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Background: Epithelial ovarian cancer (EOC) segmentation is an indispensable step in assessing the 
extent of disease and guiding the treatment plan that follows. Currently, manual segmentation is the most 
commonly used method, despite it being tedious, time-consuming and subject to inter- and intra-observer 
variability. This study aims to assess the feasibility of deep learning methods in the automatic segmentation 
of EOC on T2-weighted magnetic resonance images.
Methods: A total of 339 EOC patients from eight different clinical centers were enrolled and divided into 
4 groups: training set (n=154), validation set (n=25), internal test set (n=50) and external test set (n=110). Six 
common-used algorithms, including convolutional neural networks (CNNs) (U-Net, DeepLabv3, U-Net++ 
and PSPNet) and transformers (TransUnet and Swin-Unet), were used to conduct automatic segmentations. 
The performances of these automatic segmentation methods were evaluated by means of dice similarity 
coefficient (DSC), Hausdorff distance (HD), average symmetric surface distance (ASSD), precision and 
recall.
Results: All the results look promising, which demonstrates the feasibility of using deep learning for 
EOC segmentation. Overall, CNNs and transformers showed similar performances in both internal and 
external test sets. Among all the models, U-Net++ performed best with a DSC, HD, ASSD, precision and 
recall of 0.851, 25.3, 1.75, 0.838, 0.882 and 0.740, 42.5, 4.21, 0.825, 0.725 in internal and external test sets, 
respectively.
Conclusions: Fully automated segmentation of EOC is possible with deep learning. The segmentation 
performance is related to the International Federation of Gynecology and Obstetrics (FIGO) stages and 
histological types of EOC.
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Introduction

Ovarian cancer has the second highest incidence and the 
highest mortality rates in gynecological malignancy (1,2). 
Epithelial ovarian cancer (EOC) represents 90–95% of all 
ovarian cancers, accounting for more than 70% of ovarian 
cancer deaths (3). The standard treatment strategy for EOC 
consists of operative tumor debulking and administration of 
intravenous chemotherapy (4). Assessment of tumor prior 
to surgery is of paramount importance in guiding treatment 
decisions and ultimately improving patient outcomes (5). 
Magnetic resonance imaging (MRI) is widely used in the 
detection and characterization of tumors owing to the 
superior soft tissue contrast and tissue characterization (6). 
Recent radiomics studies based on MRI have demonstrated 
many encouraging advances. In our previous studies, we 
developed an assessment model built for differentiating 
borderline epithelial ovarian tumors from malignant 
epithelial ovarian tumors (7), which was praised by Dr. Araki 
at Harvard Medical School as “may significantly change 
clinical management and outcome” (8). We also developed 
a radiomics diagnostic model for differentiating type I and 
II EOC (9). Moreover, a radiomics study has demonstrated 
the feasibility of EOC prognosis prediction (10).

Recognizing and delineating tumor regions is a 
prerequisite for quantitative radiomics analysis. In addition, 
it helps simplify target volume delineation in radiotherapy 
as well as subsequent efficacy evaluation. Nevertheless, 
EOC segmentation is commonly conducted in a slice-by-
slice manner by clinicians in clinical practices, which is both 
time-consuming and labor-intensive. Hence, a solution to 
this problem is urgently required.

Dastidar et al. (11) applied an automatic segmentation 
software named Anatomatic for ovarian tumor segmentation 
on MRI images. The software easily achieved accurate 
volumetric estimations of tumors on patients with ovarian 
tumor without ascites by combining four different 
methods: image enhancement, amplitude segmentation, 
region growing and decision trees (IARD). However, for 
patients with ascites, this software tends to misinterpret 
ascites as tumor cyst fluid, thus limiting its clinical 
application. Currently, deep learning (DL), represented by 
convolutional neural networks (CNNs) and transformers, 
has achieved enormous success in the field of medical image 

segmentation. CNN is a classical DL architecture that 
extracts hierarchical features from an image via convolution 
operation to identify the region of interest pixel by pixel, 
and is widely used in the segmentations on MR images of 
brain tumor (12), breast tumor (13), colorectal tumor (14)  
and etc. The transformer is a novel DL architecture which 
had first attracted much attention due to its ability in natural 
language processing (NLP), and has recently demonstrated 
promising results on tasks involving computer vision. 
Owing to its capability in modeling data with long-range 
dependencies, transformer exhibits superior performance 
than CNN on tasks like object detection (15), image 
classification (16), synthesis (17) and segmentation (18). 
All these successes have inspired us to utilize DL in EOC 
segmentation.

Despite the anticipated benefits that it may bring, 
automatic EOC segmentation on MRI images is facing 
the following challenges: (I) indistinct boundaries between 
ascites and cyst fluid: as Figure 1 shows, patients with EOC 
are often accompanied by ascites, which result in the blur 
boundary between ascites and cyst fluid since cyst walls are 
extremely thin and smooth; (II) morphological diversity of 
tumors: EOC lesions tend to be irregular in shape and vary 
in size (2–20 cm), which put forward higher requirements 
for the robustness of the automatic segmentation algorithm 
on different scales; (III) differences in signal of different 
tumor tissues: EOC lesions can be roughly divided into 
cystic, solid and complex (contain both solid and cystic 
components) tumor, with the cystic and solid components 
exhibiting different signal intensities on MRI; the solid 
components show low signal intensity on T2-weighted 
imaging with fat saturation (T2WI FS) whereas the cystic 
components show high signal intensity. For complex tumor 
which contains both components, this difference increases 
the difficulty of automatic EOC segmentation. Henceforth, 
doubts were cast on whether CNNs and transformers are 
applicable in the automatic segmentation of EOC.

In this study, we aimed to explore the feasibility of 
CNNs as well as transformers in the automatic EOC 
segmentation on MR images. 4 CNNs [U-Net (19), 
DeepLabv3 (20), U-Net++ (21), and PSPNet (22)] and 2 
transformers [TransUnet (23) and Swin-Unet (24)] were 
applied and compared in our in-house EOC dataset which 
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contains MRI images of 339 patients from 8 clinical centers. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-494/rc).

Methods

Dataset

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was reviewed and approved by the Ethics Committee 
of Jinshan Hospital of Fudan University, and informed 
consent was waived due to its retrospective nature. To 
evaluate the performance of the neural networks, an EOC 
dataset was constructed using T2WI FS of 339 patients 
from 8 clinical centers. The centers involved are listed as 

follows: (A) Obstetrics and Gynecology Hospital of Fudan 
University, (B) Jinshan Hospital of Fudan University, 
(C) Xinhua Hospital Affiliated to Shanghai Jiao Tong 
University School of Medical, (D) Affiliated Hospital of 
Nantong University, (E) Guangdong Women and Children 
Hospital, (F) Affiliated Hospital of Xuzhou Medical 
University, (G) Huadong Hospital Affiliated to Fudan 
University and (H) Nantong Tumor Hospital. Details of 
MRI equipment are presented in Table 1 and examples of 
MR images acquired from different centers are presented in 
Figure 2. Considering that centers A and B share the same 
MR vendor and scanning protocol, a total of 229 patients 
from these 2 centers were grouped into 1 cohort. Since 
there are multiple subtypes of EOC, 70% of the patients of 
each subtype from centers A and B were randomly assigned 
for training, 10% were used for validation, while the rest 
were kept for internal testing. The patients from centers 

A B

Figure 1 An example of the indistinct boundaries between ascites and cyst fluid. (A) shows the original MR image and (B) shows the tumor 
contour in red with the MR image. MR, magnetic resonance.

Table 1 Details of MRI equipment and acquisition parameters 

Centers Specifications of MRI equipment
Protocol parameters

TR/TE (ms) ST/IG (mm) FOV (mm)

A 1.5T, Avanto, Siemens 8,000/83 4.0/1.0 256×256

B 1.5T, Symphony, Siemens 8,000/83 4.0/1.0 256×256

C 3.0T, Twinspeed, GE 3,840/105 6.0/0.5 350×350

D 1.5T/3.0T, Signa, GE (6,600–8,000)/85 7.0/1.0 (360–460)×(360–460)

E 1.5T, Brivo MR 355, GE 3,000/120 3.0/1.0 330×330

F 3.0T, 750W, GE; 3.0T, Ingenia, Philip 4,000/142 6.0/1.0 (256–512)×(256–512)

G 3.0T, Trio/Verio/Skyra, Siemens 5,020/114 4.0/0.8 260×260

H 1.5T, Espree/3.0T, Verio, Siemens 4,120/108 7.0/1.0 320×320

MRI, magnetic resonance imaging; TR, repetition time; TE, echo time; ST, slice thickness; IG, intersection gap; FOV, field of view.

https://qims.amegroups.com/article/view/10.21037/qims-22-494/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-494/rc


Quantitative Imaging in Medicine and Surgery, Vol 13, No 3 March 2023 1467

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(3):1464-1477 | https://dx.doi.org/10.21037/qims-22-494

C–H were assigned as the external testing cohort. Hence, 
the training, validation, internal test and external test sets 
contain 154, 25, 50 and 110 patients, respectively. The 
International Federation of Gynecology and Obstetrics 
(FIGO) stages distribution of EOC in internal set is shown 
in Table 2 and histological types distribution of EOC in 
each center is shown in Table 3. The distribution of the 
FIGO stages and the histological types matches the general 
circumstances.

For each patient, the tumor region was delineated 
manually in a slice-by-slice manner by a board-certified 
radiologist with 5 years of experience specializing in 
gynecologic imaging using the Medical Imaging Interaction 
Toolkit (MITK) (version 2016.11.0; http://www.mitk.org/). 
The delineation was checked by another radiologist (reader 2)  
with 8 years of experience specializing in gynecologic 
imaging. If there raised a disagreement, the final delineation 
was settled by a radiologist (reader 3) with 20 years of 
experience specializing in gynecologic imaging.

Data preprocessing and augmentation

For each patient, slices that did not contain any tumor 
were discarded. A final count of 5,682 slices was obtained 
from 339 patients. The preprocessing flowchart is depicted 
in Figure 3. All slices were then resampled with the voxel 
size of 1 mm × 1 mm × 5 mm. Unnecessary regions that 
correspond to non-tumor areas were cropped. For most 
patients, slices were cropped to 224×288 pixels at the 
center; for patients whose tumor region exceeds the edge of 
the cropping box, their slices were treated as special cases 
and were cropped to 288×288 pixels at the center. Finally, 
all slices were resized to 256×256 pixels. The intensity 
range of each slice was normalized to 0–1 through min-max 
normalization. The same resampling, cropping, and resizing 
operations were also performed for the corresponding 
tumor region images.

Data augmentation was applied during the training 
phase, including a random horizontal flip with a probability 
of 0.5, a random rotation of ±20° and a random scaling from 
80% to 120%.

Segmentation models

Six common-used algorithms, including CNNs (U-Net, 
DeepLabv3, U-Net++ and PSPNet) and transformers 

Table 2 The distribution of FIGO stages of EOC in internal test set

I II III IV

16 5 24 5

FIGO, International Federation of Gynecology and Obstetrics; 
EOC, epithelial ovarian cancer.

A B C D

E F G

Figure 2 examples of MR images acquired from different centers. (A) refers to Center A and B since they share the same MR vendor and 
scanning protocol. (B-G) refer to Center C–H each by each. MR, magnetic resonance.
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(TransUnet and Swin-Unet) were used for automatic EOC 
segmentation.

U-Net
U-Net is a symmetrical U-shaped model consisting of an 
encoder-decoder architecture. The encoder involves the 
use of down-sampling to obtain the feature map, whereas 
the decoder involves the use of up-sampling to restore the 
encoded features to the original image size, and to generate 
the final segmentation results. Skip-connection is added 
to the encoder-decoder networks to concatenate the high- 
and low-level features while retaining the detailed feature 
information required for the up-sampled output.

DeepLabv3
DeepLabv3 employs deep convolutional neural network 
(DCNN) to generate a low-level feature map and 
introduces it to the Atrous Spatial Pyramid Pooling (ASPP) 
module. ASPP probes multiscale convolutional features 
without increasing the number of convolution weights by 
applying atrous convolution at different rates. Additionally, 
DeepLabv3 augments the ASPP with image-level features 
and batch normalization. The dense feature maps extracted 

by ASPP are bilinearly up-sampled to generate full-
resolution segmentation results, which could be considered 
as a naive decoder module.

U-Net++
U-Net++ is a modified U-Net model based on nested 
and dense skip connections. A series of nested, dense 
convolutional blocks are applied to connect the encoder 
and decoder, bringing the semantic level of the encoder 
feature maps closer to that of the feature maps awaiting 
in the decoder. Owing to the skip connections that are 
re-designed, U-Net++ is able to generate full resolution 
prediction maps at multiple semantic levels. The maps 
can then be averaged or selected to generate the best 
segmentation results.

PSPNet
PSPNet adapts ResNet with the dilated network strategy 
as the encoder to generate semantic feature maps. On 
top of the maps, a pyramid pooling module is utilized to 
simultaneously gather context information. Using a 4-level 
pyramid, the pooling kernels cover the whole, half of and 
small portions of the image. They are fused as the global 

Table 3 The distribution of histological types of EOC in each dataset

Centers
Total number of patients

Total Serous Endometrioid Mucinous Clear cell Undifferentiated

A and B 229 145 21 18 45

C 45 23 5 7 9 1

D 24 15 2 1 6

E 2 1 1

F 17 16 1

G 9 8 1

H 13 6 1 3 3

EOC, epithelial ovarian cancer.

N4 bias correction Resampling Crop (224×288) Resize Normalization

Crop (288×288)

Special cases

Figure 3 Workflow of the processing procedure.
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prior. The prior is then concatenated with the original 
feature map in the final part of the pyramid pooling 
module, followed by a convolution layer to generate the 
final segmentation results.

TransUnet
TransUnet is the first transformer-based medical image 
segmentation framework. It employs a hybrid CNN-
Transformer architecture to leverage both detailed high-
resolution spatial information from CNN features and 
the global context encoded by transformers. TransUnet 
utilizes a three-layer CNN as the feature extractor to 
generate feature maps. The feature maps are then sent to 
the transformer after patch embedding to extract global 
contexts. The self-attentive features encoded by the 
transformer is then unsampled by a cascaded up-sampler. 
The up-sampler and the hybrid decoder are then brought 
together to form a u-shaped architecture that generates the 
final segmentation results.

Swin-Unet
Swin-Unet is the first pure transformer-based U-shaped 
architecture. The Encoder, bottleneck and decoder are 
all built based on the Swin Transformer block. The input 
medical images are split into individual non-overlapping 
image patches, that are treated as a token and fed into 
the transformer-based encoder to learn deep feature 
representations. The extracted context features are then up-
sampled by the decoder with patch expanding layer, and 
fused with the multi-scale features from the encoder via skip 
connections, so as to restore the spatial resolution of the 
feature maps and further generate segmentation results.

Evaluation indicators

The segmentation performance was evaluated using 
five metrics, including dice similarity coefficient (DSC), 
Hausdorff distance (HD), average symmetric surface 
distance (ASSD), precision and recall. DSC, precision and 
recall are calculated based on the region overlap between 
manually and automatically segmented results. HD refers 
to the maximum value of all the distances from the closest 
point in automatically segmented results to manually 
segmented results. ASSD refers to the average value of all 
the distances from points on the boundary of automatically 
segmented results to the boundary of the manually 
segmented results. The equations are described in Eqs. [1-5], 
in which P represents the segmentation results predicted by 

the models; G represents the accurate ground truth; TP, FP, 
TN and FN represents the true positive, false positive, true 

negative and false negative; p g−  represents the Euclidean 
distance between pixel p and g; and .  represents the number 
of pixels.

2 P G
DSC

P G
∩

=
+  [1]

TPPrecision
TP FP

=
+

 [2]

TPRecall
TP FN

=
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Among the metrics, DSC, precision and recall return 
values in the range of (0, 1), where values toward unity 
indicate an adequate segmentation performance; HD and 
ASSD return values in the range of (0, ∞), where values 
toward null indicate an adequate segmentation performance.

Implement details

Models were implemented in Python 3.6 with the PyTorch 
1.8.1 platform on a server equipped with an NVIDIA 
GeForce GTX 2080 Ti GPU. To enhance the training 
efficiency, pre-trained encoders and transformer modules 
(trained on the ImageNet dataset) were used to initialize 
the corresponding parameters of each layer. Adaptive 
moment estimation (Adam) with default parameters (β1=0.9, 
β2=0.999) was used as the optimizer. All the networks 
were trained using the optimal learning rate. The optimal 
hyperparameters were determined by the validation set. The 
maximum iteration was set to 200, and the learning rate was 
halved every ten iterations. The batch size was set to 4.

Results

Table 4 presents comparisons of the six models in terms 
of GPU RAM consumption, training time and prediction 
time. Among six models, DeepLabv3 requires the largest 
GPU RAM (7.20 GB) and the longest time (17.7 h) for 
training. PSPNet requires the smallest GPU RAM (2.42 GB) 
and the shortest time for training (9.7 h). For all models, 
the prediction time reaches within 1 s per patient, which is 



Hu et al. Deep learning for epithelial ovarian cancer segmentation1470

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(3):1464-1477 | https://dx.doi.org/10.21037/qims-22-494

Table 4 Evaluation of model GPU RAM consumption and training and prediction time

Model GPU RAM (GB) Training time (h) Prediction time (s/case)

U-Net 2.75 10.1 0.34

DeepLabv3 7.20 17.7 0.31

U-Net++ 3.45 12.7 0.74

PSPNet 2.42 9.7 0.32

TransUnet 6.20 13.5 0.56

Swin-Unet 3.56 12.9 0.50

GPU, graphics processing unit; RAM, random access memory.

fast enough compared with manual segmentation (around 
2–3 min and for some large-size tumor, such as mucinous 
tumor, the segmentation time is even longer).

The five metrics used in evaluating the performances 
of the model, along with 95% confidence interval on the 
internal and external tests of each model are summarized 
in Table 5 and Table 6, respectively. In the internal test set, 
U-Net++ performed best in DSC (0.851) and ASSD (1.75); 
TransUnet performed best in HD (19.8) and precision 
(0.847); while DeepLabv3 achieved the best recall (0.887). 

In the external test set, overall, metrics were lower than 
those in the internal test set for all models. This may be 
attributed to the significant variety of image appearance 
caused by different scanners and protocols. U-Net++ 
performed best in DSC (0.740), precision (0.825) and recall 
(0.725) whereas TransUnet performed best in HD (29.8) 
and ASSD (3.34). In addition, Swin-Unet was identified 
to have performed the poorest in both the internal and 
external test sets.

Statistical differences between the DL algorithms 

Table 5 Automatic segmentation accuracy metrics with 95% confidence interval for patients in the internal test set 

Model DSC HD (mm) ASSD (mm) Precision Recall

U-Net 0.845 (0.803–0.882) 27.6 (21.6–33.6) 1.93 (1.29–2.58) 0.831 (0.788–0.873) 0.876 (0.841–0.911)

DeepLabv3 0.847 (0.809–0.885) 24.6 (19.0–30.1) 1.94 (1.22–2.67) 0.829 (0.782–0.876) 0.887 (0.855–0.919)

U-Net++ 0.851 (0.816–0.886) 25.3 (20.0–30.7) 1.75 (1.21–2.30) 0.838 (0.795–0.881) 0.882 (0.850–0.915)

PSPNet 0.837 (0.799–0.874) 29.5 (23.4–35.6) 1.79 (1.28–2.31) 0.834 (0.791–0.878) 0.857 (0.818–0.895)

TransUnet 0.848 (0.803–0.892) 19.8 (14.7–24.8) 1.79 (0.71–2.87) 0.847 (0.799–0.895) 0.860 (0.813–0.907)

Swin-Unet 0.753 (0.695–0.812) 32.4 (26.6–38.2) 3.36 (2.14–4.58) 0.707 (0.641–0.773) 0.851 (0.804–0.898)

DSC, dice similarity coefficient; HD, Hausdorff distance; ASSD, average symmetric surface distance.

Table 6 Automatic segmentation accuracy metrics with 95% confidence interval for patients in the external test set

Model DSC HD (mm) ASSD (mm) Precision Recall

U-Net 0.719 (0.666–0.772) 58.4 (50.6–66.2) 6.26 (4.72–7.80) 0.778 (0.727–0.830) 0.718 (0.663–0.773)

DeepLabv3 0.716 (0.664–0.768) 39.9 (34.7–45.0) 3.90 (3.01–4.78) 0.782 (0.735–0.828) 0.719 (0.666–0.772)

U-Net++ 0.740 (0.690–0.789) 42.5 (35.7–49.3) 4.21 (2.96–5.46) 0.825 (0.779–0.871) 0.725 (0.673–0.776)

PSPNet 0.637 (0.577–0.696) 57.3 (49.6–65.0) 7.92 (5.37–10.46) 0.760 (0.705–0.814) 0.618 (0.555–0.681)

TransUnet 0.719 (0.651–0.787) 29.8 (24.8–34.7) 3.34 (2.18–4.50) 0.805 (0.740–0.871) 0.685 (0.613–0.757)

Swin-Unet 0.359 (0.289–0.429) 66.5 (57.5–75.5) 11.76 (8.77–14.76) 0.570 (0.492–0.649) 0.348 (0.277–0.420)

DSC, dice similarity coefficient; HD, Hausdorff distance; ASSD, average symmetric surface distance.
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were determined by t-test. We used Python SciPy to test 
whether each metric followed normal distribution before 
t-test. The results turned out that all the metrics followed 
normal distribution (P>0.05). The significance levels are 
shown in Figure 4. The differences between two compared 
groups are considered to be statistically significant when 
P<0.05. Most models do not present statistical differences 
in the internal test set, indicating similar segmentation 
performance. Nevertheless, U-Net++ presents statistically 
significant differences from other algorithms in DSC, 
ASSD and precision, as observed in Figure 4A,4C,4D. In the 
external test set, some models present statistically significant 
differences. U-Net++ presents statistically significant 
differences from other algorithms in DSC, precision and 
recall, as observed in Figure 4A,4D,4E.

In addition, we compare the segmentation performance 
for different histological types and FIGO stages. We 
summarize the segmentation performance of different 
FIGO stages in the internal test set and the segmentation 
performance of different histological types in both internal 
and external test set, just as Figures 5-7 show. As shown in 
Figure 5, the mean DSCs of stage I and stage II tumor are 
relatively high (0.863 and 0.870, respectively) and the mean 
DSCs of stage III and stage IV tumor are relatively low 
(0.789 and 0.807, respectively). As shown in Figure 6, the 
mean DSC of serous tumor (0.780) is at least 14.0% lower 
than the mean DSC of other 3 types of tumors (0.938, 0.907 
and 0.918, respectively). As shown in Figure 7, compared 
with the internal test set, the DSC of all types of tumors in 
the external test set decreased. The mean DSC of serous 
tumor is still the lowest (0.603), which is at least 15.3% 
lower than other types of tumors (0.711, 0.711 and 0.739, 
respectively).

To intuitively il lustrate the performance of the 
segmentation models, four typical results are shown in 
Figure 8. Figure 8A shows a case where a solid tumor was 
surrounded by ascites. This tumor can be well segmented 
by all algorithms. The manual contour is best matched 
by U-Net++, while U-Net, TransUnet and Swin-Unet 
yielded various degrees of overestimation. Figure 8B shows 
a case where the patient has cystic tumor with ascites. 
U-Net, PSPNet, TransUnet and Swin-Unet misinterprets 
the ascites as tumor; DeepLabv3 and U-Net++ recognize 
the basic contour of the tumor; whereas U-Net++ yields 
segmentation result that fits the ground truth best. Figure 
8C shows a representative case in which the solid tumor 
is attached to the uterus and the boundary is hard to 
identify. Consequently, all algorithms misinterpret the 

uterus as EOC, leading to mis-segmentation. Figure 8D 
shows another typical situation where the patient has 
severe ascites. The tumors contain both cystic and solid 
components, possessing sharp contrast in signal intensity. 
Moreover, the cystic components are adjacent to the ascites 
and share similar signal intensity, so most algorithms only 
manage to partially segment the solid components but fail 
to recognize the cystic components altogether.

Discussion

This study aims to explore the feasibility of CNNs as well 
as transformers in the automatic EOC segmentation on MR 
images. Overall, the performance of U-Net++ surpasses 
all other models in both test sets. We speculate that there 
might be two possible reasons. First, U-Net++ has a built-
in ensemble of U-Nets, which enables image segmentation 
based on multi-receptive field networks, endowing it with 
the capability to segment tumors of varying sizes. Second, 
the redesigned skip connections enable the fusion of 
semantically rich decoder feature maps with feature maps of 
varying semantic scales from the intermediate layers of the 
architecture, assisting the former layers with more semantic 
information and refining segmentation results.

TransUnet can be considered as a combination of 
transformer and the original U-Net. When compared with 
U-Net, the results of TransUnet showed that it achieved 
remarkable improvement in HD, ASSD and precision. 
However, the improvement in DSC is limited and 
TransUnet performed worse than U-Net in terms of recall. 
We infer that there could be two reasons to this: Firstly, 
though transformer provides the capability to encode 
distant dependency, EOC lesions are usually clustered and 
located in the center of the slice, and long-range semantic 
information interactions provide little improvement on 
segmentation accuracy under this circumstance; Secondly, 
TransUnet computes self-attention on feature maps that 
have gone through four times of down-sampling, so the 
low-resolution attention maps acquired might be too rough 
for accurate identification of boundary regions. Building 
multi-resolution feature maps on transformers might be 
a better solution to this problem. In addition, Swin-Unet 
is identified to have performed the poorest in both the 
internal and external test sets. The possible explanation 
for this would be that Swin-Unet pays attention to the 
global semantic information interactions but lacks inner 
interactions for pixels in each patch, which is vital for pixel-
dense work like segmentation.
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Figure 4 Pairwise comparisons by t-test. Figure 4 (A-E) represent pairwise comparisons between models on DSC, HD, ASSD, precision 
and recall, respectively. The labels of each matrix are U-Net, DeepLabv3, U-Net++, PSPNet, TransUnet, Swin-Unet (from top to bottom 
and from left to right alike). DSC, dice similarity coefficient; HD, Hausdorff distance; ASSD, average symmetric surface distance.
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Figure 5 Segmentation Performance of each FIGO stage of EOC in internal test set. FIGO, International Federation of Gynecology and 
Obstetrics; EOC, epithelial ovarian cancer; DSC, dice similarity coefficient.
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Figure 6 Segmentation Performance of each histological type of EOC in internal test set. EOC, epithelial ovarian cancer; DSC, dice 
similarity coefficient.

Figure 7 Segmentation Performance of each histological type of EOC in external test set. EOC, epithelial ovarian cancer; DSC, dice 
similarity coefficient.
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We also aim to explore how FIGO stages and histological 
types impact the segmentation results. The segmentation 
accuracy of stage I and stage II tumor is higher than that of 
stage III and IV. We believe it is because early-stage tumors 
tend to be simple in shape and smooth in boundary, while 
advanced-stage tumors are infiltrative and usually tightly 
connect with surrounding tissues, making their boundaries 
irregular, which are hard to accurately outline. Moreover, 
the segmentation accuracy of serous tumor is poorer than 
that of endometrioid, mucinous and clear cell tumors. One 
possible explanation is that most serous tumors are at stages 
III and IV, as we analyze the FIGO stage distribution of 

serous tumors.
It is worth mentioning that model performance in 

external test set is poorer than that in the internal set. 
Most fully supervised methods heavily rely on large-scale 
training data with labels, when transferring the pre-trained 
model to unknown domain for testing, model performance 
usually decreases significantly due to domain shift between 
training and testing data (25,26). Research on how to deal 
with domain shift has been extensively conducted in the 
literature, such as meta learning (27), transfer learning (28), 
domain generalization (29), domain adaption (30) and etc. 
In further research, we will consider these methods as a 

Figure 8 (A-D) represent four typical segmentation examples of the models. Red contour represents the ground truth and green contour 
represents the segmentation results of each model. The segmentation accuracy metrics of each model on the examples are shown in Table S1.
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solution for increasing the generalization and robustness of 
EOC segmentation in real-world clinical applications.

Few studies can be found on the automatic segmentation 
of EOC on MRI. Before the development of CNNs 
and transformers, Dastidar et al. (11) utilized the IARD 
algorithm for ovarian tumor segmentation on MRI images, 
which can be considered as an attempt of the traditional 
region-based method. To evaluate the segmentation 
performance, they compared the volumes estimated by the 
algorithm with the volumes measured and calculated at 
laparotomy. The study found that the algorithm was useful 
for measuring ovarian tumors in patients without significant 
ascites but failed to achieve the same results in patients 
with significant ascites. Compared with this previous study, 
the numbers of patients (6 in Dastidar’s study vs. 339 in 
this study) and clinical centers (1 in Dastidar’s study vs. 
8 in this study) were substantially increased in this study, 
which could increase the versatility and robustness of the 
segmentation model. The accuracy of our models was also 
relatively higher, indicating the feasibility of DL methods as 
the solution for automatic EOC segmentation. 

Nonetheless, this study poses several limitations. First, 
the performance of DL models has a strong dependence on 
the amount of data (31). Thus, larger MRI dataset is likely 
to improve the performance of DL models in automatic 
EOC segmentation. Second, some studies have pointed out 
that the use of MR images of various sequences (e.g., T1-
weighted and diffusion-weighted images) might be helpful 
in improving the accuracy of automatic segmentation (32). 
Thus, more MRI modalities should be included in future 
work. Third, 3D network can capture the 3D spatial context 
contained in volumetric medical images (33). We will also 
try to implement 3D networks into EOC segmentation in 
our further study. Lastly, the algorithms that were evaluated 
are all generic segmentation methods. In the future, we 
will utilize some techniques, such as cascaded networks 
and boundary-aware networks, and use adjacent slice 
information to better accommodate the characteristics of 
EOC and design a network focus on EOC segmentation.

Conclusions

Segmentation is indispensable in determining the stage of 
EOC, which will subsequently impact the treatment strategy 
for a patient. In this study, the feasibility of DL methods 
in automatic segmentation was assessed. The results show 
promising outcome for DL to be applied in the automatic 

segmentation of EOC on T2-weighted MR images. 
Among all the models, U-Net++ reaches a relatively better 
segmentation performance with a reasonable computing 
consumption. As a result, it is considered the best model 
among the six models that we apply and compare.
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Supplementary

Table S1 Automatic segmentation accuracy metrics for examples (A)-(D) in Figure 8

U-Net DeepLabv3 U-Net++ PSPNet TransUnet Swin-Unet

(A) DSC 0.953 0.931 0.971 0.961 0.963 0.93

HD (mm) 18 10 6 9.2 10.6 18.6

ASSD (mm) 2.13 2.67 1.31 1.49 1.81 2.37

Precision 0.916 0.876 0.952 0.934 0.962 0.886

Recall 0.994 0.992 0.991 0.99 0.964 0.978

(B) DSC 0.791 0.842 0.876 0.727 0.734 0.773

HD (mm) 69 50.1 39.3 69.1 69.1 46.1

ASSD (mm) 9.23 7.56 5.45 13.58 13.25 11.32

Precision 0.916 0.876 0.952 0.934 0.962 0.886

Recall 0.994 0.992 0.991 0.99 0.964 0.978

(C) DSC 0.237 0.334 0.309 0.375 0.296 0.33

HD (mm) 27.5 30.2 28.7 42.5 27.2 44

ASSD (mm) 9.66 9 9.11 10.27 8.95 10.36

Precision 0.173 0.228 0.216 0.242 0.216 0.206

Recall 0.377 0.621 0.542 0.837 0.468 0.835

(D) DSC 0.694 0.475 0.624 0.227 0.223 0.488

HD (mm) 31 41 28.6 78.8 51 27.8

ASSD (mm) 6.79 11.33 7.47 19.51 16.25 8.12

Precision 0.998 1 0.996 1 1 0.784

Recall 0.532 0.311 0.455 0.128 0.126 0.354

DSC, dice similarity coefficient; HD, Hausdorff distance; ASSD, average symmetric surface distance.


