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Background: The aim of this study was to evaluate the impact of tumour region of interest (ROI) 
delineation method on mid-treatment 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-
PET) response prediction in mucosal head and neck squamous cell carcinoma during radiotherapy.
Methods: A total of 52 patients undergoing definitive radiotherapy with or without systemic therapy from 
two prospective imaging biomarker studies were analysed. FDG-PET was performed at baseline and during 
radiotherapy (week 3). Primary tumour was delineated using a fixed SUV 2.5 threshold (MTV2.5), relative 
threshold (MTV40%) and a gradient based segmentation method (PET Edge). PET parameters SUVmax, 
SUVmean, metabolic tumour volume (MTV) and total lesion glycolysis (TLG) were calculated using different 
ROI methods. Absolute and relative change (∆) in PET parameters were correlated to 2-year locoregional 
recurrence. Strength of correlation was tested using receiver operator characteristic analysis using area under 
the curve (AUC). Response was categorized using optimal cut-off (OC) values. Correlation and agreement 
between different ROI methods was determined using Bland-Altman analysis. 
Results: A significant difference in SUVmean, MTV and TLG values were noted between ROI delineation 
methods. When measuring relative change at week 3, a greater agreement was seen between PET Edge and 
MTV2.5 methods with average difference in ∆SUVmax, ∆SUVmean, ∆MTV and ∆TLG of 0.0%, 3.6%, 10.3% 
and 13.6% respectively. A total of 12 patients (22.2%) experienced locoregional recurrence. ∆MTV using 
PET Edge was the best predictor of locoregional recurrence (AUC =0.761, 95% CI: 0.573–0.948, P=0.001; 
OC ∆>50%). The corresponding 2-year locoregional recurrence rate was 7% vs. 35%, P=0.001.
Conclusions: Our findings suggest that it is preferable to use gradient based method to assess volumetric 
tumour response during radiotherapy and offers advantage in predicting treatment outcomes compared with 
threshold-based methods. This finding requires further validation and can assist in future response-adaptive 
clinical trials. 
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Introduction

Definitive radiotherapy is a standard treatment for mucosal 
head and neck squamous cell carcinoma (HNSCC). 
Following treatment, up to 15–50% of patients still 
experience locoregional recurrence within the first 2 years 
(1,2). The treatment is also associated with significant 
toxicities impacting on quality of life. Hence, there is a need 
for personalised response adaptation by escalation or de-
escalation of treatment based on risk of recurrence. 

Studies have attempted to prognosticate treatment response 
based on anatomical changes in tumour volumes measured 
using mid-treatment computed tomography (CT) scans (3). 
Changes in functional imaging has been shown to precede 
anatomical changes in the tumour during treatment (4).  
18F-f luoro-2-deoxy-D-glucose  pos i tron emiss ion 
tomography (FDG-PET) provides an non-invasive method 
to characterise tumour biology (5). Several studies have 
shown FDG-PET performed during radiotherapy can be 
used as an early treatment response biomarker to predict 
recurrence in head and neck squamous cell carcinoma (6-9).  
These studies show relative change in volumetric FDG-
PET parameters such as metabolic tumour volume (MTV) 
and total lesion glycolysis (TLG) to be optimal measures 
for response prediction (6,8,9). However, a critical factor 
on the derived FDG-PET parameters is the dependence 
on tumour region of interest (ROI) delineation method 
employed (5,10-15). Currently, there is considerable 
heterogeneity and a lack of consensus in the use of ROI 
delineation methodology in different published studies 
in head and neck squamous cell carcinoma (16,17). Fixed 
threshold PET metabolic volume segmentation method is 
the most commonly used method to derive PET metabolic 
volumes to provide prognostic biomarkers and to predict 
treatment outcomes in pre-treatment setting for head and 
neck cancer. In a meta-analysis of the prognostic value of 
pre-therapeutic MTV and TLG in head and neck cancer, 
nine of 13 studies used a fixed threshold, and eight of those 
used SUV cut off of 2.5 (8). They found a higher correlation 

to clinical outcomes using SUV cut off value of 2.5 (HR: 3.2 
vs. 2.8). 

Each method i s  expected to  provide  di f ferent 
quantitative measures depending on tumour size, shape, 
heterogeneity, tumour avidity and background FDG-PET 
avidity (10,15,18). Mid-treatment FDG-PET assessment 
during radiotherapy is further complicated by influence 
of treatment related inflammation and changing tumour 
morphology especially in complex anatomical head and 
neck regions (17). The data is much more limited to support 
the optimal PET segmentation method to be employed 
during radiotherapy to predict treatment outcomes, with 
most using threshold method (fixed, relative, background or 
adaptive) and/or qualitative (16). The data is lacking on the 
comparative effectiveness with gradient based segmentation 
method, despite its potential advantage over the threshold-
based method in mid-treatment setting where the tumour 
tends to be smaller and with lower metabolic activity. 

There are currently no studies that have explored the 
influence of different tumour ROI delineation methods 
in mid-treatment response assessment in head and neck 
squamous cell carcinoma. The additional value of mid-
treatment FDG-PET over anatomical tumour volume 
change has also not been shown in this patient population.

Our hypothesis is that it is feasible to use gradient based 
method to assess metabolic PET tumour response during 
radiotherapy and choice of ROI delineation method can 
result in significantly different FDG-PET parameters 
extracted from baseline and mid-treatment FDG-PET 
imaging. We aim to measure the agreement in FDG-PET 
parameters extracted from baseline and week 3 FDG-PET 
using different ROI delineation methodology. We also aim 
to find the optimal tumour ROI delineation method for 
treatment response prediction in HNSCC by correlating 
resulting quantitative FDG-PET parameters to locoregional 
clinical outcomes. We present the following article in 
accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-22-798/rc).
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Methods

Study design

Patients with newly diagnosed, biopsy-proven, non-
metastatic mucosal head and neck squamous cell carcinoma 
treated with definitive radiotherapy with or without 
concurrent systemic therapy from two separate prospective 

quantitative imaging biomarker studies were evaluated 
(Figure 1) (19,20). Patients less than 18 years old, with 
previous radiotherapy in the head and neck region or 
contraindications to MRI or FDG-PET were excluded. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the South Western Sydney Local Health District research 

Patient population: mucosal head and neck malignancy
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Figure 1 Flow diagram. FDG-PET, 18F-fluoro-2-deoxy-D-glucose positron emission tomography; CT, computed tomography; MTV, 
metabolic tumour volume; GTV, gross tumour volume; TLG, total lesion glycolysis; ROI, region of interest; SUV, standardized uptake 
value; AUC, area under the curve.
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ethics committee and informed consent was taken from all 
individual participants. Trial ID ACTRN12616000534482, 
ANZCTR. 

Al l  pat ients  were evaluated and reviewed by a 
multidisciplinary team consisting of radiation oncologists, 
medical oncologists, surgeons and radiologists. Patients 
were treated using an IMRT simultaneous integrated boost 
technique using daily image guidance over 35 fractions. 
Patients were treated at two tertiary hospitals from 2014 to 
2019. Radiotherapy treatment volumes were defined using 
latest consensus international guidelines and underwent a 
stringent peer review process (21). All patients underwent 
radiotherapy to the primary site and bilateral neck.

All patients underwent FDG-PET before (week 0) 
and during (week 3) radiotherapy. Week 3 time-point 
was chosen based on previous published series from our 
institution and other centres (6,22-24). Week 3 time 
point is also early enough during radiotherapy to allow 
sufficient time for treatment adaptation in future clinical 
trials. Treatment response was evaluated with post-
treatment FDG-PET and clinical examination including 
nasoendoscopy. Recurrences were confirmed histologically 
or via imaging following discussion at a multidisciplinary 
head and neck meeting. 

The primary outcome for the study was 2-year 
locoregional recurrence measured from time of diagnosis. 
A 2-year time point was chosen because the vast majority of 
locoregional recurrences occur within this period (25). 

PET/CT acquisition 

PET studies were acquired in radiotherapy treatment 
position on a GE DiscoveryTM MI 5-ring digital positron 
emission tomography (PET)-CT (GE Healthcare, 
Waukesha, MI). Patients received 2.2 MBq/kg of 18F-FDG 
after at least 4 h of fasting. The average blood sugar level 
was 5.7±1.2 mmol/L (range, 3.3–9.6 mmol/L). The staging 
and all sequential posttreatment scans were performed 
on the same scanner with the same acquisition and 
reconstruction protocols. The PET studies were acquired 
in three-dimensional (3D) mode with the patient lying on 
a radiotherapy flat-bed insert for a total acquisition time 
of 1.5–2.5 min per bed position adjusted according to the 
patient weight, from vertex to proximal femora at about 
1-hour post injection. Transmission scans and attenuation 
corrections were obtained using 128-slice GE CT, using 
helical mode without the use of a contrast medium. The 
PET images were reconstructed using a GE VUE Point FX 

(Time of Flight) algorithm into a 256×256 matrix size with 
a slice thickness of 3.75 to 4.0 mm. The PET images were 
reconstructed using GE VUE Point FX (Time of Flight) 
algorithm into a 256×256 matrix size with a slice thickness of 
3.75 to 4.0 mm. CT images were acquired at 3.75 to 5 mm 
slice thickness and reconstructed to a transaxial matrix size of 
512×512. The current (30–40 mAs) and voltage (120–140 kV) 
were varied according to the patient weight. The baseline and 
mid-treatment scans were performed on the same scanner 
with the same acquisition and reconstruction protocols.

Image analysis

Primary region of interest (ROI) was the primary tumour. 
All PET images were viewed and had ROIs delineated using 
MIM Software (MIM Software Inc.; Beachwood, OH). 

The primary tumours were volumetrically delineated 
by a radiation oncologist (YT) in consensus with a nuclear 
medicine physician (PL) on FDG-PET imaging and 
another radiation oncologist (ML) on CT imaging at 
baseline and week 3 mid-treatment who were blinded to 
clinical outcomes.

To explore the effect of various delineation methods on 
metabolic PET parameters, a tumour region of interest 
(ROI) was delineated using three commonly utilized semi-
automated methods; a fixed SUV threshold, a relative 
threshold and a gradient based method (6,7,12,13). The 
fixed SUV threshold involved applying an isocontour of 
SUV =2.5 (‘MTV2.5’), this cut-off was chosen based on 
previous published literature (6,8,12,13,22). MTV2.5 was 
delineated using SUV threshold of 2.5 as the lowest limit 
of the segmentation criteria within a spherical volume of 
interest containing the tumor. The spherical volume was 
chosen to visually include the entire tumour and manual 
adjustments were only rarely allowed to exclude obvious 
non-involved regions of FDG-PET uptake. For relative 
threshold method, a 40% of maximum standardized uptake 
value (‘MTV40%’) was chosen based on a large prospective 
study and multiple previous clinical series (7,13,14,18,26-29).  
MTV40% delineated all voxels with SUV values above 
or equal to 40% of the maximum SUV within the same 
spherical volume of interest containing the tumor. A 
semi-automatic gradient based method involved applying 
a ‘PET Edge’ tool of the MIM software, this has been 
shown to closely approximate manual segmentation and 
pathological tumour volume (30,31). PET Edge gradient 
method calculates spatial derivatives along tumor radii 
then defines the tumor edge based on derivative levels and 
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continuity of the tumor edge (32). PET Edge method was 
used as described previously by Werner-Wasik et al. (33). 
In brief, the method involved the clinician selecting the 
image slice where the tumour appears the largest, then 
placing a starting point near the center of the tumour. The 
clinician then drags out from the center of the lesion; spatial 
gradients are calculated along each axis interactively and the 
length of an axis is restricted when a large spatial gradient 
is calculated along that axis approximating the boundaries 
of the tumour. Following release of the mouse button the 
edges of the structure are automatically calculated and 
outlined volumetrically. Tumour volume was also manually 
delineated on CT images (CT-GTV) to compare the 

change in anatomical CT volumes to FDG-PET tumour 
volumes. An example of different delineated ROIs are 
provided in Figure 2. 

DICOM images containing ROIs were subsequently 
analysed using open-source PyRadiomics software (v2.2.0) (34).  
Four metabolic parameters; the maximum SUV uptake 
(SUVmax), and volumetric parameters mean SUV uptake 
(SUVmean), MTV and tumour lesion glycolysis (TLG 
= SUVmean × MTV) were measured for all three ROI 
delineation methods at both time points. 

Percentage change (∆) in FDG-PET imaging parameters 
from baseline was calculated, defined as ∆ = [(week 3 − week 
0)/week 0] × 100%. 

A Baseline

B Week 3

Figure 2 CT tumour (GTV) and FDG-PET MTV delineated using different region-of-interest segmentation methods; CT in red, PET 
Edge in yellow, MTV2.5 in pink, MTV40% in blue. (A) Baseline; (B) week 3. Resulting percentage change in tumour volumes for this 
patient at week 3 were −25.7% (CT), −76.2% (PET Edge), −41.9% (MTV2.5), and −25.0% (MTV40%). CT, computed tomography; FDG-
PET, 18F-fluoro-2-deoxy-D-glucose positron emission tomography; MTV, metabolic tumour volume; GTV, gross tumour volume. 
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Statistical analysis

Due to non-normal data distribution, PET parameter values 
from different ROI delineation methods were compared 
using the Wilcoxon signed-rank test. 

Correlation between the delineation methods for 
absolute PET parameter values at baseline and relative 
change at week 3 were estimated using Pearson coefficients 
test. The level of agreement between different ROI 
delineation methods was determined using Bland-Altman 
analysis.

The absolute value and change (∆) in parameters were 
compared to locoregional recurrence using Mann-Whitney 
U test. For parameters with predictive value, receiver 
operator characteristic (ROC) analysis was performed 
using area under the curve (AUC) as an index of accuracy 
to differentiate between multiple predictive parameters. 
Optimal cut-off values for analysis were derived from the 
ROC curves aiming for best sensitivity and specificity by 
applying the Youden index (35). Locoregional recurrence-
free survival (LRFS) curves were estimated using Kaplan-
Meier analysis and compared using the log-rank (Mantel-
Cox) test.

The data were analyzed using SPSS statistical software 
(Version 24.0; IBM Corp, Armonk, NY, USA). Statistical 
significance was considered as P<0.05.

Results

A total of 54 patients underwent week 0 pre-treatment 
FDG-PET. Two patients did not undergo week 3 mid-
treatment FDG-PET resulting in 52 patients who were 
available for subsequent analysis. Patient and tumour details 
are summarised in Table 1. The median follow up was  
31.2 months (range, 4–68 months). A total of 12 patients 
(22.2%) experienced locoregional recurrence.

A significant difference in week 0 and relative change 
in SUVmean, MTV and TLG values were noted between 
different ROI delineation methods (Wilcoxon signed rank 
test, P<0.05). The largest week 0 MTVs and TLGs were 
obtained using MTV2.5 method (mean: 17.9 mL, 106.5 g),  
compared to PET Edge (mean: 10.5 mL, 79.9 g) and 
MTV40% (mean: 7.8 mL, 64.9 g). The largest change in 
∆MTV and ∆TLG at week 3 was noted using the PET 
Edge method, −47.9% and −58.0% respectively. Change in 
CT-GTV volume at week 3 was only −25.3% in comparison 
(Table 2). Box plots of PET parameters at week 0 and their 
relative change for the three ROI delineation methods are 

shown in Figure 3.
For week 0 FDG-PET parameters, good or excellent 

correlation was found between delineation methods for 
SUVmax, SUVmean, MTV and TLG (r>0.81, range: 0.87–1.00, 
P<0.05; Figure S1). When measuring agreement for FDG-
PET parameter values at week 0, a greater agreement 
was seen between PET Edge and MTV40% methods  
(Figure S2). On average, the difference in week 0 SUVmax, 
SUVmean, MTV and TLG values measured using PET Edge 
and MTV40% methods were 0.0%, 2.9%, 2.2% and 1.2% 
respectively. 

For relative change (∆) in FDG-PET parameters at week 3,  
good correlation was found for ∆SUVmean (r>0.89, range: 
0.89–0.94, P<0.05; Figure S1). Only moderate to poor 
correlation was noted for ∆MTV and ∆TLG between 
different ROI delineation methods (r<0.68, range: 0.17–
0.68, P<0.05). When measuring agreement for relative 
change in FDG-PET parameter values at week 3, a greater 
agreement was seen between PET Edge and MTV2.5 
methods (Figure S2). On average, the difference in 
∆SUVmax, ∆SUVmean, ∆MTV, ∆TLG values measured using 
PET Edge and MTV2.5 methods were 0.0%, 3.6%, 10.3% 
and 13.6% respectively.

Change in CT-GTV did not correlate to locoregional 
recurrence. No baseline FDG-PET parameters correlated 
to locoregional recurrence. Only relative change (∆) in 
volumetric FDG-PET parameters, MTV and closely 
related TLG measured using PET Edge and MTV2.5 
methods correlated to locoregional recurrence (Table 3). 
Relative change (∆) in FDG-PET parameters had a stronger 
correlation to locoregional recurrence than absolute values. 

Relative change in MTV at week 3 (∆MTV) measured 
using PET Edge was the best predictor of locoregional 
recurrence (AUC =0.761, 95% CI: 0.573–0.948, P=0.001; 
Figure 4). In patients with locoregional recurrence, a 
significant difference in ∆MTV measured using PET 
Edge was noted compared to those without locoregional 
recurrence (−55.4% vs. −19.8%, P=0.008). Optimal cut-
off of ∆MTV calculated using PET Edge for predicting 
local recurrence was <50.4% drop in MTV; resulting in 
sensitivity of 82% (9/11; 95% CI: 74–89%), specificity of 
66% (27/41; 95% CI: 62–69%) and accuracy of 69% (36/52; 
95% CI: 66–72%). A statistically significant difference was 
found on Kaplan-Meier survival analysis based on primary 
tumour ∆MTV optimal cut-off value. The corresponding 
2-year locoregional recurrence rate was 7% vs. 35%, 
P=0.001 (log rank). Comparison of tumour volumes 
measured using three FDG-PET ROI delineation methods 

https://cdn.amegroups.cn/static/public/QIMS-22-798-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-798-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-798-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-798-Supplementary.pdf
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Table 1 Patient demographics

Characteristics Patients (n=52) Nil LRR (n=40)  LRR (n=12) P value

Age at diagnosis (years) 62±9.4 61±9.9 66±6.4 0.038

Gender 0.487

Male 48 [89] 38 [79] 10 [21]

Female 6 [11] 4 [67] 2 [33]

Smoker 0.934

No 14 [26] 11 [79] 3 [21]

Yes 40 [74] 31 [78] 9 [23]

Alcohol intake 0.327

Nil 13 [24] 11 [85] 2 [15]

<1 SD/day 16 [30] 11 [69] 5 [31]

1–3 SD/day 7 [13] 7 [100] 0 [0]

>3 SD/day 11 [20] 7 [64] 4 [36]

Ex-heavy (3 SD/day) 7 [13] 6 [86] 1 [14]

Primary tumour site 0.086

Tonsil 19 [35] 16 [84] 3 [16]

Base of tongue 14 [26] 13 [93] 1 [7]

Soft palate 4 [7] 4 [100] 0 [0]

PPW 4 [7] 3 [75] 1 [25]

Larynx 6 [11] 3 [50] 3 [50]

Hypopharynx 7 [13] 3 [43] 4 [57]

TNM stage 0.861

Stage 2 6 [11] 5 [83] 1 [17]

Stage 3 13 [24] 9 [69] 4 [31]

Stage 4a 31 [57] 25 [81] 6 [19]

Stage 4b 4 [7] 3 [75] 1 [25]

T stage 0.558

T1 4 [7] 3 [75] 1 [25]

T2 22 [41] 19 [86] 3 [14]

T3 23 [43] 17 [74] 6 [26]

T4 5 [9] 3 [60] 2 [40]

Grade 0.037

Well differentiated 2 [4] 1 [50] 1 [50]

Mod differentiated 9 [17] 4 [44] 5 [56]

Poor differentiated 18 [33] 15 [83] 3 [17]

Unknown 25 [46] 22 [88] 3 [12]

Table 1 (continued)
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and CT (CT-GTV) stratified by locoregional recurrence 
status are shown in Figure 5.  

Discussion

Our study is the first to explore the impact of ROI 
delineation method in mid-treatment FDG-PET response 
prediction in HNSCC. We identified PET Edge, a gradient 
based method performed best for mid-treatment response 
assessment in our patient population. Our data suggests that 
change in MTV measured at week 3 is a better predictor 
for treatment response compared to other PET derived 
parameters or CT based tumour volume. We demonstrated 
that impact of different ROI methods on extracted features 
were magnified when utilising mid-treatment imaging. Our 
results aid in the design and analysis of future FDG-PET 
guided response-adaptive radiotherapy clinical trials in 
HNSCC.

Patients in our study had their primary tumour delineated 
at baseline and week 3 mid-treatment using three commonly 
utilised semi-automated ROI delineation methods which 
have previously shown to be reproducible and with predictive 
capability in HNSCC (6,22,23). Semi-automated methods 

have the advantage of improving interobserver variability 
and reduce time required for delineation. However, each 
method has individual limitations depending on tumour size, 
uptake, tumour heterogeneity and background FDG uptake 
dependent on tumour site. 

Our results are consistent with previous studies utilising 
baseline FDG-PET that have shown significant differences 
in metabolic PET parameters extracted from different 
ROI delineation methods (10,14). We found that MTV 
and TLG values were largest using MTV2.5 method and 
smallest using MTV40% method. However, only limited 
studies have measured the level of agreement of metabolic 
PET parameters values between the different ROI methods 
on baseline imaging in HNSCC (12,14). We found that 
on baseline imaging good agreement was found only 
between PET Edge and MTV40% method, with a mean 
% bias of <3%. These results are consistent with study 
by Guezennec et al., who analysed 43 HNSCC tumour 
MTV on baseline FDG-PET using three ROI delineation 
methods including PET Edge and MTV40%. They also 
found that MTV volumes were larger using PET Edge 
method with reasonable agreement between PET Edge and 
MTV40% derived MTV volumes (14). Head and mucosal 

Table 1 (continued)

Characteristics Patients (n=52) Nil LRR (n=40)  LRR (n=12) P value

P16 status 0.693

Negative 6 [11] 5 [83] 1 [17]

Positive 20 [37] 17 [85] 3 [15]

Unknown/NA 28 [52] 20 [71] 8 [29]

Continuous variables are presented in mean ± standard deviation and compared using Mann-Whitney U test. Categorical data are presented 
as numbers [%] and compared using Chi-square (χ2) test. LRR, locoregional recurrence; PPW, posterior pharyngeal wall; N/A, not applicable. 

Table 2 Mean value and standard deviation of FDG-PET parameters at baseline and relative change at week 3 based on three region-of-interest 
delineation methods (PET Edge, MTV2.5, MTV40%)

Delineation 
method

Baseline Change at week 3

SUVmax SUVmean MTV TLG ∆SUVmax ∆SUVmean ∆MTV ∆TLG

PET Edge 13.06±4.80 7.13±2.19 10.53±11.64 79.86±92.20 −31.8%±25% −20.6%±27% −47.9%±35% −58.0%±34%

MTV2.5 13.06±4.80 5.30±1.33 17.86±14.22 106.49±109.60 −31.8%±25% −16.9%±20% −37.5%±50% −44.4%±55%

MTV40% 13.06±4.80 7.56±2.96 7.83±6.88 64.93±70.86 −31.6%±26% −30.4%±25% −2.9%±52% −29.3%±41%

CT GTV volume – – 14.57±12.55 – – – −25.3%±20% –

Data are presented in mean ± standard deviation; ∆ parameter = (week 3 − baseline)/baseline × 100%. MTV, metabolic tumour volume; 
TLG, total lesion glycolysis; GTV, gross tumour volume; FDG-PET, 18F-fluoro-2-deoxy-D-glucose positron emission tomography. 
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Figure 3 Box plots of FDG-PET parameters at week 0 and relative change at week 3 based on three region-of-interest delineation 
methodology (PET Edge, MTV40%, MTV2.5) and CT tumour volume. FDG-PET, 18F-fluoro-2-deoxy-D-glucose positron emission 
tomography; MTV, metabolic tumour volume; CT, computed tomography; TLG, total lesion glycolysis. 

sites have a background level of low grade FDG uptake that 
can overestimate the true primary tumour size when using 
absolute SUV measure such as MTV2.5, hence resulting in 
poor agreement with other methods (13). 

Tumour delineation on mid-treatment FDG-PET 
imaging is further complicated by inflammation and 
reducing tumour uptake as a result of radiotherapy 
response. There are currently no studies that have 

measured the impact of different ROI delineation method 
on extracted parameters from mid-treatment imaging in 
HNSCC. We found the impact of ROI delineation method 
were amplified when measuring change in metabolic PET 
parameters as evidenced by worse agreement in relative 
change in values compared to baseline values. Even though 
the tumour volume calculated by MTV2.5 were consistently 
larger then PET Edge on mid-treatment imaging, the 
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Table 3 Comparison of primary tumour PET parameters measured using different delineation methods (PET Edge, MTV2.5, MTV40%) and 
CT tumour volumes between patient with locoregional recurrence vs. nil LRR

Timepoint Parameter Nil LRR (mean ± SD) LRR (mean ± SD) P value* ROC (AUC)

PET Edge 

Week 0 SUVmax 12.6±4.0 14.7±6.8 0.261

SUVmean 7.0±2.1 7.5±2.5 0.270

MTV 10.0±11.9 12.4±10.9 0.466

TLG 71.3±87.2 110.0±130.0 0.492

Change at week 3 (%) ∆SUVmax −34.5%±23.2% −21.7%±31.5% 0.155

∆SUVmean −22.1%±23.1% −14.8%±36.8% 0.553

∆MTV −55.4%±29.7% −19.8%±41.8% 0.008† 0.761

∆TLG −64.9%±29.7% −32.1%±39.8% 0.010† 0.756

MTV2.5 

Week 0 SUVmax 12.6±4.0 14.7±6.8 0.261

SUVmean 5.2±1.1 5.7±1.8 0.298

MTV 17.2±13.8 20.3±16.1 0.693

TLG 97.1±95.1 139.2±150.6 0.533

Change at week 3 (%) ∆SUVmax −34.5%±23.2% −21.7%±31.5% 0.155

∆SUVmean −17.7%±18.6% −13.9%±25.0% 0.388

∆MTV −48.0%±24.6% 1.8%±89.7% 0.038† 0.705

∆TLG −55.8%±26.1% −1.6%±102.2% 0.043† 0.701

MTV40% 

Week 0 SUVmax 12.6±4.0 14.7±6.8 0.261

SUVmean 7.3±2.6 8.5±3.9 0.289

MTV 7.8±7.3 8.0±5.6 0.787

TLG 60.0±66.0 82.2±86.7 0.533

Change at week 3 (%) ∆SUVmax −34.5%±23.2% −21.7%±31.5% 0.161

∆SUVmean −32.8%±22.2% −21.5%±33.9% 0.222

∆MTV 4.0%±57.0% −1.1%±34.4% 0.797

∆TLG −32.7%±41.2% −19.2%±41.3% 0.175

CT

Week 0 GTV 13.9±11.8 18.4±15.8 0.519

Change (%) ∆GTV −28.1%±18.2% −14.9%±25.3% 0.071

*, parameters compared to locoregional recurrence status using Mann-Whitney U test, ∆ parameter = (week 3 − week 0)/week 0 × 100%. 
†, significant (P<0.05), Mann-Whitney U test. Units: SUVmax (g/mL), SUVmean (g/mL), MTV (mL), TLG (g), GTV (mL). ROC, receiver operator 
characteristics; AUC, area under the curve; MTV, metabolic tumour volume; TLG, total lesion glycolysis; GTV, gross tumour volume; LRR, 
nil locoregional recurrence. 
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relative change from baseline were moderately similar. 
Hence, only a moderate agreement in change in metabolic 
PET parameters between PET Edge and MTV2.5 method 
was found, with a mean % bias of <15%. This is likely 
explained by a limitation of the MTV40% method on the 
absolute value of SUVmax from which it is derived. In 

patients with good treatment response, if week 3 tumour 
SUVmax approaches background uptake of irradiated mucosa 
the true tumour volume can be vastly overestimated using 
the MTV40% method. This is consistent with a small 
study containing 10 patients by Edet-Sanson et al., which 
measured the influence of different delineation methods 
including MTV40%, manual delineation and ‘adaptive 
threshold’ method on calculated tumour volume (MTV) 
from baseline and weekly mid-treatment FDG-PET in non-
small cell lung cancer (27). Using extensive imaging during 
treatment, they were able to show that MTV calculated 
using different delineation methods magnified as treatment 
progressed. They found that MTV40% delineation method 
was not useful in delineating tumour beyond week 1 mid-
treatment based on visual interpretation of the volume due 
to background treatment related inflammation (27). The 
study by Edet-Sanson et al. did not perform a gradient 
based method for comparison and they did not correlate 
their findings to treatment outcome for its value in response 
prediction.

Currently the optimal ROI method for tumour 
delineation in HNSCC is unknown (17,36). Studies that 
have utilised mid-treatment FDG-PET changes for 
prediction of clinical outcomes have used varying ROI 
delineation methodology resulting in differing predictive 
parameters (6,22,23,37). We found that change in FDG-
PET parameters (∆MTV and ∆TLG) at week 3 during 
radiotherapy measured using PET Edge and MTV2.5 
predicted for clinical response. Based on our data, change in 
MTV (∆MTV) measured using PET Edge had the strongest 
correlation to locoregional tumour control. Based on our 
data, a greater percentage decrease in MTV (∆>50.4%) was 
highly predictive of tumour control. Our results confirm 
findings from previous studies that changes in FDG-PET 
metabolic parameters are better treatment response markers 
compared to absolute values (22,23). Studies by Min et al.  
and Pollom et al. have shown that ∆TLG from mid-
treatment FDG-PET can predict clinical outcomes (23). 
The studies utilised differing methodologies to delineate 
the MTV and hence limits direct comparison. In our study, 
absolute or change in SUVmax and SUVmean did not correlate 
to clinical outcome, this is consistent with previous 
studies (6,23). No FDG-PET parameters measured using 
MTV40% correlated to clinical outcome. It is likely that 
gradient based method outperformed other methods in our 
population because it was more accurate at differentiating 
tumour margins from changes to surrounding inflamed 
tissue during radiotherapy, hence has higher correlation 
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Figure 4 Receiver operator characteristic curves for change in 
MTV at week 3 measured using different region-of-interest 
delineation methods (PET Edge, MTV2.5, MTV40%) when 
correlated to locoregional recurrence at 2 years. Strongest 
correlation was shown for change in MTV measured using PET 
Edge method (AUC =0.761). MTV, metabolic tumour volume; 
PET, positron emission tomography; AUC, area under the curve. 

Figure 5 Relative change in tumour volume at week 3 derived on 
FDG-PET using three region-of-interest delineation methods 
(PET Edge, MTV2.5, MTV40%) and CT (CT-GTV) stratified 
by locoregional recurrence status. Figure showing the significant 
difference in volume when measured using PET Edge and 
MTV2.5. FDG-PET, 18F-fluoro-2-deoxy-D-glucose positron 
emission tomography; GTV, gross tumour volume; MTV, 
metabolic tumour volume. 
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to clinical outcomes (38). To date, this is the first study in 
HNSCC that has attempted to identify the optimal ROI 
delineation method for mid-treatment response assessment.

When comparing the tumour volume changes during 
treatment on FDG-PET and CT; we found greater 
reduction in tumour volume measured using PET Edge 
method (−48%) and MTV2.5 (−38%), compared to CT-
GTV (−25%). Therefore, our results confirm findings 
from previous studies that show that metabolic changes on 
FDG-PET precede anatomical changes measured on CT 
(39,40). We also found that anatomical CT based primary 
tumour volume changes did not correlate to locoregional 
recurrence. Study by Kabarriti et al. measured CT based 
primary and nodal volumes at week 3 during radiotherapy in 
96 oropharyngeal cancer patients (3). They found a similar 
reduction in CT based tumour volume (19%) to our study. 
However, they found that a greater than 19% reduction 
in total tumour volume was an independent predictor for 
locoregional recurrence. The differing results could be due 
to larger number of included patients in their study and 
inclusion of nodal tumour volume measurements. A potential 
limitation of using CT based imaging biomarkers it the low 
reproducibility due to significant inter-observer variability in 
manual target delineation in a complex anatomic site of head 
and neck malignancies. Due to treatment related changes this 
variability has been shown to further increase when utilising 
mid-treatment CT images (41). Semi-automated PET 
based tumour delineation are reproducible and have greater 
clinically applicability as an imaging biomarker in future 
response-adaptive clinical trials.

Strengths of our study include the number of patients 
and reproducible methodology employed for response 
assessment. Patients in our study were prospectively 
recruited, underwent standardised imaging protocol and 
had consensus based ROI delineation. We also correlated 
CT and FDG-PET based tumour volumes to locoregional 
clinical outcomes which remains a gold-standard for 
response assessment. There are a few limitations of our 
study. Ours was a single institutional study with serial 
imaging undertaken on the same PET machine. Cross 
facility standardisation of SUV values is required to translate 
and validate our results in prospective multicentre trials. 
The heterogeneities can be minimised through phantom 
calibrations, but inherent limitations remain taking into 
account different PET scanners with different sensitivities 
and blurred edge due to partial volume effects, acquisition 
and reconstruction protocols. We believe that parameters 
measuring relative change from baseline using serial PET 

imaging if done on the same PET scanner provides auto-
normalisation of measurements compared to using a single 
static value. In this respect, the use of relative reduction 
as treatment response criteria would facilitate more 
reproducible, readily accessible and interpretable predictive 
imaging biomarkers to facilitate future multicentre trials 
for image guided adaptive therapy. Studies also indicate 
the importance of timing of mid-treatment imaging on 
extracted imaging parameters and hence extrapolation of 
our results to other imaging timepoints should be done 
with caution (11). Another limitation of the gradient 
based method used in this study is that it is only available 
within the MIM Maestro® software. Results from gradient 
based method used in this study should not be generalized 
to other gradient based methods without additional 
comparison. We have also not compared our results with 
less commonly utilised methods for tumour delineation 
such as ‘background-related’ threshold and manual PET 
contouring methods due to the significant inter-observer 
variability in implementation in a complex anatomic site 
such as head and neck.

Conclusions

Our study highlights the critical importance of ROI 
delineation method choice in mid-treatment response 
assessment. Our findings suggest that it is feasible to use 
gradient based method to assess metabolic PET tumour 
response during radiotherapy and offers advantage in 
predicting treatment outcomes compared with threshold-
based methods. 
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Supplementary

Figure S1 Scatter plot and corresponding Pearson correlation coefficient for PET parameter values (SUVmax, SUVmean, MTV, TLG) 
between three ROI delineation methods (PET Edge, MTV2.5, MTV40%) at week 0 (A) and change at week 3 (B). 



© Quantitative Imaging in Medicine and Surgery. All rights reserved. https://dx.doi.org/10.21037/qims-22-798

Figure S2 Bland Altman plots of difference in PET parameter values (SUVmax, SUVmean, MTV, TLG) between ROI delineation methods 
(PET Edge vs. MTV2.5; PET Edge vs. MTV40%; MTV2.5 vs. MTV40%) at week 0 (A) and change at week 3 (B). 


