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Background: We aimed to establish and validate 2 machine learning models using 18F-flurodeoxyglucose 
positron emission tomography/computed tomography (18F-FDG PET/CT) radiomic features to predict 
human epidermal growth factor receptor 2 (HER2) expression and prognosis in gastric cancer (GC) patients.
Methods: We retrospectively enrolled 90 patients diagnosed with GC, including their clinical information 
and the 18F-FDG PET/CT images. Patients were allocated to a training cohort of 72 patients and an 
independent validation cohort (IVC) of 18 patients. There were 2,100 radiomic features extracted from 
the 18F-FDG PET/CT scans. A sequential combination of multivariate and univariate feature selection 
was applied, including sequential forward selection and a redundancy-based analysis. The justification of 
the model performance was conducted by cross-validation analysis on the training set and an independent 
validation analysis.
Results: The machine learning models were developed using a balanced bagging approach for HER2 
expression prediction and prognosis prediction, which differentiated HER2 positive expression from 
negative expression in the IVC with an area under the receiver operating characteristic curve (AUC) of 
0.72, sensitivity of 0.85, and specificity of 0.80. The IVC for prognosis prediction achieved an AUC of 0.75, 
sensitivity of 0.82, and specificity of 0.71. We also conducted a reasonable interpretation for the selected 
features in each classification task from multiple aspects, including normalized feature importance analysis 
and statistical correlation analysis with the clinical features that were defaulted to be effective. 
Conclusions: 18F-FDG PET/CT radiomics analysis with a machine learning model provides a 
quantitative, efficient, and objective mechanism for predicting HER2 expression and prognosis in GC 
patients.
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Introduction

Gastric cancer (GC) incurs a heavy global health burden. 
In 2018, there were over 1,000,000 new cases and about 
783,000 deaths from GC, making it the fifth leading cause 
of cancer death worldwide (1). Furthermore, Eastern 
Asian countries had the highest incidence (2). In recent 
decades, molecular targeted therapies have revolutionized 
the standard treatment of some tumors (3,4). As the first 
approved targeted drug for human epidermal growth factor 
receptor 2 (HER2)-positive GC patients, trastuzumab 
marked a significant turning point in the first-line therapy 
of GC. It has significantly improved the prognosis of GC 
patients (5,6), but accurate assessment of HER2 status 
is critical to identifying suitable patients for targeted 
treatment. In clinical practice, immunohistochemistry 
(IHC) or fluorescence in situ hybridization (FISH) testing 
is mainly conducted with biopsy or surgical specimens. 
However, HER2 expression is typically heterogeneous 
and dynamic (7). Moreover, inadequate tumor tissue from 
biopsies may also lead to inaccurate results. These issues 
emphasize the necessity to predict the status of HER2 
through a non-invasive approach.

The high recurrence after adjuvant chemotherapy is 
another problem faced by GC patients. The results on the 
prognosis of GC patients after adjuvant chemotherapy 
have varied among several clinical trials (8-10). According 
to one clinical trial, the overall survival (OS) of the 
adjuvant chemotherapy group was moderately improved 
compared to the surgery-only group (78% vs. 69%), 
indicating that some GC patients do not benefit from 
adjuvant chemotherapy (10). Additionally, previous studies 
(11,12) have shown significant variation in prognosis in 
patients with the same clinical stage and similar treatment 
strategies, which implies that more prognostic information 
and understanding of the biological heterogeneity of 
GC are required for precise treatment. Consequently, 
exploring the risk of recurrence and the potential benefit 
of chemotherapy in GC patients has been a topic in 
individualized treatment. Some studies have demonstrated 
that several biomarkers can predict the prognosis of GC 
patients (13,14), but most of the reported markers lack 
reproducibility, and limited biological information of 
tumors is involved.

Numerous studies have shown the predictive value of 
18F-flurodeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT) in GC staging, 
identifying metastases, and therapeutic evaluation (15-17).  

Moreover, the relationship between 18F-FDG uptake and 
HER2 mutation status has also been validated (18,19). 
In recent years, radiomics (20,21) has emerged as a high-
throughput image analysis process that extracts a high 
dimension of quantitative imaging features and characterizes 
the related tumor phenotype (18). It is also considered a 
promising research field because it is non-invasive. Many 
radiomics predictive models have shown great promise in 
the diagnosis and treatment of multiple cancers (22-24),  
and some studies have investigated the value of CT-based 
radiomics in detecting metastasis and predicting early 
recurrence in GC (25-27).

To our knowledge, the predictive value of 18F-FDG 
PET/CT radiomics in GC has not been extensively 
investigated. Therefore, we retrospectively collected 
the pretreatment 18F-FDG PET/CT data of patients 
with GC with the aim of confirming the high diagnostic 
performance of preoperative 18F-FDG PET/CT-based 
radiomics analysis in differentiating HER2 positive 
(HER2+) expression from HER2 negative (HER2−) 
expression and for prognosis prediction. This could be 
considered as a non-invasive treatment decision support 
system that potentially can assist physicians in decision 
making for optimal therapeutic strategies. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-22-148/rc).

Methods

Patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). It was 
approved by the Ethics Committee of Fudan University 
Shanghai Cancer Center (No. 1909207-14-1910), and 
individual consent for this retrospective analysis was 
waived. We retrospectively reviewed patients with GC 
(n=90) who underwent total or partial radical gastrectomy 
and adjuvant chemotherapy at Fudan University Shanghai 
Cancer Hospital between January 2016 and December 
2017. Patients were followed up until March 2019. Tumor-
node-metastasis (TNM) staging was conducted according 
to the American Joint Committee on Cancer TNM 
Staging Manual, 8th edition (28). The inclusion criteria 
were as follows: (I) patient diagnosed with GC by surgically 
resected specimens; (II) HER2 IHC staining performed 
with primary GC tissue; (III) available clinical data such as 

https://qims.amegroups.com/article/view/10.21037/qims-22-148/rc
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sex, age, tumor size, and TNM staging; and (IV) available 
18F-FDG PET/CT scan data before treatment. 

For HER2 IHC analysis, the surgical tissue samples 
were formalin-fixed and paraffin-embedded before IHC 
staining using the HercepTestTM Kit (Dako, Glostrup, 
Denmark) according to the manufacturer’s instructions. An 
HER2+ status was defined as IHC 3+, IHC 2+, or FISH-
positive, and IHC 0 or IHC 1 was considered HER2− (29). 
Additionally, progression-free survival (PFS) was used to 
evaluate the prognosis of the patients, which was defined as 
time to progression or death after the surgery. 

All enrolled patients were followed up for at least 
1 year, which included serum tumor marker testing, 
abdominopelvic imaging [CT or magnetic resonance 
imaging (MRI)] or gastroscopy. Disease progression 
referred to recurrence of the primary tumor, new metastasis, 
or at least 20% increase in the sum of the diameters of 
lesions after chemotherapy according to the Response 
Evaluation Criteria in Solid Tumors (RECIST 1.1). Based 
on the findings, the enrolled patients were divided into 
disease-progression and non-disease-progression groups.

18F-FDG PET/CT scan and image analysis
18F-FDG PET/CT scans were performed with a whole-
body PET/CT scanner (Biograph 16 HR; Siemens Medical 
Systems, Erlangen, Germany). Patients fasted for at least 
6 hours, and blood glucose levels had to be <140 mg/dL  
be fore  the  in jec t ion  o f  18F-FDG (3 .7  MBq/kg) .  
Scanning was started approximately 1 hour later. CT 
images were acquired first, with a low-dose technique 
(120 kV, 140 mA, 5-mm slice thickness), and then positron 
emission tomography (PET) scanning with the following 
parameters: 2–3 min/bed with Gaussian-filter iterative 
reconstruction method (iterations 4; subsets 8; image size 
168) for the reconstruction. Two experienced nuclear 
medicine physicians evaluated the PET/CT images, and 
the tumor parameters were measured using a computer 
platform (Syngo; Siemens, Knoxville, TN, USA), including 
maximum standardized uptake value (SUVmax), metabolic 
tumor volume (MTV40%, MTV2.5), and total lesion glycolysis 
(TLG40%, TLG2.5), according to published articles (18).

Medical image segmentation

The volumes of interest (VOIs) in the tumor were 
segmented slice-by-slice using open-source ITK-SNAP 
software (version 3.6; http://www.itksnap.org/pmwiki/

pmwiki.php) (30) by 2 attending physicians from the 
Department of Nuclear Medicine with >5 years’ experience. 
In the case of a difference of opinion, another attending 
physician with >15 years’ experience adjudicated the 
decision. All physicians were unaware of the pathological 
results. Since the 2 imaging modalities were co-registered, 
only the VOIs of the PET images were hand-segmented 
and then correlated to the CT images through coordinate 
transform and nearest neighbor interpolation. This 
interpolation function selected the value of the nearest point 
without considering other neighboring values. Moreover, 
because the CT images had a much higher resolution than 
the PET images, this interpolation function guaranteed 
accuracy and efficiency without intensive computation. The 
radiologists still verified the generated VOIs of each CT 
image to ensure reliability.

Radiomic feature extraction

The radiomics workflow for predicting the HER2 
expression and prognosis is summarized in Figure 1, 
comprising 4 principal stages: radiomic feature extraction, 
representative feature selection, predictive model 
construction, and statistical analysis. Before extracting the 
high-quantitative features, we applied SUV normalization 
of the PET images based on the body weights and injection 
doses of the patients, followed by a discretization process 
with a fixed bin width of 0.25, and for the CT images, 
features were computed based on a resampled voxel 
dimensions of 2×2×2 mm3 and a 25 bin width calculated 
on Hounsfield units (HU) (31). Other parameters were 
set to the default value provided by pyradiomics (31). For 
feature extraction, there were 1,050 high-quantitative 
imaging features extracted from VOIs delineated on 
the PET and CT images. Radiomic features included 4 
major groups: shape features (n=14), statistical features 
(n=18), texture features (n=56), and higher-order statistical 
features [consisting of 370 Laplacian of Gaussian (LoG)-
filtered features, and 592 wavelet-filtered features]. Shape 
features describe the geometric properties of the focused 
VOIs, such as the surface area. Statistical features describe 
the intensity distribution histogram of the image voxels. 
Texture features describe the statistical inter-relationships 
among neighboring voxels that provide the spatial 
arrangement via multiple matrices such as the gray-level 
co-occurrence matrix (GLCM) and gray-level run-length 
matrix (GLRLM). The fractal features identify repetitive 
or non-repetitive patterns and highlight details at different 
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coarseness levels of texture patterns by applying filters or 
mathematical transforms such as wavelet transformation 
and LoG. The radiomic feature extraction process was 
implemented through the scikit-learn (sklearn) package (31) 
and PyRadiomics (2.0.1) (31) in Python version 3.6.4, which 
are a machine learning library and an open-source Python 
package compliant with the instructions of the Image 
Biomarker Standardization Initiative reference manual (32), 
respectively.

Feature selection

We fused the extracted 2,100 high-quantitative imaging 
features with 28 clinical features and 30 clinical features 
for HER2 expression and the prognosis prediction, 
respectively, before implementing the feature selection. 
The feature selection strategy was designed to reduce the 
high dimensionality of the feature space and mined the 
embedded pattern based on the outcome-driven machine 
learning model. As illustrated in Figure 2A, we applied 
a sequential combination of multivariate and univariate 
selection on each fused feature pool. Additionally, feature 
selection was applied on different fused feature pools for 
different classification tasks (Figure 2B). For multivariate 
feature selection, the sequential forward feature selection 
(SFS) method was applied to automatically select the 
optimal feature set based on the prediction performance. 
The cardinality of the feature subset started incrementing 
from 1 and incremented by 1 until all combinations of a 
user-defined subset length were covered. The combination 
that maximized 10-fold cross-validation performance was 

chosen in each iteration, primarily accuracy and the area 
under curve (AUC). The performance of SFS for HER2 and 
prognosis prediction is shown in Figure 3. Next, univariate 
selection was used to select the final discriminative feature 
set through a redundancy-based analysis, including 
analyzing the statistical correlation among selected features 
and comparing the performance after eliminating each 
statistically correlated feature.

Modeling and validation

The patients were split into training and independent 
validation datasets using a stratified method based on an 
8:2 ratio. We then introduced an ensemble classifier—
a balanced bagging classifier as the overall framework for 
HER2 and prognosis prediction because the class ratio 
for the initial dataset was slightly imbalanced. We also 
applied the Adaboost classifier as the base classifier in the 
balanced bagging approach due to its superior performance 
within the balanced bagging compared with others, which 
improved the stability and accuracy of the algorithms. Since 
the final prediction was generated through voting from 
multiple base classifiers (Adaboost) within the ensemble 
model, it reduced the variance and prevented the model 
from overfitting. To validate the robustness and stability 
of each predictive model, 5-fold cross-validation on the 
training set and independent validation methods were 
utilized. The performance of the model was primarily 
evaluated by accuracy, sensitivity, specificity, and AUC. The 
positive and negative predictive values were also computed 
through the confusion matrix.

Figure 1 Radiomics workflow for the prediction of HER2 expression and prognosis. PET, positron emission tomography; CT, computed 
tomography; LoG, Laplacian of Gaussian; LIME, Local Interpretable Model-Agnostic Explanations; HER2, human epidermal growth 
factor receptor 2.
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Figure 2 Methodology and results of feature selection. (A) Feature selection pipeline; (B) the number of selected features in each stage 
during the feature selection process. HER2, human epidermal growth factor receptor 2; SFS, sequential forward feature selection; PET, 
positron emission tomography; CT, computed tomography.
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Statistical analysis

Statistical analysis contained the feature importance 
ranking, the contribution of CT features and PET 
features to the final prediction, and correlation analysis 
among the selected features for each task with the clinical 
features. We applied different methods to evaluate the 
feature importance based on different scales to enhance 
the reliability of the selected features. The feature 
importance ranking was implemented continuously, and 
randomly permuted and scored each variable to evaluate 
the representative value of selected features through 
the scale of the whole testing dataset, and the local 

interpretable model-agnostic explanations (LIME) model 
was implemented to evaluate the contribution of CT and 
PET features to the final prediction through its derived 
coefficients based on the scale of each patient in the 
testing dataset (33). As for the correlation analysis, Mann-
Whitney U tests were used to assess the difference between 
patients in the training and independent validation 
cohorts. The Pearson method was used for evaluating the 
correlation between the selected radiomic features and the 
clinical features. All statistical analyses were implemented 
using Python package version 3.6.4, and P<0.05 (2-sided) 
was considered statistically significant.
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Figure 3 Results of the SFS method and the feature redundancy analysis for predicting HER2 expression and prognosis. SFS, sequential 
forward feature selection; HER2, human epidermal growth factor receptor 2; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level 
run-length matrix. GLSZM, gray-level size zone matrix; MCC, maximal correlation coefficient; HLH, high, low, and high frequency; HHL, 
high, high, and low frequency; LLH, low, low, and high frequency; LLL, low, low, and low frequency.

Results

Patient characteristics

From January 2016 to December 2017, 90 patients 
with diagnosed GC were enrolled in this retrospective 
study. The training cohort comprised 46 males and 26 
females (age range 22–86 years, median 61 years), and the 
validation cohort included 11 males and 7 females (age 
range 47–79 years, median 63 years). Histopathological 
analyses revealed adenocarcinoma in 58 patients (64.4%), 
signet ring cell carcinoma (SRCC) in 10 patients (11.1%), 
and mixed adenocarcinoma in 22 patients (24.4%). GC 

patients with HER2+ expression accounted for 31.1% 
(n=28), and the median PFS was 7.9 months. There was a 
significant difference between HER2+ and HER2− patients 
in terms of SUVmax (P=0.04), but no obvious difference 
was found in MTV, TLG, and different prognosis  
(P>0.05). We also found that 36.7% (n=33) of the patients 
had a poor prognosis after further follow-up. There were no 
statistically significant differences in category, age, sex, and 
clinical features (histopathological type, Lauren subtype, 
differentiation, etc.) between the training and validation 
cohorts (P>0.05). More details of the demographic and 
clinical characteristics of the enrolled patients are displayed 
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Table 1 Detailed demographic and clinical characteristics of the enrolled patients in the training and external validation cohorts 

Characteristics Training cohort (n=72) External validation cohort (n=18) P

Age, median [range] 61 [22–86] 63 [47–79] 0.15

Gender, n (%) 0.42

Male 46 (63.9) 11 (61.1)

Female 26 (36.1) 7 (38.9)

Histopathological type, n (%) 0.13

Adenocarcinoma 48 (66.7) 10 (55.6)

Signet ring cell carcinoma 9 (12.5) 1 (5.6)

Mixed adenocarcinoma 15 (20.8) 7 (38.9)

Lauren type, n (%)

Intestinal type 25 (34.7) 8 (44.4) 0.20

Diffuse type 25 (34.7) 6 (33.3)

Mixed type 22 (30.6) 4 (22.2)

Differentiation, n (%) 0.25

Low 37 (51.4) 9 (50.0)

Middle-low 25 (34.7) 4 (22.2)

Middle 10 (13.9) 3 (16.7)

High 0 (0.0) 2 (11.1)

HER2 expression, n (%) 0.41

HER2 positive 22 (30.6) 6 (33.3)

HER2 negative 50 (69.4) 12 (66.7)

PFS, n (%) 0.42

Progress 46 (63.9) 11 (61.1)

Non-progress 26 (36.1) 7 (38.9)

SUVmax, mean (standard deviation) 8.17 (5.14) 7.06 (3.54) 0.37

40% MTV, mean (standard deviation) 36.94 (30.37) 36.52 (33.11) 0.41

40% TLG, mean (standard deviation) 312.29 (1,301.66) 127.86 (92.19) 0.42

P<0.05 is considered statistically significant. HER2, human epidermal growth factor receptor 2; PFS, progression-free survival; SUVmax, 
maximum standardized uptake value; MTV, metabolic volume; TLG, total lesion glycolysis. 

in Table 1. 

Results of feature selection

For the task of predicting HER2 expression, the fused 
feature pool contained 2,100 radiomic features extracted 
from PET and CT images and 28 clinical-biological 
features. There were 5 PET features, and 5 CT features 
selected through multivariate selection based on the feature 

importance ranking (Figure 3), and the final discriminative 
feature set comprising 4 CT features and 3 PET features 
was selected in univariate selection through redundancy 
analysis (Figure 3) for model construction. For the prognosis 
prediction task, 5 PET features and 5 CT features were 
selected from the fused feature pool composed of 2,100 
radiomic features and 30 clinical-biological features during 
multivariate selection (Figure 3), and after redundancy-based 
analysis, only 1 CT feature and 2 PET features remained.
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Figure 4 Performance of the predictive model for each task. (A) AUC for predicting HER2 expression; (B) AUC curve for prognosis 
prediction; (C) accuracy for each predicted class in HER2 prediction; (D) accuracy for each target class in prognosis prediction. ROC, 
receiver operating characteristic; AUC, area under the curve; HER2, human epidermal growth factor receptor 2.

Table 2 Performance of the predictive model on the independent validation dataset

Evaluation Accuracy (SD) AUC (SD) Sensitivity (SD) Specificity (SD)

HER2 83.3% (4.09%) 72.2% (3.61%) 84.6% (5.44%) 80% (7.34%)

Prognosis 77.8% (4.53%) 75.3% (4.13%) 81.8% (6.88%) 71.4% (6.32%)

SD, standard deviation; AUC, area under curve; CI, confidence interval; HER2, human epidermal growth factor receptor 2.

Performance of the radiomics signature

The performance of the selected radiomics signatures for 
each prediction task is displayed in Figure 4. The ensemble 
model established with 7 radiomic features to predict HER2 
expression achieved 83.3% accuracy (sensitivity, 84.6%; 
specificity, 80%; AUC, 72.2%). The predicted accuracy 
for HER2+ and HER2− expression is shown in Figure 4C.  
As for prognosis prediction, the receiver operating 
characteristic (ROC) curves of the radiomics signature 
reached 75.3% (Figure 4B). Moreover, the predictive model 
for prognosis also showed superior performance with an 
accuracy of 77.8% (sensitivity, 81.8%; specificity, 71.4%; 
AUC, 75.3%). This model achieved 81.8% and 71.4% 

accuracy for predicting each target class (progression vs. 
non-progression, respectively). More importantly, based on 
the sensitivity and specificity values for each prediction task, 
there was no sign of bias within the model. The detailed 
performance of the radiomics signatures for each prediction 
task is summarized in Table 2.

Feature analysis and interpretation

There were 7 features selected to predict HER2 expression, 
including 4 CT features (2 wavelet decomposed features, 
1 LoG decomposed feature, 1 shape feature) and 3 wavelet 
decomposed PET features. According to the feature 
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Figure 5 Feature importance and contribution to the final prediction of each task. (A) Feature importance ranking for HER2 expression; 
(B) contribution of CT and PET features to predicting HER2 expression; (C) feature importance ranking for prognosis prediction; 
(D) contribution of CT and PET features for prognosis prediction. HER2, human epidermal growth factor receptor 2; CT, computed 
tomography; PET, positron emission tomography; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix. 
GLSZM, gray-level size zone matrix; HLH, high, low, and high frequency; HHL, high, high, and low frequency; LLH, low, low, and high 
frequency; LLL, low, low, and low frequency.

importance ranking shown in Figure 5A, all the wavelet 
decomposed features from both the CT and PET images 
contributed positively to the final prediction, suggesting 
a significant role of wavelet decomposed features in the 
prediction of HER2 expression. Moulin claimed that the 
significance of wavelet decomposed features could be 
interpreted from both the mathematical and psychophysics 
perspective (34). From the mathematical standpoint, the 
regularity and vanishing moment properties of its filter 
affect the ability to efficiently represent typical images by 
affecting the shape of the bias functions, whereas from the 
psychophysical perspective, multiscale and multi-orientation 
decompositions were indeed natural and efficient for visual 
information processing (34). We also computed the overall 
PET and CT feature contribution to the final prediction in 
the validation set using the LIME model (33) (Figure 5B),  

and the results aligned with the feature importance 
ranking that CT features contributed more than PET 
features. Therefore, based on the model performance and 
the literature support, the reasonableness of the selected 
features could be justified, and their application might 
improve diagnostic performance in distinguishing HER2+ 
expression from HER2− expression. There were 3 features 
selected for prognosis prediction, comprising 2 PET 
features and 1 CT feature, but only 2 of them (wavelet 
decomposed CT feature and LoG decomposed PET 
feature) were considered to contribute to the prediction task 
based on the importance feature score shown in Figure 5C.  
To further analyze the reason for this, a correlation 
analysis of the 3 selected features and the clinical features 
that were defaulted to be effective in the diagnosis of the 
prognosis was conducted. The wavelet decomposed CT 
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feature was statistically correlated to infiltration depth 
(P=0.017), SUV (P=2e-3), and TLG (P<1e-5). The LoG 
decomposed PET feature was only statistically correlated 
to the histopathological type (P=0.017), and the wavelet 
decomposed PET feature did not correlate to any of the 
clinical features. This result could be a proper interpretation 
of the feature importance ranking shown in Figure 5C. As 
the importance score for the LoG decomposed PET feature 
weighted more than the CT feature, we might infer that the 
value of histopathological type was superior to infiltration 
depth, SUV, and TLG.

Discussion

In recent years, the necessity and urgency to establish a non-
invasive and accurate method to provide comprehensive 
information about heterogeneous tumors have been 
emphasized. In this study, we have shown in a large cohort 
of GC patients that 18F-FDG PET/CT radiomics enabled 
distinction of different HER2 expressions (positive vs. 
negative), and different prognosis prediction (progression 
vs. non-progression) with an accuracy of 83.3% and 77.8%, 
respectively. The present radiomics signature promises to 
provide an efficient, objective, and non-invasive method for 
obtaining phenotypic information and potentially assisting 
clinical decision-making.

We firstly investigated the relationship between 18F-FDG 
uptake and HER2 expression, and found a significance 
difference in the SUVmax between HER2+ and HER2− 
patients. Similarly, previous studies have demonstrated 
that HER2+ GC has a higher SUVmax than HER2− GC 
(18,35), and 18F-FDG accumulation might help predict the 
HER2 expression of GC. However, the thresholds varied 
considerably across studies. Unfortunately, there was no 
significant difference in MTV and TLG between HER2+ 
and HER2− expression (P>0.05) in our study. The possible 
reason may be that the pathological type of some patients 
in our study was SRCC, which often shows low-to-no 
18F-FDG uptake. Therefore, large-scale clinical trials are 
required to further investigate the value of 18F-FDG uptake 
in predicting HER2 expression in GC.

Radiomics can extract much more information from 
medical images and provide more complete characterization 
of the tumors beyond clinical parameters (i.e., SUVmax, 
MTV, and TLG). Some studies have established a radiomics 
nomogram to predict HER2 status in GC using CT data 
(36,37). To achieve this, they established and validated a 
radiomics nomogram for HER2 status prediction through 

a multivariable logistic regression method incorporating 
the radiomics signatures and carcinoembryonic antigen 
(CEA) levels. The radiomics nomogram achieved an AUC 
of 0.771 [95% confidence interval (CI): 0.607–0.934] in 
their validation cohort. Since the multivariable regression 
involved multiple data variables for analysis and the authors 
tried to find a formula that could explain how factors within 
variables respond simultaneously to change in others, the 
model did not have much scope for smaller datasets (38). 
In our study, we introduced an ensemble model (balanced 
bagging classifier), which was not limited by data size and 
effectively prevented the risk of overfitting. This ensemble 
model achieved outstanding performance with an accuracy 
of 83.3% (sensitivity, 84.6%; specificity, 80%; AUC, 72.2%) 
for HER2 expression prediction. We also found that the 
selected CT features had higher feature importance than 
the selected PET features, for the following possible 
reasons: (I) PET images can only provide information from 
the highlighted area where gray-level information is rare; 
(II) compared with PET images, CT images have better 
resolution, and structure information can be extracted from 
plenty of gray levels.

Early prediction of the poor outcome of patients could 
assist in advanced selection of additional treatments. 
Many studies have elucidated that some parameters of 
pretreatment 18F-FDG uptake (i.e., SUVmax, MTV, or TLG) 
are independent prognostic predictors for GC patients (39). 
Unfortunately, there was no statistical difference of SUVmax, 
MTV, or TLG between patients with different prognoses, 
and the reason for this finding might be associated with 
different pathological types and TNM stages, as some 
histopathological types do not show high 18F-FDG uptake. 
Furthermore, 18F-FDG uptake is only a reflection of 
glucose metabolism and it is difficult to assess the complex 
pathophysiological behavior of tumors from a single 
factor. By comparison, radiomics analysis can offer more 
comprehensive information about the tumor, which may 
demonstrate intratumoral heterogeneity and its invasiveness.

Jiang et al. reported that a radiomics signature based 
on 19 CT features might be helpful in identifying GC 
patients at higher risk of recurrence (40). It remains an 
intractable challenge to interpret the associations between 
biological processes and radiomic features. In our study, 
we selected 3 features to establish the predictive model, 
and correlation analysis indicated that these features were 
statistically correlated to infiltration depth (P=0.017), SUV 
(P=2e-3), and TLG (P<1e-5), which are strongly associated 
with tumor invasion. Our study also revealed that most of 
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the selected features were from the wavelet decomposed 
images with different combinations of low-pass and high-
pass filters. For now, it remains difficult to elucidate 
the effectiveness of radiomic features on chemotherapy 
outcome and the prognosis of patients. A reasonable 
explanation could be that radiomic features reflected 
intratumor heterogeneity and genomic pathways, as many 
studies have validated that radiomic features might offer 
helpful information on the tumor’s molecular profile and 
subsequent treatment strategies (41,42).

Conclusions

We demonstrated the superior diagnostic performance of 
18F-FDG PET/CT radiomics in differentiating HER2+ 
expression from HER2− expression and prognosis prediction 
in patients with GC. The high diagnostic performance 
justified the feasibility of applying the models to provide 
individualized predictive information non-invasively to 
supplement conventional methods of clinical decision-
making in patients with GC. 
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