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Background: Methods based on the combination of transformer and convolutional neural networks 
(CNNs) have achieved impressive results in the field of medical image segmentation. However, most of the 
recently proposed combination segmentation approaches simply treat transformers as auxiliary modules 
which help to extract long-range information and encode global context into convolutional representations, 
and there is a lack of investigation on how to optimally combine self-attention with convolution.
Methods: We designed a novel transformer block (MRFormer) that combines a multi-head self-attention 
layer and a residual depthwise convolutional block as the basic unit to deeply integrate both long-range 
and local spatial information. The MRFormer block was embedded between the encoder and decoder in 
U-Net at the last two layers. This framework (UMRFormer-Net) was applied to the segmentation of three-
dimensional (3D) pancreas, and its ability to effectively capture the characteristic contextual information of 
the pancreas and surrounding tissues was investigated.
Results: Experimental results show that the proposed UMRFormer-Net achieved accuracy in pancreas 
segmentation that was comparable or superior to that of existing state-of-the-art 3D methods in both the 
Clinical Proteomic Tumor Analysis Consortium Pancreatic Ductal Adenocarcinoma (CPTAC-PDA) dataset 
and the public Medical Segmentation Decathlon dataset (self-division). UMRFormer-Net statistically 
significantly outperformed existing transformer-related methods and state-of-the-art 3D methods (P<0.05, 
P<0.01, or P<0.001), with a higher Dice coefficient (85.54% and 77.36%, respectively) or a lower 95% 
Hausdorff distance (4.05 and 8.34 mm, respectively).
Conclusions: UMRFormer-Net can obtain more matched and accurate segmentation boundary and 
region information in pancreas segmentation, thus improving the accuracy of pancreas segmentation. The 
code is available at https://github.com/supersunshinefk/UMRFormer-Net.

Keywords: Pancreas; image segmentation; transformer; deep learning; U-Net

1630

mailto:fc.jia@siat.ac.cn
https://github.com/supersunshinefk/UMRFormer-Net
https://crossmark.crossref.org/dialog/?doi=10.21037/qims-22-544


Fang et al. UMRFormer-Net1620

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(3):1619-1630 | https://dx.doi.org/10.21037/qims-22-544

Introduction

Computer vision and artificial intelligence applications are 
becoming increasingly important, especially in the field 
of medical imaging technology (1). In medical imaging, 
accurate organ segmentation is a prerequisite and an 
important factor in many subsequent image computing-
based analyses. With the rapid development of deep neural 
networks, automatic segmentation has achieved good results 
in many organs and tissues, including the brain, lung, liver, 
and heart (2). For the pancreas, however, the segmentation 
accuracy is still relatively low, despite considerable 
improvements in results during the pre-deep learning  
era (3).

In recent years, deep learning methods based on 
convolutional neural networks (CNNs) have achieved 
remarkable success in medical image segmentation. Based 
on the original two-dimensional (2D) U-Net and three-
dimensional (3D) U-Net architectures, Isensee et al. (4) 
proposed nnU-Net, a robust and adaptive deep learning 
framework. This method focuses on the configuration of 
preprocessing (resampling and normalization), training 
strategy, inference, and post-processing, which allows the 
network to achieve a good improvement in segmentation 
accuracy. The network provides an efficient and accurate 
solution for solving any new task in the biomedical field, 
including automatic segmentation of the pancreas and 
pancreatic tumors in clinical medicine, and has also been 
applied in the pancreatic segmentation competition of the 
Medical Segmentation Decathlon (MSD) (5). Further, 
Chen et al. (6) proposed a model-driven deep learning 
segmentation method for the pancreas based on helical 
transformation. They investigated a uniformly sampled 
helical transformation algorithm that maps a 3D image onto 
a 2D plane and preserves the spatial relationship between 
textures. The method effectively deals with 3D context 
information in 2D models. Salanitri et al. (7) proposed a 
novel 3D CNN for automatic segmentation of the pancreas 
from magnetic resonance and computed tomography (CT) 
images which learns to extract and decode volumetric 
features at different scales in the encoder-decoder structure. 
Most of the models in the abovementioned pancreatic 
segmentation-related studies were conducted from the 

perspective of spatial locality features.
Recently, transformer-based models (8,9) have attracted 

much attention in computer vision after achieving state-of-
the-art benchmarks in natural language and text processing 
areas. They have a strong ability to model long-range 
dependencies and capture global context. However, unlike 
the local formulation of convolutions, the transformer 
focuses more on global semantic information as it encodes 
images as a sequence of one-dimensional (1D) patch 
embeddings and utilizes self-attention modules to learn a 
weighted sum of values calculated from hidden layers (10). 
For example, vision transformer architecture achieved 
outstanding performances in image classification via pre-
training on large-scale datasets (11,12). Subsequently, many 
transformer-based architectures (13,14) have been explored 
for dense prediction tasks. Peiris et al. (15) proposed the 
transformer architecture VT-Unet for volumetric medical 
image segmentation. The encoder has two consecutive self-
attention layers to simultaneously encode local and global 
cues, and the decoder has novel parallel shifted window-
based self- and cross-attention blocks to capture fine details.
Although the aforementioned methods provide reliable 
technical guidance, pancreas segmentation remains a 
challenging task. The difficulty is mainly due to the 
following aspects: (I) the shape, size, and position of the 
pancreas in the abdomen varies greatly among patients, 
which makes it difficult to use reliable prior to improve 
the delineation procedure; (II) the contrast between the 
pancreas and surrounding tissue is weak; (III) the pancreas 
occupies only a very small portion of the CT image; and 
(IV) the pancreas is relatively soft and can easily be pushed 
by surrounding tissues with similar intensities, which 
could result in significant deformation. Although CNN-
based methods for automatic pancreas segmentation have 
excellent representational capabilities, it is difficult to build 
an explicit long-distance dependence due to the limited 
receptive fields of convolution kernels. This limitation of 
convolution operation poses challenges to the learning of 
global semantic information, which is critical for dense 
prediction tasks such as segmentation. Existing models 
utilize convolution to focus more on local features of the 
pancreatic region, ignoring the global features associated 
with the pancreas and surrounding tissues; this obfuscates 
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the border between the pancreas and surrounding tissues.
To overcome these challenges, learning from the 

transformer idea, we contemplated whether it is possible 
to design a module that pays deep attention to global long-
range dependencies and local feature information to be 
embedded in the CNN network. Therefore, we proposed a 
model-driven deep learning method based on UMRFormer-
Net for pancreas segmentation. A double transformer-like 
module named MRFormer was designed to help extract 
the deep feature information generated by the encoder. 
We connected two layers of residual units, composed 
of a 3×3 depthwise convolutional block and a post-layer 
normalization block after the multi-head self-attention 
(MHSA) layer inside the module, to achieve the advantage 
of endogenously integrating the local features of the 
convolution and the global long-range dependence features 
of the transformer. This method models the local and 
global dependencies between features of different scales in 
the bridging encoder. Furthermore, an MHSA mechanism 
and a residual depthwise convolution combination block 
was introduced on the path from the encoder's deep feature 
input to the skip connection to facilitate feature aggregation 
at different semantic scales on the decoder sub-network 
and subsequently, highly flexible feature fusion schemes for 
differences in coarseness and fine grains.

The main contributions of this paper are as follows: 
(I) For the 3D deep learning segmentation model, we 

propose a transformer-like module that extracts 
feature information at different scales on the last 
two deep layer features of U-Net, which can obtain 
more effective deep feature context information in 
the 3D model.

(II) We propose an MRFormer module that aims to 
extract spatially fine-grained local information from 
long sequence feature outputs. It has the advantage 
of maintaining long-range dependencies, as well as 
feature recognition and local context capabilities.

(III) Compared with existing transformer-related 
methods, our method achieved good segmentation 
results in CT pancreas datasets from the Clinical 
Proteomic Tumor Analysis Consortium Pancreatic 
Ductal Adenocarcinoma (CPTAC-PDA) Pancreas 
dataset (16) and the public MSD dataset (self-
division) (5), which showed it to be superior to the 
existing methods.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). In this section, 
we first describe the overall pipeline and specific structure 
of UMRFormer-Net, and then show the details of the basic 
unit (MRFormer) of UMRFormer-Net.

Architecture

As shown in Figure 1, the proposed UMRFormer-Net has 
a U-shaped encoder-decoder architecture with a hybrid 
CNN and transformer, and adopts a double MRFormer 
context bridge module at the bottom of the whole 
network. Specifically, we generally assume that input a 
3D image C H W DX R × × ×∈  with a spatial resolution of H×W, 
depth dimension of D (# of slices), and C channels (# of 
modalities). UMRFormer-Net first utilizes a five-layer 
3D CNN to generate feature maps at different scales 
to capture spatial and deep features, and then utilizes a 
double transformer-like module to encode the long-range 
dependencies semantic information of the fourth- and fifth-
layer feature maps in a global space. Next, the upsampling 
layer and the convolution layer are repeatedly stacked to 
gradually obtain high-resolution segmentation results. 
Next, we describe the components of UMRFormer-Net in 
detail.

Network encoder

Feature embedding of the double MRFormer encoder
Given the feature maps M1 and M2 are output by the 
fourth and fifth layers of the network encoder. We used 
linear projection (3×3×3 convolution layers) to increase 
the channel size of the fourth and fifth layers from K1=128 
and K2=256 to d1=512 and d2=1024. Since the double 
MRFormer module requires a sequence as input separately, 
we uniformly compressed the spatial and depth dimensions 

of the input 3D feature map into 1D, and obtained d1 × Q1 

( 1 8 8 8
H W DQ = × × ) and d2 × Q2 ( 2 16 16 16

H W DQ = × × ) feature maps 
(f1 and f2, respectively), which can be regarded as Q1d1-

dimensional and Q2d2-dimensional labels, respectively. The 

input 3D feature map was compressed into 1D and then 

added to a learnable positional encoding, creating feature 
embedding, as follows:



Fang et al. UMRFormer-Net1622

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(3):1619-1630 | https://dx.doi.org/10.21037/qims-22-544

1 1 1 1 1 1z = f +PE LP M +PE= ×  [1]

 
2 2 2 2 2 2z = f PE = LP M +PE+ ×  [2]

where LP1 and LP2 are the linear projection operation, 
1 1

1PE d QR ×∈  and 2 2
2PE d QR ×∈  denote the positional encoding, 

and 1 1
1

d Qz R ×∈  and 2 2
2

d Qz R ×∈  refer to the feature embedding.

MRFormer block
As shown in Figure 2, the MRFormer block consists of 
MHSA (8,17) and RDCB modules. The RDCB module 
mainly consists of two depthwise convolutions (18,19) with 
layer normalization after each layer. We also added a dense 
residual connection between each layer. Compared with 
the original transformer, which used only a feed-forward 
network, we proposed to use an additional two depthwise 
convolution layers. This was conducted with the aim of 
focusing on local receptive fields and to attract 2D or 3D 
spatial features which cannot be captured by 1D vectors. 
The layer normalization operations produced milder 
activation value at the network layers, facilitating more 
stable model training. The output of the 


-th ( ∈  [1,2,..,L]) 

transformer layer can be calculated by:

( )( )'
1 1z LN MHA z z− −= +

  

 [3]

( )( )( )( )' '
2 2 1 1z LN DConv LN DConv z z= +

   
[4]

where LN(*) denotes the layer normalization,  z


 is the 
output of the 


-th MRFormer layer, and DConv(*) denotes 

the depthwise convolution. Similar to previous works 
(20,21), the calculation formula of self-attention in MHSA 
(8,17) is as follows:

[5]( ), , , 1, 2,...
iT

i i
i i i i i

i

Q Khead =Attention Q K V = SoftMax V i
d

 
=  

 

( ) ( )1 2, , , ,... OMultiHead Q K V Concact head head W=  [6]

where ( ) ( ) ( )
( )

2
*

* * *, , M dQ K V R ×
∈  denote the query, key, and value 

matrices, respectively; M2 and d(*) represent the number of 
patches in a window and the dimension of the query or key, 
respectively; and ( ) ( )* *

d dOW R
×

∈  represents the weight matrix 
of the dot product.

Network decoder

In order to match the input size of the decoder, it was 

Figure 1 Overall architecture of the proposed UMRFormer-Net, which presents details of the double MRFormer layers. 

(C, H, W, D) (H, W, D)

(16, H, W, D)

M
R

Form
er

M
R

Form
er

(32, H/2, W/2, D/2)

(n=12)

(n=8)

...

(64, H/4, W/4, D/4)

M2 Ζ'
2

Ζ'
1

Ζ1M1

Skip connection

Positional encoding

Positional 
encoding

Positional 
encoding

Element-wise addition

Feature concatenation

Downsample

Upsample

Linear mapping

(128, H/8, W/8, D/8)

(128, H/8, W/8, D/8)

(256, H/16, W/16, D/16) (256, H/16, W/16, D/16)

Linear projection

H
idden feature



Quantitative Imaging in Medicine and Surgery, Vol 13, No 3 March 2023 1623

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(3):1619-1630 | https://dx.doi.org/10.21037/qims-22-544

necessary to map the feature sequence output by the double 

MRFormer module into a 3D feature map. Specifically, the 

double MRFormer 1 1

1

d Q
LZ R ×∈  and 2 2

2

 d Q
LZ R ×∈ were reshaped 

to 1 8 8 8
H W Dd × × ×  and 2 16 16 16

H W Dd × × × , respectively. After feature 
mapping, upsampling and convolution were performed on 

the outputs of '
1Z  and '

2Z , respectively, and then fused with 
encoder features via long-range skip connections in order to 

capture finer semantic and fine-grained information as well 

as richer spatial details.

Results

MSD Pancreas and CPTAC-PDA Pancreas Datasets

The model was validated in pancreas segmentation 
experiments. For a fair comparison with previous 
transformer-based architectures, we evaluated our methods 
on the public MSD dataset (self-division) and the CPTAC-
PDA Pancreas dataset.

For the MSD dataset, the original training datasets 
with open ground truth segmentation consist of 281 3D 
CT volumes, divided into 169, 56, and 56 at a 6:2:2 ratio, 
and is used for training, validation, and testing of pancreas 
segmentation. The number of slices ranges from 36 to 
174, and the CT images are 512×512 in size. The labels 
contain two categories: background (label 0) and pancreas 
(label 1).

CPTAC-PDA Pancreas dataset consists of reference 
segmentations for 91 abdominal CT images delineating 

the pancreas and pancreas adenocarcinoma (PDA). The 
91 CT images are divided into 55, 18, and 18 for training, 
validation, and testing, respectively. The labels contain 
two categories: background (label 0) and pancreas (label 1).

Evaluation metrics

To compare the performance between different models in 
our experiments, the evaluation metrics used to measure the 
segmentation effect of medical images included the Dice 
coefficient (22) and 95% Hausdorff distance (23). Mean 
and standard deviation (SD) indicate the dispersion of the 
results of the sample data, respectively. With Iseg and IGT 

representing the segmentation image and the ground truth 
segmentation, respectively, the Dice formula can be written 
as follows:

( )2
+

seg GT

seg GT

I I
Dice

I I
∩

=  [7]

Regarding set X and set Y, the maximum Hausdorff distance 
represents the maximum distance of one point set to the 
nearest point of another point set, defined as:

( ) { }, max ,H XY YXd X Y d d=  [8]

{ }max minXY y Yx X
d x y

∈∈
= −  

[9]

{ }max minYX x Xy Y
d y x

∈∈
= −  

[10]

Figure 2 The MRFormer module for deep fusion of global and local features. It consists of MHSA and RDCB modules. MHSA, multi-head 
self-attention; RDCB, residual depthwise convolutions block.
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The 95% Hausdorff distance is the 95th percentile of the 
distances between the points of sets X and Y.

Implementation details

We performed all experiments using Python 3.8 (Guido 
van Rossum, Netherlands) and Pytorch 1.8.0 (FAIR, Menlo 
Park, USA) on Ubuntu 18.04 (Canonical, Mann, UK). All 
training procedures were performed on a single NVIDIA 
RTX 3090 GPU (Nvidia, Santa Clara, CA, USA) with 24 
GB memory for 1000 epochs using a batch size of 2. The 
initial learning rate was set to 0.002 with a poly learning rate 
strategy, in which the initial rate decayed by each iteration 
with power 0.9. To train the model, the SGD optimizer was 
adopted (24). The weight decay was set to 1e-5. We utilized 
the sum of the Dice loss and cross-entropy loss. 

Pre-processing and augmentation strategies
All CT images were resampled to the same spacing  
(0.73 mm × 0.73 mm × 3.0 mm). During the training 
process, the augmentation strategy was implemented in 
the following order: rotation, scaling, Gaussian blurring, 
brightness and contrast adjustment, simulation of low 
resolution, gamma augmentation, and mirroring.

Network configurations
In Table 1, we show experimental network configurations 
on the CPTAC-PDA Pancreas dataset and the Public MSD 
dataset.

Experiments on the MSD Pancreas dataset

To investigate the segmentation performance of our 
model, we conducted experiments on the MSD Pancreas 
dataset, comparing our model’s performance with those 
of the 3D U-Net (25), Swin-Unet (26), Trans-UNet (27),  
nnFormer (28), and VT-UNet (15) models. The best-
performing existing engineering method, nnU-Net (4), 
was also used as a reference for segmentation accuracy. We 
directly used the results obtained using these methods for 
comparison. For a fair comparison, we divided the datasets 
according to VT-UNet-B (15). At the time of inference, we 
generated multi-class predictions using a sliding window 
technique used in previous papers (29,30). As shown in 
Table 2, the quantitative experimental results of this model 
suggest that our approach obtained a better segmentation 
performance than all the baselines, as measured by either 
the Dice coefficient or 95% Hausdorff distance. The 
differences were statistically significant. Additionally, 
UMRFormer-Net obtained dominance over the 95% 
Hausdorff distance of the pancreas with our redesigned 
MRFormer block.

For qualitative analysis, Figure 3 displays a visual 
comparison of the pancreas segmentation results of various 
methods. UMRFomer-Net obtained more matched and 
accurate segmentation boundary and region information, 
which improved the accuracy of pancreas segmentation. 

Experiments on CPTAC-PDA Pancreas dataset

To better  demonstrate the general izat ion abi l i ty 
and efficiency of our model, we further evaluated 
its performance in another public dataset, CPTAC-
PDA Pancreas. We also compared our method with 

Table 1 Pre-input data preprocessing configuration according to 
the characteristics of the datasets 

Data processing mode UMRFormer-Net

Target spacing 0.73 mm × 0.73 mm × 3.0 mm

Median image size 145×512×512

Crop size 64×128×128

Batch size 2

Stride of downsampling [2 2 2], [2 2 1], [2 2 2], [2 2 2], [2 2 2]

Table 2 Comparison of segmentation results in Dice score and 
95% HD in the MSD dataset

Method
Pancreas 

Dice score ↑ 95% HD ↓

3D U-Net 72.69±0.08*** 9.45±8.68**

Trans UNet 62.84±0.13** 16.22±11.75

Swin UNet 63.72±0.32 14.89±10.24*

nnFormer 65.86±0.18** 13.92±9.05**

VT-UNet-B 70.04±0.26 10.13±5.24***

nnU-Net 76.88±0.09* 8.62±7.26**

UMRFormer-Net (ours) 77.36±0.11 8.34±6.69

Data were presented as mean ± SD. Paired t-test was used to 
test for the difference between our method and other methods in 
Dice score, 95% HD individually, *P<0.05, **P<0.01, ***P<0.001. 
MSD, Medical Segmentation Decathlon; SD, standard deviation; 
HD, Hausdorff distance.
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other existing methods including 3D U-Net (25),  
Swin-Unet (26), Trans-Unet (27), nnFormer (28), VT-
UNet (15), and nnU-Net (4), as shown in Table 3. The 
results showed that our proposed UMRFormer-Net 
achieved state-of-the-art accuracy compared with the 
classical 3D U-Net and other transformer-based methods.

Ablation study

We conducted extensive ablation experiments to validate 
the effectiveness of the proposed transformer-like decoder 

layers and the necessity of using transformer-like at the 
skip connections of the last two layers of the encoder and 
decoder. The experimental results were yielded by five 
cross-validation evaluations on the CPTAC-PDA Pancreas 
dataset. First, we analyzed the impact of different layers of 
MRFormer decoders. Further, we studied the effect of the 
original transformer and the improved MRFormer module 
on the segmentation performance. Different from the native 
transformer module, the MRFormer module is composed of 
a multi-head attention module and two convolution layers. 
Finally, we studied and compared the impact of the addition 

Figure 3 Visual comparison of CT pancreas segmentation results between different methods. CT, computed tomography.

Ground truth 3D UNet VT-UNet nnUNet UMRFormer-NetnnFormer
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of MRFormer on the segmentation performance of the base 

3D CNN network.

Depth of the double MRFormer (n)

As shown in Figure 1, we conducted ablation experiments to 

verify the effect of the depth of the double-layer MRFormer 
(n) on the segmentation performance. 

As shown in Table 4,  the optimal depth for the 
MRFormer module was 12 and 8 for the fourth and fifth 
layers, respectively. A greater depth did not necessarily 
improve the performance.

Additionally, we investigated the effects of the original 
transformer and the improved MRFormer module on 
the segmentation performance. Different from the native 
transformer module, the MRFormer module is composed 
of a multi-head self-attention module and two convolution 
layers. We set the convolution layers in MRFormer to 
two layers, considering the memory constraints and 
computational efficiency.

Comparison of the native and improved MRFormer 
module
We compared the impact of the double native transformer 
and the double improved transformer in performing 
network segmentation. The embedded dimensions 
input to the double transformer-like module in a given 
network were as follows: the fourth and fifth layers of the 
network were set to 512 and 1024, respectively. Of note, 
replacing the feed-forward network layer with two residual 
units combined with depthwise convolution and layer 
normalization made the network pay more attention to its 
local feature information while ensuring global semantic 
information of long feature sequences, which significantly 
improved the model’s performance. The specific results are 
shown in Table 5. Compared with the native transformer 
module, our MRFormer module had better segmentation 
accuracy in the CPTAC-PDA Pancreas dataset.

Transformer-like decoder layers
Our method is based on a five-layer symmetric 3D CNN 
encoder-decoder architecture. Table 6 presents a comparison 
of transformer-like ablation experiments for different 
layers. It counts from the bottom layer of the network and 

Table 3 Comparison of segmentation results in Dice score and 95% 
HD in the CPTAC-PDA Pancreas dataset

Method
Pancreas

Dice score ↑ 95% HD ↓

3D U-Net 81.43±0.03** 7.31±6.52*

Trans UNet 79.95±0.07* 9.40±10.36

Swin UNet 80.92±0.08 8.24±9.65**

nnFormer 82.46±0.05** 6.35±8.34

VT-UNet-B 83.21±0.06** 5.78±6.42***

nnU-Net 85.06±0.02** 4.63±5.84*

UMRFormer-Net (ours) 85.54±0.04 4.05±5.15

Data were presented as mean ± SD. Paired t-test was used to 
test for differences between our method and other methods 
in Dice score and 95% HD individually, *P<0.05, **P<0.01, 
***P<0.001. CPTAC-PDA, Clinical Proteomic Tumor Analysis 
Consortium Pancreatic Ductal Adenocarcinoma; SD, standard 
deviation; HD, Hausdorff distance.

Table 4 Ablation study on the number of double MRFormer (n)

Depth of double 
MRFormer (n)

Pancreas

Dice score ↑ 95% HD ↓

{[fourth,14], [fifth,10]} 81.86±0.05 7.28±8.34

{[fourth,12], [fifth,8]} 85.54±0.04 4.05±5.15

{[fourth,10], [fifth,6]} 84.88±0.03 6.15±6.92

{[fourth,8], [fifth,4]} 83.01±0.04 7.13±7.96

Data were presented as mean ± SD. HD, Hausdorff distance; 
SD, standard deviation.

Table 5 Ablation study on compare native and improved transformers

Native and improved  
transformer

Configuration of double-layer embedded
Pancreas

Dice score ↑ 95% HD ↓

Transformer {[fourth,512], [fifth, 1024]} 84.31±0.06 5.65±6.74 

MRFormer 85.54±0.04 4.05±5.15

Data were presented as mean ± SD. HD, Hausdorff distance; SD, standard deviation.
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compares the segmentation performance with one and 
two decoding layers connected to transformer-like layers. 
As the results show, after the network decoding layer was 
connected to a double-layer transformer, the segmentation 
performance showed an improvement compared to 
that with a single-layer transformer. We also set up an 
experiment which aimed to simultaneously access the 
transformer-like layer to the feature sequences output by 
more than three decoding layers. The result showed that as 
the computational efficiency decreased, the time complexity 
increased, and the computational memory footprint 
became too large during training. The final segmentation 
accuracy also decreased compared to that with the two-layer 
transformer-like method.

Discussion

Accurate segmentation of the pancreas is crucial in the 
quantitative analysis of radiology and surgery, as it can 
assist radiologists and surgeons in achieving the best 
diagnosis and treatment strategies for patients. To this end, 
we proposed a model-driven deep learning method based 
on UMRFormer-Net for pancreas segmentation. Our 
segmentation experiments demonstrated that the model has 
high segmentation accuracy and outperforms some existing 
methods in segmentation. 

O u r  p r o p o s e d  m o d e l  h a s  t h e  f o l l o w i n g  t w o 
characteristics. First, a novel double MRFormer was 
proposed to enable a 3D network to efficiently apply 3D 
contextual information for 3D CT image segmentation. 
The UMFormer-Net method embedded in the double 
MRFormer module can be used to more effectively obtain 
deep feature contextual information in 3D models. It forms 
a spatially local and global unified framework to directly 
optimize 3D segmentation results, thereby improving 

model performance; Second, the proposed MRFormer 
module aims to focus on spatial local information in long 
sequence features. It has the advantage of maintaining long-
range dependencies, as well as feature recognition and local 
context capabilities. It helps to solve the problem of unclear 
boundary texture segmentation of targets such as the 
pancreas. As shown in Table 2 and Table 3, we can clearly see 
that the UMRFormer-Net using MRFormer is superior to 
other methods (4,15,25,26,27,28) in terms of the Dice score 
and 95% Hausdorff distance.

However, our proposed model still has a few limitations. 
First, the performance of the model depends on the 
accuracy of manual annotation during training, and manual 
annotation by doctors is based on their existing clinical 
knowledge. The size of pancreatic organ tissue varies with 
age (e.g., between children and adults), and the subjective 
standards of doctors for pancreas delineation differ slightly, 
which affects the performance of the model for pancreas 
segmentation. Therefore, it is necessary to fine-tune the 
model parameters according to the data characteristics of 
the case.

Image quality and annotation quality are critical 
in artificial intelligence application research. Suman  
et al. (31) studied the MSD dataset and found that there 
were numerous biliary stents and post-chemotherapy cases 
in the training datasets, which may impact the overall 
segmentation performance. It is therefore essential to 
further optimize the model structure or adopt a more 
effective way of enhancing data to improve the model’s 
segmentation performance.

Conclusions

This paper has presented a novel medical segmentation 
framework named UMRFormer-Net and applied it 

Table 6 Ablation study on transformer-like decoder layers

Transfomer-like decoder 
types

Position of transformer-like module
Pancreas

Dice score ↑ 95% HD ↓

Zero – 81.43±0.03 7.31±6.52

One Fifth layer 83.17±0.05 5.17±6.68

Two Fourth and fifth layers 85.54±0.04 4.05±5.15

Three Fourth, fifth, and third layers 84.08±0.02 4.79±5.92

Data were presented as mean ± SD. HD, Hausdorff distance; SD, standard deviation.
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in pancreatic segmentation of CT images. The model 
effectively integrates the transformer-like structure into the 
CNN, which not only retains the advantages of the CNN 
in modeling local receptive field information, but also fully 
utilizes and innovates the advantages of the transformer 
module’s learnable global dependence semantic information. 
Our experimental results from two datasets (the CPTAC-
PDA Pancreas dataset and the MSD Pancreas dataset) fully 
demonstrate the effectiveness of the proposed UMRFormer-
Net. Based on this endogenous hybrid architecture, 
UMRFormer-Net achieves better segmentation accuracy 
in pancreas than previous transformer-based segmentation 
models. In the future, we will test UMRFormer-Net in 
other medical segmentation tasks.
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