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Background: Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) 
is currently rising in incidence; however, a noninvasive approach to predicting HPV status that strongly 
correlates with p16 expression is lacking. This study aimed to develop a radiomics model based on 
multisequence magnetic resonance imaging (MRI) of primary tumor (PT) and lymph node (LN)-fused 
imaging features for the prediction of p16 status in OPSCC.
Methods: In this retrospective study, 141 patients (comprising 116 patients in the training cohort and 25 
patients in the testing cohort) with histopathologically confirmed (OPSCC) were enrolled consecutively 
from Fudan University Shanghai Cancer Center and Shanghai Ninth People’s Hospital between January 
2011 and December 2020. HPV status was determined by p16 immunohistochemistry analysis. A total 
of 2092 radiomics features were initially computed and extracted from the 3D-segmented PT and largest 
LN based on contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). A 
support vector machine classifier was employed to build the machine learning–based classification models 
dependent on p16 status. The models were validated in the testing cohort. The area under the receiver 
operating characteristic curve (AUC) was computed to assess the performance of each model. This diagnostic 
study was not registered on the clinical trial platform.
Results: In the testing cohort, fusion models yielded better performance (AUC) compared with models 
based on a sole PT/LN [CE-T1WI: 0.80 (95% CI: 0.55–0.94) vs. 0.71 (95% CI: 0.47–0.88)/0.73 (95% 
CI: 0.48–0.90); T2WI: 0.74 (95% CI: 0.51–0.95) vs. 0.64 (95% CI: 0.38–0.85)/0.71 (95% CI: 0.48–0.88)]. 
Models based on multisequence imaging outperformed single CE-T1WI/T2WI models [PT: 0.74 (95% CI: 
0.46–0.91) vs. 0.71 (95% CI: 0.47–0.88)/0.64 (95% CI: 0.38–0.85); LN: 0.78 (95% CI: 0.55–0.75) vs. 0.73 
(95% CI: 0.48–0.90)/0.71 (95% CI: 0.48–0.88)]. Finally, the PT-LN fusion model based on multisequencing 
yielded the best classification performance with the highest AUC value of 0.91 (95% CI: 0.72–0.98) for the 
prediction of p16 expression. The differences between the performance of the final model and the other 8 
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Introduction

Over  the  l a s t  decade ,  the  preva lence  o f  human 
papillomavirus (HPV)-positive oropharyngeal squamous 
cell carcinoma (OPSCC) has rapidly increased, especially 
in the Western world (1). This is in contrast with the 
prevalence of HPV in China, where for a long time the 
prevalence has been much lower. However, the relative 
percentage of HPV-related OPSCC in China was recently 
reported to be close to that of many Western countries, 
and a strong predilection for the tonsillar lesion was  
discovered (2). Patients with HPV-positive OPSCC have 
demonstrated superior survival and better treatment 
response compared with HPV-negative patients (3). The 
evaluation of HPV status is essential for making treatment 
plans and predicting prognosis. Meanwhile, HPV status 
strongly correlates with p16 expression as detected by 
immunochemistry (IHC) (4). Therefore, p16 expression is 
always used to evaluate HPV status.

Conventional and advanced imaging methods provide 
useful information for the diagnosis, assessment of 
treatment response, and surveillance of patients with 
OPSCC (5-7). However, in traditional imaging analysis, the 
characteristics of whole-tumor imaging findings are based 
on a radiologist’s diagnostic experience, and intratumor 
heterogeneity has not been analyzed using quantitative 
imaging methods. Radiomics, which provides high-
throughput mining of large amounts of quantitative features 
derived from medical imaging, is a promising tool in the 
decision support systems of precision medicine (8-11).  
Evidence from previous studies shows that radiomics features 
could be helpful for personalized risk stratification (12)  
and individual treatment decisions (13) and may also serve 
as prognostic indicators (14) of OPSCC.

Therefore, quantitative imaging analysis based on 
radiomics could provide a noninvasive approach for assessing 
the HPV-related p16 status of patients with OPSCC. In 
previously reported studies, researchers developed different 
models to decode the imaging phenotypes stratified by p16, 
based on computer tomography (CT), positron emission 
tomography (PET)/CT, or single-sequence magnetic 
resonance imaging (MRI) (15-17). However, the predictive 
power of these radiomics models needs further improvement. 
Many studies of other tumors have demonstrated that the 
multisequence prediction model has a better classification 
performance compared with the single-sequence model  
(18-21). We hypothesized that the radiomics model based 
on multisequence MRI may improve the predictive accuracy 
of p16 status in OPSCC. Moreover, previous studies have 
suggested that primary tumor (PT) and lymph node (LN) 
imaging features may play complementary roles for each 
other (22); for instance, the fusion of PT and LN features 
was found to outperform PT or LN features alone in the 
prediction of prognosis or treatment response in squamous 
cell cancer (23,24). Thus, in the current study, we aimed to 
evaluate the predictive values of radiomics features derived 
from PT and LN images based on multisequence MRI 
for the HPV-related p16 status of OPSCC patients. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.com/
article/view/10.21037/qims-22-819/rc).

Methods

Patients

We employed a multicenter, retrospective design for this 
study. Patients were retrospectively and consecutively 

models were significant (all P values <0.05).
Conclusions: The results demonstrated that (I) the PT-LN fusion radiomics models improved the 
classification performance of the sole use of PT or LN for the prediction of p16 status, (II) the radiomics 
models based on multisequences outperformed the single-sequence models in the prediction of p16 
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oncologists with their clinical decision-making.
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enrolled from Fudan University Shanghai Cancer Center 
(FUSCC) and Shanghai Ninth People’s Hospital between 
January 2011 and December 2020. In this period, the 
complete imaging, pathology, and clinical data of patients 
were collected. Patients with histopathologically proven 
primary OPSCC who met the following inclusion criteria 
were included in our analyses: (I) presence of stages  
I–IV OPSCC, restaged according to the American Joint 
Commission on Cancer (AJCC; eighth edition staging 
manual) guidelines; (II) absence of secondary malignancy, 
pregnancy, or lactation; (III) availability of pretreatment 
MRI scans for review; (IV) no history of radiotherapy 
(RT) or chemoradiotherapy (CRT) before the MRI scans; 
and (V) accessible p16 IHC results. The exclusion criteria 
were as follows: (I) severe susceptibility or motion artefacts 
(n=14) or (II) small tumor volume (anteroposterior diameter  
<5 mm) that could lead to difficulty in imaging analyses 
(n=122).  The t ime interval  between pathological 
examination and MRI was within 1 week. A total of 141 
patients with primary OPSCC who met the criteria were 
finally identified. The training cohort consisted of 116 
patients from the FUSCC and the testing cohort consisted 
of 25 patients from Shanghai Ninth People’s Hospital. 

Baseline clinical variables were collected, including age, 
gender, TNM stage, smoking history, treatment methods, 
and the location of lesions. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the institutional ethics 
board of the FUSCC, and individual consent for this 
retrospective analysis was waived. The workflow of this 
study is displayed in Figure 1. The study protocol can be 
obtained from the corresponding author.

p16 expression assessment

A commercial antibody of p16 (25) was used to detect the 
p16 expression of all patients. p16 with a 70% nuclear 
and cytoplasmic staining in IHC was employed as the 
cutoff. IHC was performed on 4-μm sections of paraffin-
embedded tissues to determine the expression level of 
p16 protein. In brief, the slides were incubated in p16 
antibody (M78710, Dako Products, Agilent Technologies) 
diluted 1:200 at 4 ℃ overnight and incubated in a second 
antibody (Dako Products, Agilent Technologies) at 37 ℃ for  
40 minutes. Then, the slides were stained with the avidin–
biotin peroxidase method using diaminobenzidine (DAB) 

Figure 1 Workflow of the study. OPSCC, oropharyngeal squamous cell carcinoma; AJCC, American Joint Commission; MRI, magnetic 
resonance imaging; RT, radiotherapy; CRT, chemoradiotherapy; IHC, immunochemistry.
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and then counter-stained with hematoxylin. Before and 
after each step mentioned above, a wash was completed  
3 times with phosphate-buffered saline (PBS). The testing 
of p16 expression were performed using the EnVision 
FLEX high-pH visualization system (Dako Products, 
Agilent Technologies) according to the manufacturer’s 
instructions. Slides were examined under a light microscope 
for evaluation.

MR imaging protocol

The MR imaging was performed using 3.0 T scanners 
(Siemens Healthineers; GE Healthcare) with a dedicated 
16-channel head-neck synergic coil. The MR imaging 
protocol included axial T1-weighted imaging (T1WI) 
and T2-weighted imaging (T2WI), coronal short tau 
inversion recovery (STIR) imaging, and contrast-enhanced 
T1WI (CE-T1WI). A rapid bolus of gadolinium contrast 
agent (Magnevist; Bayer HealthCare Pharmaceuticals 
Inc.) was injected intravenously at a dose of 0.1 mmol/kg  
of body weight. Axial, coronal, and sagittal CE-T1WIs 
were obtained. Axial T2WI and CE-T1WI were chosen 
for further imaging analysis. The following imaging 
parameters for the Siemens scanner were applied: axial 
T2WI [repetition time (TR), 2,500 ms; time to echo 
(TE), 78 ms; slice thickness, 5 mm; matrix, 384×324; pixel 
spacing, 0.7 mm × 0.7 mm] and axial CE-T1WI (TR,  
4.2 ms; TE, 1.5 ms; slice thickness, 3 mm; matrix, 384×324; 
pixel spacing, 0.7 mm × 0.7 mm). The imaging parameters 
for the GE scanner were as follows: axial T2WI (TR,  
3,100 ms; TE, 86.7 ms; slice thickness, 6 mm; matrix, 320×160; 
pixel spacing, 0.84 mm × 0.84 mm) and axial CE-T1WI (TR,  
220 ms; TE, 2.5 ms; slice thickness, 6 mm; matrix, 256×160; 
pixel spacing, 0.84 mm × 0.84 mm). In the training cohort, 65 
patient scans were acquired using the Siemens scanner and 
51 were acquired using the GE scanner. All 25 patients in the 
testing cohort were scanned with the Siemens device. 

Image analysis

Two radiologists with 9 years’ and 5 years’ experience, 
respectively, in head and neck radiology assessed all of 
the images taken for each patient and staged the tumors 
according to the established staging system by consensus. If 
there was an inconsistent interpretation, a third radiologist 
would review the scans to reach a consensus. The regions of 
interest (ROIs) were manually contoured by one radiologist, 
and all segmentations were reviewed by another radiologist. 

All ROIs of PT and LN were delineated on both T2WI 
and CE-T1WI. When delineating the certain ROIs on an 
image, the radiologists were allowed to review other MR 
sequences to improve their delineations. Segmentation of 
the PT and maximum LN were separately contoured using 
ITK-SNAP software v.3.6 (http://www.itksnap.org/pmwiki/
pmwiki.phpn=Downloads.SNAP3) with a semiautomated 
graphical user interface. All metastatic LNs were evaluated 
on axial, coronal, and sagittal images. The LN with the 
largest short-axis diameter was chosen as the maximum LN. 
Figure 2 shows the representative cases of HPV-positive 
and HPV-negative OPSCC with a manual ROI. In order to 
ensure all readers were blinded to the patients, all images 
were anonymous.

Radiomics model development

Since the MR images were scanned using different scanners, 
the different distributions of image spacing and gray values 
might have influenced the uniformity of tumor imaging 
features. Thus, the 3D B-spline interpolation algorithm was 
first used to resample the CE-T1W and T2W images with 
a new image resolution of 1 mm × 1 mm × 7 mm. The gray 
values of the MR image were also normalized with a scale 
of 100 by centering it at the mean with standard deviation 
to ensure the same sequence in different scanners used the 
same gray scale. 

After MR image standardization, the original images 
were generated. The Laplacian of Gaussian (LoG) and 
wavelet images were generated from original images using 
a 3D LoG image filter and 3D wavelet image filter. Then, 
the LoG features and wavelet features were computed based 
on the LoG and wavelet images, respectively. Therefore, 
the following 3 types of image features were acquired: 
original features, LoG features, and wavelet features. Each 
type of image feature involved a shape feature, histogram 
feature, and texture feature. Moreover, the texture features 
were extracted from the gray-level co-occurrence matrix 
(GLCM), gray-level run-length matrix (GLRLM), gray-
level dependence matrix (GLDM), and gray-level size 
zone matrix (GLSZM). Finally, a total of 2,092 radiomics 
features were extracted from the PT and LN based on 
multisequence imaging consisting of 200 original features, 
516 LoG features, and 1,376 wavelet features. The 
publicly available Pyradiomics (https://aim.hms.harvard.
edu/pyradiomics) and SimpleITK (https://simpleitk.org/) 
libraries were used for the imaging preprocessing and 
feature extraction.

https://aim.hms.harvard.edu/pyradiomics
https://aim.hms.harvard.edu/pyradiomics
https://simpleitk.org/
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A standard scaler was used to normalize each type of 
image feature by removing the mean and scaling to the unit 
variance. Then, the recursive feature elimination (RFE) 
feature selector configured with the linear support vector 
machine (SVM) classifier was applied to remove redundancy 
features and select the optimal image features. Finally, 
the SVM classifier was employed to build the machine 
learning-based classification models depending on the p16 
status. After the radiomics models were built based on the 
training data set, independent testing data sets were used 
to assess the performance of the models. Figure 3 shows the 
workflow of the proposed radiomics model. The Python 

v.3.7 Scikit-learn v.0.21 (http://scikit-learn.org/) package 
was used for feature normalization, feature selection, and 
SVM implementation.

Statistical analysis

The continuous variables are expressed as medians, and 
the categorical variables are expressed as percentages. 
The Mann-Whitney test, independent t-test, chi-squared 
test, and Fisher exact test were used, as appropriate, 
for the univariate analyses. The area under the receiver 
operation characteristic (ROC) curve (AUC) value and the 

Figure 2 Representative examples of patients with HPV-positive and HPV-negative OPSCC. HPV-positive primary tonsil cancer (A) and 
largest metastatic LN (B) with corresponding transparent red ROIs. HPV-positive OPSCC exhibits a relatively well-defined margin in the 
PT and typical cystic LN. HPV-negative primary base of tongue cancer (C) and LN (D) with corresponding ROIs. HPV-negative OPSCC 
exhibits relatively ill-defined borders of PT and solid LN. HPV, human papillomavirus; OPSCC, oropharyngeal squamous cell carcinoma; 
LN, lymph node; ROI, region of interest; PT, primary tumor.
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C D
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corresponding 95% confidence interval (CI) were computed 
to evaluate and compare the prediction performance 
generated with the different MRI features. Meanwhile, 
other quantitative evaluation indices involving accuracy, 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and odds ratio (OR) were 
also computed to evaluate the predictive performance. 
Differences in the AUC values between different models 
were estimated using the Delong test, and false discovery 
rate (FDR) correction was applied to multiple testing for 
corrections of cohousing effects. Moreover, the F1 score 
and precision were used to evaluate the performance of 
the model in the testing cohort for class imbalance. The 
pathological results and imaging predictions were compared 
and analyzed according to the optimal PT-LN fused model 
based on multisequence imaging. The statistical analyses 
were performed using the Fisher exact test.

All the processes of model development and statistical 
data analysis  were performed using Python v.3.7 
programming software (https://www.python.org/) on a 
computer with an Intel Core i7-8700 central processing 
unit (CPU) with 3.2 GHz ×2, 16 gigabyte (GB) random 
access memory (RAM), and a NVIDIA GeForce GTX 
1,070 graphics processing unit. Our Python scripts are 
available in the GitHub repository (https://github.com/
GongJingUSST/OCCp16StatusPrediction).

Results

Clinical characteristics

Among the 141 examined patients with OPSCC, 63 patients 
were p16− and 78 patients were p16+. In the training 
cohort, 54 patients were p16− and 62 patients were p16+, 
and in the testing cohort, 9 patients were p16− and 16 

patients were p16+. There were no significant differences 
in the P16+ or P16− distribution between the training and 
testing cohorts (P>0.05). 

Compared with the p16+ patients, the p16− patients were 
older and more likely to have a history of heavy smoking 
consumption in both the training cohort and the testing 
cohort. The p16+ patients with OPSCC were more likely 
to have tonsillar but not nontonsillar lesions than were the 
p16− patients with OPSCC in both the training and testing 
cohorts. Due to the different staging principles for HPV-
positive and HPV-negative OPSCC, the chi-squared test 
was not performed to compare the differences in the TNM 
stage between the 2 groups. Moreover, the p16− patients 
tended to be of advanced nodal stage. No statistically 
significant differences were identified for sex or treatment 
method based on p16 status (P>0.05). Patient characteristics 
stratified by p16 status are shown in Table 1.

Radiomics models for P16 prediction

In total, 9 prediction models were built based on the 
training data set, as follows: a sole PT model, a sole LN 
model, and a PT-LN fusion model based on T2WI; a sole 
PT model, a sole LN model, and a PT-LN fusion model 
based on CE-T1WI; and a sole PT model, a sole LN 
model, and a PT-LN fusion model based on multisequence 
imaging (T2WI and CE-T1WI). In the T2WI-based 
training data set, the PT-LN fusion model yielded a 
statistically significant (P<0.05) better performance 
compared to the models based on solely PT or LN (0.91 
vs. 0.52/0.78, respectively). In the CE-T1WI data set, the 
AUC values of the PT, LN, and PT-LN fusion models were 
0.79, 0.77, and 0.74, respectively. No statistically significant 
differences were identified between these 3 models (P>0.05). 
The sole PT model based on multisequence imaging 

Figure 3 Workflow of the proposed radiomics models. CE, contrast-enhanced; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; 
PT, primary tumor; LN, lymph node; RFE, recursive feature elimination; SVM, support vector machine.
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outperformed the single CE-T1WI- and T2WI-based 
models (0.89 vs. 0.79/0.52, respectively) with statistical 
significance (P<0.05). Based on the LN features alone, the 
multisequence and single-sequence models yielded a similar 
classification performance (0.70 vs. 0.77/0.78, respectively) 
with no statistically significant differences. Finally, the PT-
LN fusion model based on multisequence imaging yielded 
a satisfactory classification performance with an AUC 
of 0.90 for the prediction of p16 expression. In terms of 
other evaluation metrics, including accuracy, sensitivity, 
specificity, PPV, NPV, and OR, the final fusion model 
showed better classification performance than did the other 
8 models. Table 2 and Figure 4A present the performance of 
the models in the training cohort.

The radiomics models based on the testing data set 
showed comparable performance in the training data set. 
The fusion models yielded better performance compared 
to models based on solely PT or LN (CE-T1WI: 0.80 vs. 
0.71/0.73; T2WI: 0.74 vs. 0.64/0.71). Models combining 
multisequences outperformed the single CE-T1WI 
and T2WI models (PT: 0.74 vs. 0.71/0.64; LN: 0.78 vs. 
0.73/0.71). Finally, the PT-LN fused model based on 
multisequence imaging yielded the best classification 
performance with the highest AUC value of 0.91 for the 
prediction of p16 expression. The differences between the 
final models and other models were significant (P<0.05). 
In terms of other evaluation metrics, including accuracy, 
sensitivity, specificity, PPV, NPV, and OR, the final fusion 
model also showed better classification performance 
compared to the other models. The F1 score and precision 
suggested that the prediction models in the testing cohort 
achieved a fine performance. Particularly, the PT-LN fused 
model based on multisequence imaging yielded the best 
classification performance with the highest precision of 0.92 
and a comparable F1 score of 0.83. Table 3 and Figure 4B 
present the performance of models in the testing cohort.

In the final fusion model based on multisequence 
radiomics features, the following 6 radiomics features 
were included: 1 CE-T1WI PT wavelet feature (LHH 
first-order kurtosis), 1 T2WI PT LoG feature (GLSZM 
size zone nonuniformity normalized (δ =10), 3 T2WI PT 
wavelet features (LHL GLSZM size zone nonuniformity 
normalized, LHH GLCM Id, and LHH GLSZM small 
area emphasis), and 1 T2WI LN wavelet feature (LLH 
GLDM dependence entropy). It can be seen that features 
based on the PT were critical to predicting the p16 status of 
OPSCC. Supplementary Table 1 lists the features included 
in each radiomics model.T
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The results of the comparison of pathology and imaging 
prediction in the optimal PT-LN fused model based on 
multisequence imaging are shown in Table 4. The total 
diagnostic accuracy of imaging prediction was 80.0%. The 
accuracy for detecting P16− was 88.9%, and the accuracy 
for detecting P16+ was 75.0%. There were significant 
differences between the P16− and P16+ groups (P=0.004).

Discussion

HPV-positive and HPV-negative OPSCC have different 
carcinogenic mechanisms, pathogeneses, and prognoses. In 
this study, we used machine learning classification methods 
to build a 6-feature-based radiomics model, which was 
validated as a significant predictor of p16 status in patients 
with OPSSCC. Compared with a sole PT or LN model or 

Table 2 Comparison of the model performance in terms of the different evaluation metrics in the training cohort

Models AUC 95% CI Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) OR

CE-T1WI-based

Sole PT 0.79±0.04 0.70–0.86 80.6 64.8 72.5 74.5 73.3 7.7

Sole LN 0.77±0.04 0.68–0.85 67.7 68.5 71.1 64.9 68.1 4.6

PT-LN fusion 0.74±0.05 0.64–0.82 64.5 68.5 70.2 62.7 66.4 3.96

T2WI-based

Sole PT 0.52±0.05 0.41–0.62 58.1 42.6 53.7 46.9 50.1 1.0

Sole LN 0.78±0.04 0.69–0.86 74.2 64.8 70.8 68.6 69.8 5.3

PT-LN fusion 0.91±0.03 0.85–0.95 85.4 83.3 85.4 83.3 84.5 29.4

Multisequences-based

Sole PT 0.89±0.03 0.82–0.94 83.9 74.1 78.8 80.0 79.3 14.9

Sole LN 0.70±0.05 0.55–0.85 67.7 50.0 60.9 57.4 59.4 2.1

PT-LN fusion 0.90±0.03 0.82–0.95 87.1 83.3 85.7 84.9 85.3 33.8

AUCs are presented as mean ± standard deviation. CE, contrast-enhanced; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; PT, 
primary tumor; LN, lymph node; AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive 
value; OR, odds ratio. 
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models based on single-sequence imaging, the final PT-
LN fusion model based on multisequence imaging had 
significantly superior predictive performance. 

In our study, the PT-LN fusion model based on 
multisequence imaging was able to distinguish HPV-
positive from HPV-negative patients. On routine imaging, 
HPV-posit ive and HPV-negative OPSCC exhibit 
different imaging characteristics. HPV-positive OPSCC 
is more likely to consist of enhanced tumors with well-
defined margins and cystic nodal metastases, whereas 
HPV-negative OPSCC is more often composed of 
tumors with poorly defined borders and invasion of the 
adjacent muscle (26). The distinct imaging entities may 
be explained by histopathology. The HPV-negative tumor 
exhibits an infiltrative growth pattern with a pronounced 

stromal desmoplastic reaction (27). The phenomenon of 
cystic nodal metastasis may result from the spontaneous 
degradation of keratin in HPV-positive tumors (28). 
However, these imaging characteristics are not very specific. 
Some HPV-negative tumors can also show intranodal 
cystic changes and unclear margins (6,26,28), so a more 
accurate method is needed to distinguish HPV-positive 
from HPV-negative OPSCC. In recent years, radiomics 
has been proposed as a potential tool for predicting HPV 
or p16 status. The imaging features based on radiomics can 
help explore the microscopic structural characteristics and 
heterogeneity of tumors better than can the conventional 
morphological characteristics (29,30). In our study, the 
radiomics features (LHH first-order kurtosis, GLSZM 
size zone non uniformity normalized, LHL GLSZM 

Table 3 Comparison of the model performance in terms of the different evaluation metrics in the testing cohort

Models AUC 95% CI Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) F1 score Precision OR

CE-T1WI-based

Sole PT 0.71±0.11 0.47–0.88 43.8 88.9 87.5 47.1 60.0 0.76 0.875 6.2

Sole LN 0.73±0.11 0.48–0.90 62.5 77.8 83.3 53.8 68.0 0.71 0.83 5.8

PT-LN fusion 0.80±0.10 0.55–0.94 62.5 77.8 83.3 53.8 68.0 0.82 0.83 5.8

T2WI-based

Sole PT 0.64±0.13 0.38–0.85 50.0 67.7 72.7 42.9 56.0 0.79 0.72 2.0

Sole LN 0.71±0.10 0.48–0.88 56.2 77.8 81.8 50.0 64.0 0.81 0.82 4.5

PT-LN fusion 0.74±0.10 0.51–0.95 56.2 66.7 75.0 46.2 60.0 0.85 0.85 2.6

Multisequence-based

Sole PT 0.74±0.12 0.46–0.91 75.0 55.6 75.0 55.6 68.0 0.81 0.78 3.8

Sole LN 0.78±0.10 0.55–0.75 87.5 66.7 82.3 75.0 80.0 0.84 0.82 14

PT-LN fusion 0.91±0.06 0.72–0.98 75.0 88.9 92.3 66.7 80.0 0.83 0.92 24

AUCs are presented as mean±standard deviation. CE, contrast-enhanced; PT, primary tumor; LN, lymph node; AUC, area under curve; CI, 
confidence interval; PPV, positive predictive value; NPV, negative predictive value; OR, odds ratio.

Table 4 Comparison of the pathological results and imaging prediction in the optimal PT-LN fused model based on multisequence imaging

Category
Imaging prediction

Total Statistical data
Wrong Right

Pathological results, n (%) χ2=9.420; P=0.004

P16− 1 (11.1) 8 (88.9) 9

P16+ 4 (25.0) 12 (75.0) 16

Total 5 20 25

PT, primary tumor; LN, lymph node. 
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size zone non uniformity normalized, LHH GLCM Id, 
LHH GLSZM small area emphasis, and LLH GLDM 
dependence entropy) involved in the final fusion model 
consistently reflected the uniformity and heterogeneity of 
the tumor. These imaging features exhibited less-prominent 
irregularities and more homogenous distribution in HPV-
positive tumors than in HPV-negative tumors.

Our study proved that the combination of multisequence 
radiomics features could improve the predictive performance 
compared with that of single-sequence features, which is 
consistent with previous radiomics studies (18-21,31). This 
finding suggests that the radiomics features extracted from 
each sequence contain complementary information needed 
for the prediction of p16 status, thus providing more 
valuable information and achieving increased performance 
when combined. Lesions on postcontrast imaging showed 
more obvious margins. Cystic changes and necrosis of the 
PT or LN appeared as high intensity on T2WI, which 
made these changes easier to identify. Therefore, the 
combination of CE-T1WI and T2WI may guarantee the 
more accurate recognition of lesion extent and intralesion 
intensity.

In the current study, PT-LN fusion radiomics models 
improved the classification performance compared with 
the use of PT or LN alone for the prediction of p16 status. 
Haider et al. (17) also suggested the potential benefit of 
combining tumoral and nodal radiomics features in the 
prediction of HPV status based on fludeoxyglucose-positron 
emission tomography (FDG-PET). Similarly, another study 
reported that the combined evaluation of dynamic contrast-
enhanced (DCE)- and diffusion-weighted imaging (DWI)-
derived parameters from both PTs and LNs could predict 
response to chemoradiation in squamous cell carcinomas 
of the head and neck, whereas each parameter alone could 
not predict the response to (24). Differences in PT- and 
LN-related imaging prognosticators reflect the different 
intrinsic biologic characteristics of the respective sites (5);  
therefore, the combination of PT and LN radiomics 
features can mutually complement the information in the 
respective prediction models.

Multiple studies have proven that radiomics can be 
applied to identify the HPV status of OPSCC based 
on CT (AUC =0.7–0.8, AUC =0.834) (16,32). Haider  
et al. (17) reported that PET-based radiomics signatures 
yielded a similar classification performance to CT-based 
models for the prediction of HPV status; however, models 
combining PET and CT features outperformed the single-
imaging modality model, with an AUC value of 0.78. 

However, our model produced results superior to these 
findings, which may be attributable to the better soft-tissue 
contrast of MRI in this anatomically challenging region. 
The margin of the primary tumor, intratumor necrosis, 
and cystic changes can be demonstrated more clearly on 
MRI. Bos et al. (15) extracted 77 radiomics features from 
CE-T1WI MRI to build a radiomics model predictive 
of HPV status (AUC =0.76). Our study yielded a higher 
performance (AUC =0.91), not only for the fusion of PT 
and LN but also for the combination of CE-T1WI and 
T2WI radiomics features, with both of these potentially 
adding more valuable information to the predictive models, 
as mentioned above. Two studies have also built radiomics 
models to predict HPV status based on multisequence 
MRI radiomics (33,34). However, unlike our study, both of 
these studies were performed in a single institution, and the 
predictive models were not validated by an external testing 
cohort. Therefore, the generalizability of these predictive 
models is not very satisfactory. Beyond just predicting P16 
status, the radiomics model has implications for providing 
a better understanding of the whole tumor histology in the 
living patient and has the potential to predict the treatment 
response, prognosis, and immune state noninvasively in 
further studies, potentially assisting oncologists with their 
clinical decision-making.

For model development and validation, there are 
some issues to be addressed. SVM consistently requires 
less computation and achieves good accuracy even in a 
small sample size. Because of the relatively small data set 
enrolled in our study, an overfitting problem due to the 
high-dimensionality data sets might have occurred in the 
machine learning algorithm. Additionally, other methods 
were used for model development, including logistic 
regression, random forest, etc., and the SVM was preferred 
over these other classification algorithms. Therefore, the 
SVM was more suitable for the current study. Moreover, the 
leave-one-out cross-validation (LOOCV) method, which 
is a special K-fold validation method, was used to train and 
test the classification models. By using LOOCV, the final 
fusion model achieved satisfactory performance in terms of 
AUC (0.92±0.03; 95% CI: 0.87–0.96), accuracy (85.34%), 
sensitivity (83.9%), specificity (87.0%), PPV (88.1%), NPV 
(82.5%), and OR (34.9), which were similar to the current 
results.

In this study, we not only fused the radiomics features 
from the PT and LN, but also combined CE-T1WI- 
and T2WI-derived features, all of which added valuable 
information to each other and improved the classification 
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performance of the predictive models. Moreover, our 
results, which were based on a multi-institutional cohort, 
confirmed the generalizability of the radiomics models and 
their potential to be used as a noninvasive biomarker for the 
molecular phenotyping of OPSCC. 

Despite the promising results, this study also had 
several limitations. First, our sample size was quite limited 
compared to previous CT-based studies. Second, the 
proportion of p16+ to p16− patients was imbalanced in 
the testing cohort, and thus more cases will be collected 
in future studies to eliminate the data imbalance. Third, 
we presume that additional improvement predicting HPV 
status may be achieved when combining radiomics with 
clinical characteristics; thus, the inclusion of demographic 
information should be collected for more in-depth research. 
Fourth, advanced MRI techniques, such as DCE and DWI, 
were not performed in this study, and the quantitative 
parameters derived from these sequences could be used 
to evaluate the blood supply and cell density of a tumor. 
Finally, the exclusion of patients with small tumor volumes 
limited the generalizability of the study since using MRI 
imaging to determine P16 status would be helpful for 
smaller tumors which are not amenable to biopsy and 
do not have a notable nodal component; therefore thin-
slice, high-resolution MRI scanning will be applied to 
demonstrate small tumors more clearly in further research.

In future research, a larger sample size from a greater 
number of institutions should be collected, and variable 
sequences with quantitative imaging metrics should be 
employed. Demographic information may be needed 
to build the clinical–radiomics combined model for the 
prediction of HPV status and prognosis in patients with 
OPSCC. 

Conclusions

In conclusion, this study found that in patients with 
OPSCC, the PT-LN fusion radiomics models improved the 
classification performance of PT or LN features alone for 
the prediction of p16 status. The radiomics models based 
on multisequence imaging outperformed single-sequence 
imaging models in predicting the p16 status. The PT-
LN fusion model based on multisequence MRI radiomics 
features could serve as a noninvasive method for reflecting 
the molecular information of OPSCC, potentially assisting 
oncologists with their clinical decision-making.
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