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Introduction

The outbreak of the coronavirus disease 2019 (COVID-19) 
is a massive threat to global health, and has also posed 
critical challenges to other aspects of our lives such as 

tourism, transportation, and the industrial supply chain 

(1,2). To reduce the spread of the virus, minimizing inter-

personal contact is a key strategy, which is widely adopted 

by many nations nowadays (3). Here, robots have great 
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potential for disinfection, delivering medications and food, 
and reconnaissance (e.g., body temperature measurement 
as shown in Figure 1 and oropharyngeal swabs) (5). Some 
studies have investigated the deployment of multiple 
robots for the combat with the COVID-19 (6-8). In (6), 
the task assignment for patient-carrying robots to transfer 
patients to a COVID-19 hall and the task assignment for 
service-providing robots to deliver medicines and food to 
the patients on time are studied based on the Q-learning 
approach. Blockchain technology has been investigated 
for controlling and managing multi-drone collaboration 
for transporting goods and medical supplies to quarantine 
areas experiencing an epidemic outbreak (7,8). For most of 
the discussed scenarios, the deployed multiple robots need 
to efficiently visit a set of target locations to perform some 
missions such as disinfection, delivering medications, and 
temperature measurement for the people in quarantine 
areas. This is the typical multi-robot multi-target visiting 
task assignment problem, which has attracted increasing 
attention due to its wide applications in logistics, terrain 
mapping, and environmental monitoring (9).

The task assignment problem for a team of vehicles to 
visit a set of target locations while trying to minimize the 
robots’ total travel time (10,11) or distance (12,13) is a 
variant of the vehicle routing problem (VRP) (14). For the 
VRP, a fleet of vehicles with limited capacity must deliver 
goods from one or more depots to a group of customers, 
which is an NP-hard problem (14). This implies that an 
extremely long computational running time is generally 
required to obtain the optimal solution as the numbers of 
vehicles and customers grow. Consequently, many heuristic 
task assignment algorithms have been designed to solve the 
VRP (15-18). For the green VRP, a memetic algorithm was 

proposed in (18), where a TSP route is first computed to 
encode the solution. When the travel cost matrix, storing 
the travel cost for a robot to move between each two target 
locations, respects the triangular inequality as well as being 
symmetric, the algorithm designed in (19) guarantees 
that the  robots’ total travel cost to visit a group of target 
locations is at most twice the optimal value. 

Some multi-robot task assignment problems have been 
shown to be NP-hard (9,20), where heuristic algorithms are 
usually designed to calculate near-optimal solutions. In (21),  
a consensus-based bundle algorithm was constructed for 
task assignment of multiple robots that communicate over 
connected networks. An iterated local search algorithm 
with adaptive neighborhood selection was proposed for the 
pickup and delivery problem with time windows in (22). 
In (23), a genetic algorithm was constructed for unmanned 
aerial vehicles (UAVs) to visit multiple target locations 
while respecting the priority for visiting each target location 
and the vehicles’ capacity constraint. Monotonic algorithms 
were proposed in (10) to minimize the time when all the 
target locations are occupied by robots within a limited 
communication range. Later on, to minimize robots’ 
total travel distance until all target locations are occupied, 
decentralized algorithms were proposed in (12). However, 
in (10) and (12), the robots’ number is equal to the targets’ 
number, where a robot stops moving upon reaching its 
assigned target location. In (11), several dynamic task 
assignment algorithms were proposed for multiple vehicles 
to visit a group of target locations, where some target 
locations are dynamically generated during the vehicles’ 
movement. Integrated with Dubins car model, a genetic 
algorithm was designed for multi-UAV task assignment 
respecting the vehicles’ limited turning radius (24). 
However, most of the discussed task assignment algorithms 
have been developed assuming that the robots can continue 
performing the target-visiting tasks, which doesn’t consider 
the robots’ limited operation time.

In (25), a decentralized pandemic alerting framework 
has been designed to provide collaborative and intelligent 
solutions for digital twins based on blockchain, which 
has the potential ability to guarantee decentralized data 
storage and scalable peer-to-peer communication for smart 
healthcare in the fight against COVID-19. To estimate the 
risk level and the multifold mortality rate of COVID-19 
in diabetic patients, a COVID-19 risk prediction model 
has been proposed in (26) for diabetic patients based on a 
fuzzy inference system and machine learning approaches. 
To deal with fake news during the COVID-19 epidemic, 

Figure 1 The robot offered by Cityeasy Technology can move 
around schools, hotels and airports for automatic body temperature 
measurement (4).
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a hybrid deep learning model that integrates long short-
term memory and a convolutional neural network has 
been constructed in (27). Experimental results show that 
the model outperforms six other machine learning models 
and two deep learning models. In (28), a concrete ledger-
based collaborative digital twins framework that focuses on 
distributed consensus algorithms and real-time operational 
data analytics has been designed. 

This paper investigates the task assignment problem 
for a fleet of dispersed robots to visit a set of prescribed 
hotels for temperature checks or oropharyngeal swabs for 
the people who have been quarantined in the hotels while 
trying to minimize the robots’ total operation time. The task 
assignment problem is first formulated as an optimization 
problem, and then several marginal cost based algorithms 
are designed. Our main contributions are as follows: firstly, a 
lower bound on the robots’ total operation time to serve all 
the people is constructed, which can be used to approximately 
evaluate the performance of the designed algorithms in 
relation to the optimal solutions. Second, several marginal 
cost-based algorithms are proposed. Simulation and 
experimental results show that these algorithms have better 
performance than the popular genetic algorithm.

Methods

Problem formulation

A fleet of m dispersed homogeneous robots needs to visit 
a set of n prescribed hotels for temperature assessment or 
oropharyngeal swabs for the people quarantined in the hotels 
while minimizing the robots’ total operation time. When a 
robot is used to check body temperature or take oropharyngeal 
swabs for each person, it is assumed that the same amount of 
average time is needed for each person. Each robot can visit 
multiple hotels sequentially within its limited operation time, 
and each hotel requires only one robot to provide the service. 
We assume that the robots move at a constant speed and their 
number and maximum operation time are sufficient to serve 
the people quarantined in all the hotels.

The n prescribed hotels for quarantine are indexed with 
1,...,n, and let { }1, , n=   be the set of these indices. Let ci be 
the number of the persons quarantined in hotel i for each i∈ .  
It is assumed that a fixed average operation time ot is needed 
by a robot for body temperature assessment or oropharyngeal 
swabs for each person. Then, the total time that a robot 
needs to serve the ci people quarantined in hotel i is ciot. We 
use { }1, , m=   to denote the indices of the m robots, and use 

{ }1, ,n n m= + +  to contain the indices of the v robots’ 
initial locations. Let the constant variable v be the robots’ 
moving speed when moving between different hotels, and use 
L as the maximum operation time of each robot.

Let ( ) ( ), , /t i j d i j v= denote the time for a robot to travel from i 
to j for each pair of distinct , ,i j∈ =     , which is in 
proportion to the Euclidean distance ( ) ( ), , /t i j d i j v=  between i and j 
under the constant v, i.e., ( ) ( ), , /t i j d i j v= . Obviously for each 
i∈  , ( ), 0t i i = . Then, given the robots’ maximum operation 
time L, the robots’ number m is set at least

max
1

i t
i

nt c o
L ∈

  +  
  

∑
  

[1]

where ( )max ,max ,i jt t i j∈ ∈=   , and the ceiling function [a] leads 
to the smallest integer greater than or equal to a positive 
number a. To enable that each robot is viable to serve all 
of the people quarantined in each hotel, the maximum 
operation time of each robot should satisfy max maxt i iL t o c∈> +  .

Let the decision variable { }: 0,1ijkx × × →    equal 
one if and only if it is planned that robot k moves directly 
from location i to a distinct location j. Thus, xiik=0 for 
each i∈  and k ∈ . The task-assignment mapping 

{ }: 0,1iky × →   is one if and only if all the people 
quarantined  in hotel i will be served by robot k. Let robot 
k’s remaining operation time be rki after serving all the 
people quarantined in hotel i∈ , which is initially set as 

kir L= . Then, the objective of minimizing the robots’ total 
operation time to serve all the people quarantined in the n 
hotels is to minimize
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Constraint Eq. [3] guarantees that the people quarantined 
in hotel j will be served by robot k if it is planned that robot 
k will move to the hotel location i; Eq. [4] requires that the 
people quarantined in each hotel i will be served by one 
and only one robot; Eqs. [5] and [6] illustrate the remaining 
operation time of each robot after successively serving the 
people quarantined in two hotels i and j; Eq. [7] guarantees 
that the maximum operation time of each robot is satisfied; 
Eq. [8] implies that at most m robots can be used for the 
task assignment; and Eq. [9] ensures that the decision 
variables xijk and yik are binary variables.

Remark 1: the task assignment problem Eq. [2] is a variant 
of the open multiple traveling salesman problem (OMTSP) 
(29), which is known to be NP-hard (20).

Task assignment algorithms

It is generally costly to solve Eq. [2] optimally due to 
the problem’s NP-hardness. Then, it is natural to design 
heuristic algorithms to find sub-optimal solutions quickly. 
In this section, several marginal-cost-based task assignment 
algorithms are designed to assign the hotel-serving tasks to 
the multiple robots.

Total serving time based marginal cost algorithm
Inspired by the marginal-cost-based clustering strategy 
designed in (30), this section first introduces a total serving 
time based marginal cost algorithm (TSTMCA), which 

assigns the hotel-serving tasks to the robots based on the 
sum of the time incurred for each robot to visit each hotel 
and the time for serving the people quarantined in the hotel. 

Let k  contain the indices of those hotels that have 
already been assigned to robot k to serve and let u  contain 
the indices of those unassigned hotels, which is initialized 
as  . We use ok be the route containing the ordered hotels 
already assigned to robot k to serve, which is initialized as 
the index of k’s initial location {n + k}.

Then, the first hotel j* in the current u  to be assigned, 
its assigned robot k* and the serving sequence q* are 
determined by the TSTMCA as

( )

( ) ( ){ }
, , 1, ( )

, , 1, ( )

( *, *, *) arg min

                 = arg min

u
k k q

u
k k q

k q
k j q o t o j L

k q k
k j q o t o j L

k j q t o j

t o j t o
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= ⊕
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[10]

where the operation k qo j⊕  inserts the index of hotel j at 
the qth position of robot k’s route ok, and t(ok) is the sum 
of the time for robot k to visit all the hotels in ok and the 
time spent on serving the people quarantined in the hotels. 
We will insert hotel j at the end of ok if q=|ok|+1. For 
each potential operation k qo j⊕  of inserting hotel j into 
the qth position of robot k’s current route ok, the robot’s 
total operation time needs to be checked to guarantee 
( )k qt o j L⊕ ≤ .

Then, the unassigned hotel set u  and robot k*’s current 
route *ko  are updated respectively as

{ } * * *\ * ,   *u u
k k qj o o j= = ⊕ 

 
[11]

The inserting and updating procedures Eqs. [10] and [11]  
continue until all the hotels in u  are assigned to the 
robots. The flowchart of TSTMCA is shown in Figure 2. 

Travel time based marginal cost algorithm
For the objective function Eq. [2], the second term of the 
robots’ total operation time is the time to serve all the 
people quarantined in the n hotels, which is actually a fixed 
term as long as all of the people are served. As a result, in 
this section, we present the travel time based marginal cost 
algorithm (TTMCA), which assigns the hotel-serving tasks 
to the robots based on the travel time incurred for each 
robot to visit each newly-inserted hotel.

Let k , u  and ok be the same as those defined for 
TSTMCA in the above section. Then, the first hotel j* in 
the current set u  to be assigned, its assigned robot k* and 
the serving sequence q* are chosen by the TTMCA as 

Figure 2 The flowchart of TSTMCA. TSTMCA, total serving 
time based marginal cost algorithm.

Initialize the unassigned target set =u 

Insert the unassigned hotel j* in u  at the qth position 
of the route of robot k* according to equation [10]

Update u  and robot k*’s current route 
ok* according to eqaution [11]

Is u  empty?

Stop

Yes

No
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where t'(ok) is the total travel time for robot k to visit all 
the hotels in ok. For each potential operation k qo j⊕  of 
inserting hotel j into the qth position of robot k’s current 
route ok, the robot’s total operation time needs to be 
checked to guarantee ( )k qt o j L⊕ ≤  as TSTMCA. Then, 
Eq. [11] is used to update u  and *ko . Afterwards, the 
inserting and updating procedures Eqs. [12] and [11] 
continue until all the hotels in u are assigned to the 
robots. In Figure 2, inserting the unassigned hotel j* in 

u  at the q* th position of robot k* according to Eq. [12] 
leads to the flowchart of TTMCA. 

Improvement strategies
After achieving an initial solution with the marginal cost 
based algorithms, two improvement strategies are designed 
to refine the current solution in this section based on the 
concept of Large Neighbourhood Search (31). The two 
strategies continuously remove one assigned task from a 
current solution and reassign this task if a better solution is 
found, which are called 1-opt improvement strategies.

As the time for a robot to serve the people quarantined 
in each hotel is a fixed term, removing a hotel-serving 
task from the current solution and then reassigning this 
task does not affect the amount of time for a robot to 
serve the people quarantined in the hotel. As a result, the 
1-opt improvement strategies use the TTMCA Eq. [12] to 
reassign each removed task. Removing one assigned task 
and reassigning the task can be done sequentially or at the 
same time. We propose a decoupled 1-opt strategy and a 
coupled 1-opt strategy based on Eq. [12].
Decoupled 1-opt strategy
This section introduces the decoupled 1-opt strategy, which 
first removes a hotel-serving task from a current solution 
and then reassigns the hotel-serving task to the robots based 
on Eq. [12].

Let ok be the route containing the ordered hotels already 
assigned to robot k to serve in the current  solution, and 
t'(ok) be the total travel time for robot k to visit all the hotels 
in ok as Eq. [12]. Let k  contain the indices of the hotels 
assigned to robot k in the current solution, which can be 
achieved based on ok. Then, the decoupled 1-opt strategy 
first calculates the potential maximum travel time that can 
be saved by removing the hotel-visiting task j* from the 
current route of robot k* as

( ) ( ) ( ){ }
,

*, * arg max
k

k k
k j

k j t o t o j
∈ ∈

′ ′= −
 


 

[13]

where the operator ko j  removes the hotel-visiting task 
j from robot k’s current route ok. The removing operation  
Eq. [13] will save a total travel time as

( ) ( )* * *s k kt t o t o j′ ′= − 
 

[14]

Then, a trial operation is performed to reassign j* to 
robot k1* with the serving sequence q* as 

( )
( ) ( ){ }1 1

1 1 1

1
, 1, *

( *, *) arg min *
k k q

k q k
k q o t o j L

k q t o j t o
∈ ≤ + ⊕ ≤

′ ′= ⊕ −


 

[15]

The potential reassigning operation Eq. [15] will incur a 
total travel time cost as

( ) ( )1 1c * * **k q kt t o j t o′ ′= ⊕ −
 

[16]

Then, the removing operation Eq. [13] and the 
reassigning operation Eq. [15] for reassigning hotel j* 
will be indeed performed if the saved total travel time ts 
is greater than the incurred total travel time cost tc, i.e. 
ts>tc. It doesn’t stop until no more travel time can be saved 
by removing and reassigning tasks as Eqs. [13] and [15]. 
The decoupled 1-opt strategy improves the robots’ routes 
resulted from Eq. [12], which leads to the decoupled task 
assignment algorithm TTMCA(d) by integrating TTMCA 
with the decoupled 1-opt strategy. The flowchart of 
TTMCA(d) is shown in Figure 3. 
Coupled 1-opt strategy
The coupled 1-opt strategy simultaneously performs the 
task removing and reassigning operations to check whether 
reassigning a hotel-visiting task can save some travel costs. 
At each improvement iteration, the coupled 1-opt strategy 
removes a hotel-visiting task j* from the current route of 
robot k*, and reassigns j* to robot k1* with the serving 
sequence q* to save the maximum travel time as

( )
( )

( ) ( )( ) ( ) ( )( ){ }1 1
1

1 1

1
, , ,

1,

*, *, *, * arg max
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k k q

k k k q k
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[17]

when the saved travel  t ime ( ) ( )( ) ( ) ( )( )1 1* * * * ** *r k k k q kt t o t o j t o j t o′ ′ ′ ′= − − ⊕ −
( ) ( )( ) ( ) ( )( )1 1* * * * ** *r k k k q kt t o t o j t o j t o′ ′ ′ ′= − − ⊕ −  is positive. The task removing and 

reassigning operation Eq. [17] goes on until there is no way 
to save more travel time on the trip. 

The coupled 1-opt strategy improves the robots’ 
routes resulted from Eq. [12], which leads to the coupled 
task assignment algorithm TTMCA(c) by integrating 
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TTMCA with the coupled 1-opt strategy. The flowchart of 
TTMCA(c) is shown in Figure 4. 

Lower bound on the optimal solution
As the optimal solution to Eq. [2] is typically unknown, it is 
needed to investigate how to evaluate the quality of a sub-
optimal solution. This section constructs a lower bound 
on the minimum total operation time for the robots to 
visit all the n hotels and to serve the people quarantined 
in the hotels, with the relaxation of each robot’s maximum 
operation time constraint. 

Let   be an undirected weighted robot-hotel graph 
whose vertices contain all the indices of the hotel locations 
and the robots’ initial positions. The weight of an 
undirected edge connecting a robot location vertex with 
a hotel location vertex is the Euclidean distance between 
them, which applies to each edge connecting two different 
hotel location vertices. Let zero be the weight of the edges 
between each pair of vertices representing robot locations. 
The Prim algorithm (13,32) is used to obtain a minimum 
spanning tree (MST) of   that connects the index vertices 
of all the robots’ initial locations and hotel locations with 
the minimum total edge weight. Let fMST be the sum of all 
the edge weights of the MST and fo be the optimal value for 
the objective function [2].

Lemma 1: It holds that fMST ≤ fo.
Proof: after relaxing the robots’ maximum operation 

time constraint, the task assignment problem Eq. [2] in 
essence is the OMTSP problem, where multiple dispersed 
robots need to visit a set of target locations with the 
minimum total travel distance with no requirement to 
return to their initial locations. As a result, the optimal 
value of the OMTSP provides a lower bound on the 
optimal solution of Eq. [2]. Since the optimal solution of 
the OMTSP is a special spanning tree of the undirected 
weighted robot-hotel graph   where each hotel vertex 
connects at most one other hotel vertex, the sum of all the 
edge weights of the MST leads to a lower bound on the 
optimal solution of the OMTSP, which results in fMST ≤ fo. 
Thus, the proof is complete.

Results

Simulation results

Numerical tests are first done in this section to test the 
performance of the designed algorithms compared with 
a greedy algorithm (GA) and the co-evolutionary multi-
population genetic algorithm (CMGA) in (33). The GA 
assigns the hotel-serving tasks by always inserting the 
unassigned hotel location where the people quarantined 
in the hotel can be served the quickest at the end of the 
corresponding robot’s current route. For the CMGA, the 
gene operation parameters are set according to (33), which 
consists of five subpopulations, and the crossover rate and 
mutation rate are Pc =0.95 and Pm =0.1. All the experiments 
have been performed on an Intel Core i7 – 7500 U CPU 
2.70 GHz with 8 GB RAM, and the algorithms are 
compiled by Matlab under Windows 10. The solution 

Figure 4 The flowchart of TTMCA(c). TTMCA, travel time 
based marginal cost algorithm; TTMCA(c), algorithm integrating 
the travel time based marginal cost algorithm TTMCA with the 
coupled 1-opt strategy.

Figure 3 The flowchart of TTMCA(d). TTMCA, travel time 
based marginal cost algorithm; TTMCA(d), algorithm integrating 
the travel time based marginal cost algorithm TTMCA with the 
decoupled 1-opt strategy.

Robots’ routes resulting from TTMCA

Calculate ts according to equations [13] and [14]

Calculate tc according to equations [15] and [16]

Update ok* and 
1*ko  according to equations [13] and [15]

Is ts > tc?

Stop

Yes

No

Robots’ routes resulting from TTMCA

Calculate the saved travel time tr according to equation [17]

Update ok* and 
1*ko  according to equation [17]

Is tr > 0?

Stop

Yes

No
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quality ratio r of each algorithm is quantified by

MST

fr
f

=
 

[18]

where f is the resulting objective value shown in Eq. [2], 
and fMST is the sum of all the edge weights of an MST of the 
undirected weighted robot-hotel graph   achieved by the 
Prim algorithm (13,32). Since fMST ≤ fo as shown in Lemma 1, 
a ratio r closer to 1 implies a better solution quality. 

The algorithms are first tested using Monte Carlo 
simulation, in which people quarantined in n=30 dispersed 
hotels in a 10 km × 10 km area require m robots to serve 
them. The number of people quarantined in each of 
the n hotels is randomly generated, ranging from 30 to 
100. It is assumed that an average fixed time of ot =30 s  
is needed for a robot to perform tasks such as body 
temperature assessment or oropharyngeal swabs for each 
person quarantined in the hotels, and the robots move at 
the unit speed of v=1 m/s. We assume that each robot’s 
maximum operation time is L=30,000 s, which is around  
8 hours. Then, based on Eq. [1], the robots’ number is set 
as m∈{5,8,10}. For each scenario, 20 instances of the initial 
positions of the n hotels and the m robots are randomly 
distributed in the 10 km × 10 km area. For each instance, 
the genetic algorithm CMGA is performed 20 times 
to reduce its randomness, where the average objective 
value and the computational running time of the CMGA 
are used for the comparison. The robots’ average total 
operation time to serve all the people quarantined in 
the n=30 hotels and the corresponding average solution 
quality ratios r resulting from the algorithms are shown in 
Figure 5 and Figure 6, respectively.

Firstly, Figure 5 shows that the robots’ average total 
operation time (s) to serve all the people quarantined in n=30 
hotels, resulting from each algorithm, generally decreases 
when increasing the robots’ number m. This is because 
the robots are initially dispersed in the operation area, 
where the assignment of the n dispersed hotels can make 
a good use of the robots located at closer positions when 
more robots are available to be used. Secondly, Figure 5  
shows the proposed algorithms TSTMCA and TTMCA 
are competitive compared with the CMGA, and are better 
than the GA, where the travel time based algorithm 
TTMCA is better than the TSTMCA. Furthermore, the 
integrated algorithms TTMCA(d) and TTMCA(c) are 
generally better than the TSTMCA and TTMCA, where 
TTMCA(c) has the best performance among the algorithms 
in all the scenarios as shown in Figure 5. The average 
solution quality ratios r of the algorithms shown in Figure 6  

Figure 5 The robots’ average total operation time (s) serve 
all the people quarantined in n=30 hotels resulting from the 
algorithms. GA, greedy algorithm; CMGA, co-evolutionary multi-
population genetic algorithm; TSTMCA, total serving time based 
marginal cost algorithm; TTMCA, travel time based marginal 
cost algorithm; TTMCA(d), algorithm integrating TTMCA with 
the decoupled 1-opt strategy; TTMCA(c), algorithm integrating 
TTMCA with the coupled 1-opt strategy.

Figure 6 The average solution quality ratios of the algorithms for 
different numbers of robots to serve all the people quarantined in 
n=30 hotels. GA, greedy algorithm; CMGA, co-evolutionary multi-
population genetic algorithm; TSTMCA, total serving time based 
marginal cost algorithm; TTMCA, travel time based marginal 
cost algorithm; TTMCA(d), algorithm integrating TTMCA with 
the decoupled 1-opt strategy; TTMCA(c), algorithm integrating 
TTMCA with the coupled 1-opt strategy.
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generally have the same changing trends as the robots’ 
average total operation time shown in Figure 5, which shows 
that the robots’ total operation times resulting from the 
proposed algorithms are generally within 1.15 times of the 
optimal value. This shows the satisfying performance of the 
designed algorithms.

Then, the algorithms are tested by Monte Carlo 
simulation with a larger problem size, where the people 
quarantined in n=90 dispersed hotels in a 10 km × 10 km 
area need to be served by m∈{16,18,20} robots. For each 
scenario, 20 instances of the initial positions of the n hotels 
and the m robots are randomly distributed in the 10 km × 
10 km area. The number of people quarantined in each of 
the n hotels is randomly generated, ranging from 30 to 100. 
The robots’ moving speed and the maximum operation time 
are the same as when n=30. Due to the long computational 
running time of the CMGA when n=30 as shown in Table 1,  
the designed algorithms are compared with the GA when 
n=90. The robots’ average total operation time to serve all 
the people quarantined in n=90 hotels and the corresponding 
average solution quality ratios r resulting from the 
algorithms are shown in Figure 7 and Figure 8, respectively.

Figure 7 first shows that the robots’ average total operation 
time (s) to serve all the people quarantined in the n=90 hotels, 
resulting from each algorithm, increases compared with 
those when n=30 as shown in Figure 5, which is because more 
hotels need to be visited and the people quarantined in the 
hotels also need to be served. The other changing trends of 
the algorithms shown in Figure 7 are the same as those shown 
in Figure 5, where TTMCA(c) keeps the best performance 
among the algorithms in all the scenarios. 

The algorithms’ average computational running times (ms) 
under each scenario of n=30 and n=90 are shown in Table 1.  
Table 1 first shows that the computational running times of 
the designed algorithms are competitive compared with the 
greedy method GA, which are pretty small in relation to 
the genetic algorithm CMGA. Secondly, the computational 
running times of the designed algorithms are increased to 

Table 1 The algorithms’ average computational running time (ms), where the CMGA is performed when n=30

n m
Algorithms’ average running time (ms)

GA CMGA TSTMCA TTMCA TTMCA(d) TTMCA(c)

30 5 7.9305 26,016.2682 11.1637 8.5713 15.1322 21.2376

8 7.4494 29,799.6101 8.9224 7.4122 9.6264 8.5744

10 7.2472 32,089.5982 8.0141 7.4525 9.1023 9.1222

90 16 13.4218 – 31.7000 18.7472 20.1789 33.0617

18 13.4013 – 30.6582 19.4886 22.9485 39.7843

20 14.1192 – 30.9932 20.0484 20.5622 33.0480

CMGA, co-evolutionary multi-population genetic algorithm; n, number of hotels; m, number of robots; GA, greedy algorithm; TSTMCA, 
total serving time based marginal cost algorithm; TTMCA, travel time based marginal cost algorithm; TTMCA(d), algorithm integrating 
TTMCA with the decoupled 1-opt strategy; TTMCA(c), algorithm integrating TTMCA with the coupled 1-opt strategy. 

Figure 7 The robots’ average total operation time (s) to serve 
all the people quarantined in n=90 hotels resulting from the 
algorithms. GA, greedy algorithm; TSTMCA, total serving 
time based marginal cost algorithm; TTMCA, travel time based 
marginal cost algorithm; TTMCA(d), algorithm integrating 
TTMCA with the decoupled 1-opt strategy; TTMCA(c), 
algorithm integrating TTMCA with the coupled 1-opt strategy.
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around 3 times from n=30 to n=90 as shown in Table 1, which 
shows the scalability of the designed algorithms. Thirdly, 
Table 1 shows that the better performance of the integrated 
algorithm TTMCA(c) among the designed algorithms comes 
at the cost of a longer running time. 

Experimental results

In this section, the multi-robot task assignment experimental 
tests are carried out to verify the performance of the 
designed task assignment algorithm TTMCA(c) compared 
with the greedy algorithm GA and the co-evolutionary 
multi-population genetic algorithm CMGA in (33).  
In the experimental scenario, a fleet of m=3 dispersed 
autonomous mobile robots with initial location indexed by 
{n+1,…, n+m} needs to serve n=21 target locations (implying 
n hotels in the paper indexed by {1,…,n}) while trying 
to minimize the robots’ total operation time. The robot 
service time required by each target location ranges from 
3 to 5 s, which corresponds to the time needed for body 
temperature assessment or oropharyngeal swabs for the 
persons quarantined in each associating hotel. The 21 target 
locations and the 3 Limo robots are randomly distributed in 
a 4 m × 5 m area. 

Guided by each task assignment algorithm, the robots’ 
routes to serve the 21 target locations are respectively 
shown in Figures 9-11. The detailed movement of the 
robots can be found in the supplementary video (Video 1). 

Discussion

First, the difference between the performance of the GA 
and that of the designed algorithms increases in Figure 7 
compared with Figure 5, which shows the scalability of the 
designed algorithms. This conclusion is also verified by 
Figure 8, where the robots’ total operation time resulting 
from each proposed algorithm is generally within 1.1 times 
of the optimal value. This shows the satisfying performance 
of the designed algorithms.

Figure 8 The average solution quality ratios r of the algorithms 
for different numbers of robots to serve all the people quarantined 
in n=90 hotels. GA, greedy algorithm; TSTMCA, total serving 
time based marginal cost algorithm; TTMCA, travel time based 
marginal cost algorithm; TTMCA(d), algorithm integrating 
TTMCA with the decoupled 1-opt strategy; TTMCA(c), 
algorithm integrating TTMCA with the coupled 1-opt strategy.
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Figure 10 The robots’ routes to serve the 21 target locations 
guided by GA, where their total operation time is 186 s. GA, 
greedy algorithm. 

The routes of the three robots are marked respectively as: →, → and →.

Figure 9 The robots’ routes to serve the 21 target locations 
guided by TTMCA(c), where their total operation time is  
158 s. TTMCA(c), algorithm integrating TTMCA with the 
coupled 1-opt strategy.

The routes of the three robots are marked respectively as: →, → and →.
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Second, Figures 5-8 and Table 1 show that the TTMCA 
generally outperforms the TSTMCA on both the robots’ 
total operation time and the algorithms’ running time, 
which is interesting as both of them rely on the marginal 
cost to assign the hotel-serving tasks. This points out the 
importance of designing problem-specific assignment 
algorithms for similar task assignment problems.

Third, Figures 9-11 show that the target locations 
assigned to each robot by the TTMCA(c) are more 
balanced compared with the GA and the CMGA, where the 
total operation time of the robots guided by TTMCA(c) 
is respectively decreased by 17.7% and 11.4% in the 
comparison of the GA and the CMGA. This shows the 
satisfying performance of the designed task assignment 

algorithm TTMCA(c).

Conclusions

In this paper, we have studied the task assignment problem 
for multiple dispersed robots to efficiently serve the people 
quarantined in multiple hotels for body temperature 
assessment or oropharyngeal swabs missions while trying 
to minimize the robots’ total operation time. To evaluate 
the quality of an assignment solution, a lower bound on 
the robots’ total operation time to serve all the people has 
been constructed based on graph theory. Two marginal-
cost-based task assignment algorithms are designed, and 
two 1-opt based improvement strategies are proposed 
to improve the current solution. Numerical experiments 
have shown that the proposed algorithms can obtain 
solutions that are closer to the optimal compared with the 
competitive genetic algorithm and a greedy algorithm. 
The proposed algorithms will be extended to online task 
assignment scenarios where new hotel-serving tasks might 
dynamically appear and require to be served. Additional 
research direction is to consider the case where the persons 
quarantined in each hotel require one robot to serve with a 
prescribed time-window constraint. 
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CMGA, co-evolutionary multi-population genetic algorithm.

The routes of the three robots are marked respectively as: →, → and →.
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