic features roughly 
consisted of 3 classes: texture features, morphological 
features, and statistical features. The CMP images were 
segmented into the kidney and tumor regions, and the NP 
images were segmented into the kidney, tumor, and vein 
regions. Each segmented region generated 101 texture 
features. Overall, 505 texture features were extracted from 
each patient’s enhanced CT (the CMP and the NP) images.

The radiological T staging of RCC determined by expert 
radiologists

To compare the performance of the predictive model with 
that of the radiological T staging determined by expert 
radiologists, the CT images of 100 patients from Sun Yat-
sen University Cancer Center were reviewed independently 
by 3 specialist abdominal radiologists. Radiologists 1, 
2, and 3 had 16, 12, and 8 years of experience in renal 
imaging, respectively. The radiologists had no knowledge 
of clinical and pathological information. The criteria in 
RCC T staging through CT scanning were as follows: in 
stage T1, the tumor diameter was ≤7 cm, the tumor was 
confined to the renal capsule, and there was no extracellular 
proliferation; in stage T2, the tumor diameter was >7 cm,  
and there was no renal extracorporeal expansion; in stage 
T3, the tumor displayed a blurred boundary with renal 
calyces, renal sinuses, and perirenal fat, as well as the 
occurrence of renal vein/IVC tumor thrombus.

Feature classification and statistical analysis

We implemented a multiclassification task to predict 
the pathological T stage of RCC (T1, T2, T3) by using 
extreme gradient boosting (XGBoost) v.1.3.3 (19). 
The texture features were involved in the evaluation. 
Performance metrics, including the mean area under the 
curve (AUC) of the receiver operating characteristic (ROC) 
curve of multiple classes for each class, were calculated 
using micro- and macro-averaging (20). This machine 
learning experiment was conducted in Python (v.3.8.0). The 
sensitivity and specificity for each class of prediction model 

were calculated.
Furthermore, Shapley additive explanations (SHAP) (21) 

was used in our study. See the supplementary material for 
details.

Results

Prediction of pathological T1–3 staging

The extracted texture features were directly used to predict 
the pathological T staging of RCC (T1, T2, and T3). The 
combined AUCs of the ROC curves for all classes were 0.90 
(95% CI: 0.84–1.00) using micro-averaging and 0.91 (95% 
CI: 0.86–1.00) using macro-averaging for the pathological 
tumor stage in the internal testing set (Figure 4A). In the 
external testing set, the micro- and macro-AUCs were 
0.72 (95% CI: 0.66–0.84) and 0.78 (95% CI: 0.69–0.88), 
respectively (Figure 4B). Specifically, the AUC values of the 
ROC curves were 0.88 (95% CI: 0.74–1.00), 0.98 (95% CI: 
0.95–1.00), and 0.88 (95% CI: 0.72–1.00) for stages T1, 
T2, and T3, respectively (Figure 4C-4E). The sensitivities 
for the T1, T2, and T3 classes of the prediction model 
were 77.8% (95% CI: 0.68–0.83), 87.5% (95% CI: 0.76–
0.92), and 66.7% (95% CI: 0.58–0.75), respectively. The 
specificities for the T1, T2, and T3 classes of the prediction 
model were 93.7% (95% CI: 0.81–0.95), 88.0% (95% CI: 
0.78–0.92), and 93.7% (95% CI: 0.81–0.95), respectively.

Explanation of the prediction model 

The features were based on the CMP and the NP images 
of the enhanced CT. We compared the predictive results 
of the extracted features with different regions of interest 
(ROIs). The AUC values of the ROC curves were 0.84, 0.88, 
and 0.91 for tumor features, tumor-kidney features, and 
tumor-kidney-vein features, respectively (Figure 4F).

The SHAP value of each feature was calculated for each 
sample to evaluate the contribution of the extracted texture 
features to the model prediction (Figure 5). See Appendix 1 
for details. 

The performance of the predictive model compared to 
that of the radiological T staging determined by expert 
radiologists

For the radiological T staging determined by expert 
radiologists, the AUCs of the ROC curves for the T1, T2, 
and T3 classes were 0.69, 0.76, and 0.79, respectively, using 

https://cdn.amegroups.cn/static/public/QIMS-22-1043-supplementary.pdf
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Figure 4 Performance of the proposed model in the testing set. (A) ROC curve of the proposed model in pathological stage prediction 
(micro-AUC =0.90; 95% CI: 0.84–1.00; macro-AUC =0.91; 95% CI: 0.86–1.00). (B) Performance of the proposed model in the external 
testing set (micro-AUC =0.72; 95% CI: 0.66–0.84; macro-AUC =0.78; 95% CI: 0.69–0.88). (C) T1 stage prediction (AUC =0.88; 95% CI: 
0.74–1.00). (D) T2 stage prediction (AUC =0.98; 95% CI: 0.95–1.00). (E) T3 stage prediction (AUC =0.88; 95% CI: 0.72–1.00). The shaded 
portion of the figure represents the 95% CI. (F) AUC of the prediction model with radiomics features of different dimensions. AUC, area 
under the curve; CI, confidence interval; ROC, receiver operating characteristic. 
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Figure 5 Ranking of the SHAP values to explain machine learning predictions. Barplot and beeswarm plots display the SHAP values for 
the training set. (A) SHAP values for the T1 staging prediction. (B) SHAP values for the T2 staging prediction. (C) SHAP values for the 
T3 staging prediction. In the names of the features, we artificially specified “2” for the corticomedullary phase of the enhanced CT image, 
“3” for the NP of the enhanced CT image, “t” for “tumor,” “k” for “kidney,” and “v” for renal vein and IVC below the diaphragm. CT, 
computed tomography; IVC, inferior vena cava; SHAP, Shapley additive explanations; NP, nephrographic phase.
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micro-averaging, and 0.66, 0.71, and 0.77, respectively, 
using macro-averaging. All of these values were significantly 
lower than the AUC values of our prediction model. There 
was no statistically significant difference in AUC between 
radiologists (Welch two-tailed 2-sample t-test: t’=1.8; 
P=0.2).

Discussion

According to the National Comprehensive Cancer Network 
(NCCN) Guidelines published in 2021, patients with 
RCC with stages T1–2 of the disease should undergo 
simple partial resection, while patients with stages T3–4 
might need radical resection plus neoadjuvant or adjuvant 
treatment (22). Teishima et al. (23) suggested that some cases 
with clinical T1 (cT1) RCC can be upstaged to pathological 
T3 (pT3), which is a risk factor for postoperative recurrence 
after a simple partial nephrectomy. Therefore, accurate 
preoperative T staging of RCC, especially T3, is crucial. 

CT examination is of great value for diagnosing and 
staging RCC (5). It is not difficult to confirm the diagnosis 
of stage T4 RCC with Gerota fascia invasion or ipsilateral 
adrenal gland invasion using a routine CT examination. 
However, the influencing factors of T3-staged RCC, 
such as the invasion of renal calyces, renal sinuses, and 
perirenal fat, as well as the occurrence of renal vein tumor 
thrombus in some cases, are difficult to identify with 
conventional CT imaging, which may lead to a higher or 
lower radiographic staging (7,24). Our study revealed that, 
when expert radiologists determined the radiological T 
staging, the AUCs of the ROC curves for classes I, II, and 
III were 0.69, 0.76, and 0.79, respectively, using micro-
averaging, and 0.66, 0.71, and 0.77, respectively, using 
macro averaging for pathological tumor stage. This result 
was still not satisfactory. Sokhi et al. (6) proposed that 
centrally situated renal tumors with irregular tumor edges 
that were inseparable from sinus structures or the perirenal 
fascia as well as CT features of tumor necrosis should alert 
the radiologists to the possibility of RCC that is stage T3a. 
These characteristics deserve more attention in the daily 
work of radiologists.

The texture features of CT images based on machine 
learning have shown advantages in differentially diagnosing 
renal tumors and predicting the pathological grade of renal 
cancer (11-14,25). The studies of Cui et al. (26). and Yu  
et al. (27) showed that CT texture analysis based on machine 
learning might be a credible quantitative strategy to 
differentiate benign renal tumors, such as angiomyolipoma 

(AML) and oncocytoma, from malignant renal tumors, 
such as clear cell RCC (ccRCC) and pRCC (26,27). Ding 
et al. (28) found that a CT-based radiomics model could 
predict a high grade of ccRCC. However, the value of 
texture features of CT images based on machine learning 
for predicting the pathological T staging of RCC remains 
uncertain.

In this study, we developed a framework to automatically 
segment 3D ROIs (kidney, tumor, and renal vein) and 
predict the pathological T1–3 staging of RCC based 
on features of those ROIs. Other studies only extracted 
2-dimensional (2D) features of the tumor center in 
unenhanced CT images or only used tumor features to 
predict tumor stage (29,30). Unlike these other studies, our 
study extracted features that were not only based on the 
CMP and the NP images of the enhanced CT but also on 
3D features with the accurate outline of the tumor edges. 
In addition to extracting the complete tumor features, the 
features of the kidneys and renal veins were also extracted. 
We found that, when used together, the features of the 
tumor, kidneys, and renal veins predicted the T staging with 
higher accuracy than did using the tumor features alone.

Our results had fairly good sensitivity and excellent 
specificity for each class of the prediction model. In 
addition, the AUC value of the ROC curve was 0.88 
(0.72–1.00) for stage T3 vs. stages T1–2. This finding 
indicated that this model was helpful for the differential 
diagnosis of RCC at stage T3 RCC from stages T1–2. 
With this information, clinicians can identify patients with 
stage T3 disease for neoadjuvant or adjuvant therapy (22). 
Our study also showed that the predictive performance 
of our model was superior to that of the radiological T 
staging determined by an expert radiologist. Therefore, this 
prediction model is expected to be an auxiliary tool for the 
preoperative staging for RCC.  

Our study had one main limitation. The enrolled 
sample size, especially the external testing data set, was 
relatively small, and the distribution of the number of 
patients in stages T1–3 was slightly uneven. In the future, 
we look forward to adding more samples to achieve a 
more convincing validation effect. However, in addition to 
extracting complete tumor features based on the CMP and 
the NP images of the enhanced CT, we also extracted 3D 
features with the accurate outline of the tumor edges and 
the features of the kidney and renal vein. This process made 
the prediction performance of our prediction model more 
accurate and enabled our prediction model to have wider 
generalizability.
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Conclusions

Our study developed a framework based on texture features 
for predicting the pathological T1–3 staging of RCC. 
Identifying patients with stage T3 RCC has great clinical 
value for individualized therapies for treating RCC. We 
also explored feature extraction methods to improve 
the accuracy of the prediction model and described the 
decision-making process of the model, which was found to 
be a reasonable and evidence-based method for determining 
the pathological T staging of RCC. 
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Supplementary

Appendix 1

Materials and methods

Computed tomography (CT) scanning protocol
The 29 patients at The Third Affiliated Hospital of Shenzhen University also underwent CT scanning with a 128-slice 
spiral CT system (Brilliance iCT, Philips System; 120 kV, 280 mA, section thickness 5 and 2 mm, reconstruction interval  
1 mm). The scanning protocol included data acquisition in 3 phases: the precontrast phase (PCP), the corticomedullary phase 
(CMP; 30-second delay after contrast injection), and the nephrographic phase (NP; 90-second delay after contrast injection). 
Multiplanar reconstruction was performed for axial, coronal, and sagittal planes. After the unenhanced scan, an intravenous 
bolus injection of nonionic contrast media of 80–100 mL was administered at a rate of 4 mL/s through the median cubital vein.

Feature classification and statistical analysis
To explore the contributions of CT texture features in model decision-making, Shapley additive explanations (SHAP) was 
used to break down the model’s decisions. SHAP connects the optimal credit allocation with local explanations using the 
classic Shapley values from game theory and their related extensions. To compare whether the predictions were statistically 
different between the 3 radiologists, we used the Welch two-tailed 2-sample t-test (P<0.05). These statistical analyses were 
conducted in Python (v.3.8.0) and R (v.3.6.3).

Results

Explanation of the prediction model
To evaluate the contribution of the extracted texture features to the model prediction, the SHAP value of each feature was 
calculated for each sample.

The bar plot and beeswarm plot show the SHAP values of the top 20 texture features for pathological tumor stage 
prediction. The beeswarm plot shows the SHAP values and feature values across the original data set. The shade of the 
dot represents the different eigenvalue magnitudes, with bluer dots indicating lower eigenvalues and redder dots indicating 
larger eigenvalues. As shown in the beeswarm plot, a positive SHAP value indicates a higher likelihood for the corresponding 
prediction. Conversely, a negative SHAP value indicates a lower likelihood for the corresponding prediction.

In Figure 5A, the gray-level-related features, including 2t_glszm_LAHGLE (tumor feature of the CMP: gray-level size 
zone) and the tumor volume-related feature such as 2t_mask_VN (tumor feature of the CMP: mask-original voxel num), 
played a vital role in the prediction of pathological tumor T1 staging. 

In Figure 5B, the 3-dimensional size and shape of the region of interest (ROI)-related features, including 2t_shape_SVR 
(tumor feature of the CMP: surface area to volume ratio) and 2t_shape_MV (tumor feature of the CMP: mesh volume), 
played a vital role in the prediction of pathological tumor T2 staging.

In Figure 5C, the related features, including 3k_glrlm_GLNU (kidney feature of the NP: gray-level run length matrix), 3v_
glszm_GLNU (vein feature of the NP: gray-level size zone), and 3t_shape_M2DC [tumor feature of the NP: maximum 2D 
diameter (Column)], played a vital role in the prediction of pathological tumor T3 staging.

The SHAP value revealed that the texture features of the tumor region in the CMP of the enhanced CT image 
significantly contributed to determining whether a case was stage T1 or T2. In determining whether a case was stage T3, 
the texture features of the renal region, venous region, and tumor region in the NP of the enhanced CT image contributed 
significantly.


