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Background: Morphological parameters of the lumbar spine are valuable in assessing lumbar spine 
diseases. However, manual measurement of lumbar morphological parameters is time-consuming. Deep 
learning has automatic quantitative and qualitative analysis capabilities. To develop a deep learning-based 
model for the automatic quantitative measurement of morphological parameters from anteroposterior digital 
radiographs of the lumbar spine and to evaluate its performance.
Methods: This study used 1,368 anteroposterior digital radiographs of the lumbar spine to train a 
deep learning model to measure the quantitative morphological indicators, including L1 to L5 vertebral 
body height (VBH) and L1-L2 to L4-L5 intervertebral disc height (IDH). The means of the manual 
measurements by three radiologists were used as the reference standard. The parameters predicted by the 
model were analyzed against the manual measurements using paired t-tests. Percentage of Correct Key 
Points (PCK), intra-class correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute 
error (MAE), root mean square error (RMSE), and Bland-Altman plots were performed to assess the 
performance of the model.
Results: Within the 3-mm distance threshold, the model had a PCK range of 99.77–99.46% for the L1 to 
L4 vertebrae and 77.37% for the L5 vertebrae. Except for VBH-L5 and IDH_L3-L4, IDH_L4-L5 (P<0.05), 
the estimated values of the model in the remaining parameters were not statistically significant compared 
with the reference standard (P>0.05). Except for VBH-L5 and IDH_L4-L5, the model showed good 
correlation and consistency with the reference standard (ICC =0.84–0.96, r=0.85–0.97, MAE =0.5–0.66, 
RMSE =0.66–0.95). The model outperformed other models (EfficientDet + Unet, EfficientDet + DarkPose, 
HRNet, and U-net) in predicting landmarks within a distance threshold of 1.5 to 5 mm.
Conclusions: The model developed in this study can automatically measure the morphological parameters 
of the L1 to L4 vertebrae from anteroposterior digital radiographs of the lumbar spine. Its performance is 
close to the level of radiologists.
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Introduction

Low back pain (LBP) is a serious global public health 
problem (1). The lifetime prevalence of LBP is up to 85%, 
and LBP causes significant personal, social, and economic 
burdens worldwide (2). Over the last decade, the number 
of people disabled by LBP has increased by 54% (3), with 
the greatest increase being in low- and middle-income 
countries. Moreover, the prevalence of LBP is increasing 
yearly, raising disability rates and healthcare costs. There are 
numerous causes of LBP, and although approximately 85% 
of LBP cases have no clear etiology, a link between LBP 
and intervertebral disc degeneration has been suggested (4), 
with discogenic LBP accounting for approximately 39% of 
the cases (5).

Anteroposterior X-ray of the lumbar spine is commonly 
used as the preferred examination method for patients 
with LBP. Such images are economical and convenient, 
and valuable in assessing lumbar spine diseases. Reducing 
intervertebral disc height (IDH) is a key point in the 
pathological process of intervertebral disc degeneration (6).  
Morphological changes in vertebral bodies are also an 
important part of intervertebral disc degeneration (6). 
Reduced vertebral body height (VBH) or IDH can cause 
lumbar foramen stenosis, facet joint dislocation, and spinal 
stenosis (7,8). In addition, alterations in VBH and IDH are 
risk factors for LBP-related diseases such as scoliosis (9), 
spondylolisthesis (10), and fragility fracture (11). Therefore, 
the measurement of VBH and IDH by observing the 
morphological changes of vertebral bodies from digital 
lumbar spine radiographs is important for diagnosing and 
treating LBP-related diseases.

Many studies have been performed to measure 
morphological parameters of the vertebral body and 
intervertebral disc from lateral digital radiographs of the 
lumbar spine, including the vertebral compression ratio, 
anterior, middle, and posterior heights of the vertebral body 
and intervertebral disc, the width and depth of the upper 
and lower endplates of the vertebral body, and the vertebral 
height index and intervertebral height index (12-15). Still, 
few studies have been performed to quantify the lumbar 
spine morphology from anteroposterior digital radiographs. 
The manual measurement of the lumbar morphological 
parameters represents a heavy workload with low efficiency 
and is time-consuming and laborious; in addition, there are 
differences among different observers and within the same 
observers, with low consistency and repeatability. 

Furthermore, no previous studies used a deep learning 

algorithm to measure automatically and quantitatively VBH 
and IDH from anteroposterior digital radiographs of the 
lumbar spine, but some models are available for magnetic 
resonance imaging (MRI) (16,17), but access to MRI is 
limited, and the examination is more time-consuming and 
expensive than plain X-ray images. With the development 
of artificial intelligence, the application of the deep learning 
algorithm in diagnosing and treating lumbar spine diseases 
has become a hot research topic. 

Therefore, this study aimed to create a deep learning-
based model that uses a convolutional neural network for 
the quantitative morphological analysis of anteroposterior 
digital radiographs of the lumbar spine and to evaluate its 
performance and scalability. The results could provide a 
reference base and guide clinicians’ decision-making in 
treating lumbar spine diseases.

Methods

Materials

Data sets
The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The Ethics 
Committee of Gansu Provincial Hospital of Traditional 
Chinese Medicine approved this retrospective study (No. 
2020-112-01). The requirement for informed consent was 
waived because only retrospective imaging data were used.

From July 2020 to September 2021, the imaging data 
of 1,734 patients with LBP treated at the outpatient clinic 
were obtained from the hospital picture archiving and 
communication system (PACS). Patients ≥18 years of age 
who underwent anteroposterior digital radiography of the 
lumbar spine were included in this study. The age criterion 
was used to ensure that only patients who had achieved 
skeletal maturity were enrolled. The exclusion criteria were 
(I) a history of spinal surgery or severe spinal deformities; 
(II) metabolic bone disease, spinal tuberculosis, or tumors; 
(III) poor image quality with obscured landmarks; or 
(IV) severe bone hyperplasia or other factors affecting 
the measurement. Finally, 1,368 anteroposterior digital 
radiographs of the lumbar spine were included. They were 
randomly assigned to the training set, validation set, and 
test set according to the ratio of 65%, 20%, and 15%, 
respectively (supplementary material: Appendixes 1,2).

Landmark annotation and parameter measurement
The naming of each landmark was standardized to calculate 

https://cdn.amegroups.cn/static/public/QIMS-22-540-supplementary.pdf
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clinically relevant parameters. Taking the L1 vertebral body 
as an example: L1HR stands for the right margin point 
of the superior edge of a vertebral body, L1FR stands for 
the right margin point of the inferior edge of a vertebral 
body edge, L1HL stands for the left margin point of the 
superior edge of vertebral body edge, and L1FL stands for 
the left margin point of the inferior vertebral body edge. 
The distance between the margin point of a vertebral body’s 
superior edge and the margin point of the inferior edge of 
the vertebral body edge (on the same side) was the VBH. 
The distance between the margin point of the inferior edge 
of the vertebral body and the margin point of the superior 
edge of the lower vertebrae (on the same side) was the IDH. 
In the present study, VBH from L1 to L5 and IDH from 
L1-L2 to L4-5 were measured, and the VBH and IDH 
parameters measured on the left and right sides were pooled 
and calculated as an average. All landmark annotations and 
each specific name (18,19) and parameter measurements are 
shown in Figure 1.

Three radiologists (R1, R2, and R3) with 3, 5, and  
6 years of diagnostic experience in musculoskeletal imaging, 
respectively, independently labeled 27,360 landmarks 
from 1,368 anteroposterior digital radiographs of the 

lumbar spine in the form of pixel-level dots using the 
JPHV-specific software for training and validation of the 
model after uniform training. The radiologist R1 labeled 
the test set a second time after six weeks to assess intra-
observer reliability. The mean of the three radiologists’ 
measurements was used as a reference standard when 
analyzing model performance.

Model construction

Data preprocessing
The original images were resized to a resolution of  
640×640 pixels in the first stage. Each vertebral body was 
cropped according to the predicted vertebral key points 
and then scaled to 256×256 pixels in the second stage. In 
the model training phase, data augmentation methods such 
as random rotation (−30° to +30°), random scaling, and 
horizontal flipping were applied to increase the data diversity 
to improve model robustness. During the model inference 
phase, there were no data augmentation operations.

Study method 
Inspired by the state-of-the-art pose methods (20,21) based 
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Figure 1 Annotations of landmarks and parameter measurements. Each landmark has a specific name. (A) Measurement of VBH; (B) 
measurement of IDH. VBH, vertebral body height; IDH, intervertebral disc height. 
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on the heatmap coordinate representation, High-Resolution 
Network (HRNet) (21) was used as the backbone model 
and combined with the Distribution-Aware coordinate 
Representation of Key points (DARK) (20) to localize the 
vertebrae and identify the vertebral body key points. The 
whole pipeline design is summarized in Figure 2. According 
to the vertebrae to which each landmark belongs, the outer 
rectangle expanded by 60 pixels of every four landmarks, 
determining the region where a vertebra was located  
(Figure S1). The Cascaded DARK model construction 
process was divided into two stages to retain detailed 
information on lumbar spine images: lumbar spine 
vertebrae detection and landmark identification (22). This 
two-stage process was designed to reduce the resolution 
loss of the input images to the model. In the first stage, 20 
key points of the spine were identified by the DARK model 
with HRNet-32 as the backbone, and vertebral bodies from 
L1 to L5 were obtained according to the key point locations 
of each vertebra. In the second stage, the five vertebral 
bodies detected in the first stage were cropped out from 
the original radiographs and fed into another DARK model 
similar to the first-stage structure to obtain the refined 

position of the key points of each vertebra. During the 
prediction process, the exact 20 landmark locations were 
obtained from the original radiographs with the trained 
Cascaded DARK model following the key point localization 
process (Figure S2). Based on the calculation method 
in parameter measurement, the relevant radiological 
parameters were then calculated from the coordinates of the 
predicted landmarks, thus enabling automatic measurement.

Model performance evaluation 
The percentages within 1, 2, 3, 4, and 5 mm landmark-to-
landmark distance thresholds were used to assess landmark 
annotation inter-observer and intra-observer reliability (23).  
The average value of the labeling results of the three 
radiologists was used as a reference standard. The model’s 
performance was evaluated in terms of two dimensions: 
accuracy of landmark localization and consistency of 
radiological parameters compared with the reference standard 
on the test set. Specifically, the Percentage of Correct Key 
Points (PCK) metric was used to evaluate the performance 
of all landmarks predicted by the model. The radiological 
parameters were calculated using the coordinates of the 

Lumbar radiographs

Output channels: 4
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Detection & landmark model Landmark detection
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Figure 2 Model structure and flow diagram.
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key points, as specified in the parameter measurement 
part. The intra-class correlation coefficient (ICC), the 
Pearson correlation coefficient (r), the mean absolute error 
(MAE), and the root mean square error (RMSE) were 
calculated between the model prediction and reference 
standard to evaluate the performance of the model (24).  
An ICC larger than 0.75 was considered to achieve high 
consistency between the reference standard and the model 
in evaluating the radiological parameters. |r|≥0.7 indicated 
a high correlation. Moreover, an inter-observer agreement 
was assessed between model estimated measurements and 
reference standard using the mean difference, standard 
deviation (SD), and 95% limit of agreement graphically 
represented by the Bland-Altman plots. 

Comparison of convolutional neural networks
The model performance in detecting all landmarks was 
compared to that of other convolutional neural networks 
(EfficientDet + Unet, EfficientDet + DarkPose, HRNet, 
U-net) by using PCK on the test sets. All convolutional 
neural networks received the same training data and 

strategies for a fair comparison.

Statistical analysis

All data analyses were performed using Python (Scipy, 
Statsmodels, and Pingouin). Data were shown as means ± 
SDs or medians (ranges) based on distribution determined 
using the D’Agostino and Pearson omnibus normality tests. 
General patient data, including sex and age distribution, 
were presented by statistical description. The difference 
between the reference standard and the model in terms of 
prediction was analyzed using the paired t-test. Differences 
were considered statistically significant with P<0.05. 
Further statistical analysis was based on MAE, PCK, ICC, 
regression analysis, and Bland-Altman plot.

Results 

General data distributions

This study included 1,368 lumbar spine anteroposterior 
digital radiographs. The ratio of males to females was 
606:762 (44.3%:55.7%). The training set consisted of 893 
radiographs, the validation set consisted of 269 radiographs, 
and the test set consisted of 206 radiographs. Table 1 
summarizes the overall data distribution.

Reliability of landmark annotation

The percentages of intra-observer landmark distances 
within the 3 mm threshold were 89%, and the percentages 
of inter-observer landmark distances were 86% (R1 and 
R2), 92% (R1 and R3), and 95% (R2 and R3), respectively 
(Table 2).

Landmark performance

The PCK ranged from 99.77% to 99.46% for the L1 to L4 
vertebrae and 77.37% for the L5 vertebrae within the 3 mm 
distance threshold, as shown in Table 3. Figure S3 shows a 
typical illustration of the predictive landmark model.

Comparison of convolutional neural networks

For the test set, the PCK of our model within the 1.5 to  
5 mm threshold was larger than for the EfficientDet + 
Unet, EfficientDet + DarkPose, HRNet, and U-net models. 
Especially within the 1.5 to 3 mm threshold, the highest 

Table 1 Patient characteristics in the training, validation, and test sets

Characteristic Training set Validation set Test set

Image number, n (%) 893 (65.3) 269 (19.6) 206 (15.1)

Male, n (%) 396 (44.3) 122 (45.5) 88 (42.8)

Female, n (%) 497 (55.7) 147 (54.5) 118 (57.2)

Age (y)* 48 [46–49] 47 [40–50] 38 [35–44]

Male, median [range] 39 [37–43] 37 [32–48] 37 [33–45]

Female, median [range] 52 [50–54] 51 [45–54] 40 [35–47]

Data are expressed as numbers of images with percentages in 
parentheses. *, the data were median ± 95% CI. CI, confidence 
interval.

Table 2 The intra- and inter-observer reliability of landmark 
annotation (%)

Threshold (mm) 1 2 3 4 5

Intra-observer reliability 42 79 89 93 96

Inter-observer reliability

R1 vs. R2 37 74 86 91 94

R1 vs. R3 63 86 92 96 98

R2 vs. R3 67 91 95 97 98

https://cdn.amegroups.cn/static/public/QIMS-22-540-supplementary.pdf
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PCK of the present model and the highest PCK of the 
other models were 96.41%, 94.20%, 93.54%, 35.80%, 
and 20.70%. In addition, the present model average PCK 
for the five lumbar vertebrae within the 3 mm threshold 
was >95%. Figure 3 shows the comparison of the landmark 
predictions of the five convolutional neural network models 
and the prediction ability of the present convolutional 
neural network for each vertebra.

Model measurement performance

When the model’s parameters were compared to the three 
physicians’ mean values (gold standard), the results revealed 
that there were no significant differences between the  
two groups for VBH-L1, VBH-L2, VBH-L3, VBH-L4, 
IDH_L1-L2, and IDH_L2-L3 (all P>0.05). For VBH-L5, 
IDH_L3-L4, and IDH_L4-L5, the values measured by 
the model were 30.32±3.91, 12.04±1.54, and 8.08±2.34, 
respectively, compared to the reference standard values of 

28.18±2.87, 11.71±1.30, and 9.85±1.72, respectively (all 
P<0.05) (Table 4).

Furthermore, the model’s overall performance was 
compared to the reference standard, with the results 
demonstrating that the model’s predicted values were 
consistent and reliable (ICC 0.84–0.96, r 0.85–0.97, MAE 
0.5–0.66, RMSE 0.66–0.95) with the reference standard for 
all parameters except for two parameters: VBH-L5 (ICC 
0.53, r 0.67, MAE 2.53, RMSE 3.63) and IDH_L4-L5 (ICC 
0.54, r 0.78, MAE 1.88, RMSE 2.30) (Table 4). Bland Altman 
plots and regression analyses were performed to assess the 
differences and correlations between the model and the 
reference standard in measuring VBH and IDH (Figure 4); 
all parameters showed significant linear correlations except 
for two parameters: VBH-L5 and IDH_L4-L5.

Discussion

The use of artificial intelligence for the automatic, 
quantitative, and efficient measurement of VBH and IDH 
is an urgent need for clinical diagnosis and treatment 
of lumbar spine diseases and is expected to provide 
clinicians with a basis for diagnosing and grading lumbar 
spine diseases, selecting treatment options, and assessing 
prognosis (19,25-27). IDH was the first imaging indicator 
used to evaluate intervertebral disc degeneration, and 
there is a relationship between morphological changes in 
the lumbar vertebral body and VBH and IDH, as well as 
between LBP and disc pathology (26,28). Karunanayake  
et al. (29) performed bivariate and logistic regression 
analyses of LBP with spinal space stenosis, vertebral 

Table 3 The PCK values of landmarks at the 1–5 mm threshold (%)

Threshold (mm) L1 L2 L3 L4 L5

1 69.42 66.89 72.71 62.54 21.64

2 98.02 98.24 98.40 95.80 59.86

3 99.77 99.70 99.70 99.46 77.37

4 99.92 100.00 100.00 99.84 85.63

5 100.00 100.00 100.00 100.00 90.67

PCK, Percentage of Correct Key points. 

Figure 3 The comparison of the landmark prediction by EfficientDet +Unet, EfficientDet + DarkPose, HRNet, U-net, and our model is 
shown on the right. The ability of our model to predict each vertebral is depicted on the left.
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osteophyte, and spondylolisthesis from posterior-anterior 
and lateral radiographs of the lumbosacral spine and 
showed that only spinal space stenosis was significantly 
associated with LBP. Machino et al. (14) performed a large-
scale cross-sectional observational study using lateral and 
hyperextension-hyperflexion radiographs of the lumbar 
spine and found that age-related degenerative disc height 
reduction was most significant in the L4/L5 intervertebral 
space in the middle-aged and elderly population. Because 
the number of intervertebral disc surgeries is increasing, 
these findings will provide valuable information to clinicians 
before surgical interventions. Still, all the studies described 
above are based on manual measurements of relevant 
parameters. Two recent studies used deep learning but were 
based on MRI (16,17), which is less convenient than X-rays.

With the improvement of deep learning algorithms, 
many scholars used deep learning algorithms to measure 
anatomical parameters in medical images automatically, 
especially in bone and muscle images. Ye et al. (30) 
developed a model for measuring knee joint-related 
parameters based on lateral radiographs of both knees using 
the convolutional neural network algorithm. Compared 
with the gold standard, the model had high consistency 
in the measurement of left and right knee joint-related 
parameters (left knee ICC =0.91–0.95, r=0.84–0.91; 
right knee ICC =0.87–0.96, r=0.78-0.92). Li et al. (31) 
developed a model for automatically measuring the imaging 
parameters of hallux valgus in the weight-bearing dorsal 

plantar (DP) radiographs using deep learning. Under 
the 3-mm threshold, the PCK value of the predicted key 
point was 84–99%. Hao et al. (32) used high-level feature 
representation of deep convolutional neural networks 
to locate and identify automatically vertebrae in 3D CT 
volume. This study developed an automated parametric 
measurement model based on anteroposterior digital 
radiographs of the lumbar spine using the deep learning 
algorithm. The model could identify anatomical landmarks 
of the L1 to L4 vertebrae automatically and accurately. The 
model’s performance in measuring L1 to L4 vertebral body 
height and L1-L2 to L3-L4 IDH was near the radiologist’s 
level. Compared with the EfficientDet + Unet, EfficientDet 
+ DarkPose HRNet, and U-net models, the present model 
performs better, especially within the 1.5–3 mm threshold. 
In order to locate vertebrae and identify vertebral key 
points in this study, a combination of HRNet and DARK 
was used. The results showed that the performance of the 
deep learning model developed here to identify the L1 to 
L4 vertebrae key points was good (PCK 99.77–99.46%), 
and the consistency between the measured parameters and 
the reference standard was close to or slightly better than 
the previous research results (ICC =0.84–0.96, r=0.85–
0.97). The present study provides an accurate and efficient 
auxiliary tool for assisting clinicians in diagnosing and 
treating lumbar diseases in the future.

In the research, the mean of three radiologists’ 
measurements was used as a reference standard (33). 

Table 4 Comparison between the model and the reference standard for the measurement of the lumbar vertebra and the intervertebral disc

Parameters Mean Model P ICC (95% CI) r MAE RMSE 

VBH-L1 26.10±2.27 25.70±2.27 0.08 0.91 (0.85–0.95) 0.93 0.66 0.95

VBH-L2 26.64±2.07 26.32±2.08 0.11 0.93 (0.88–0.96) 0.93 0.59 0.79

VBH-L3 28.14±2.21 27.85±2.37 0.20 0.96 (0.92–0.98) 0.97 0.50 0.66

VBH-L4 29.34±2.39 28.97±2.53 0.13 0.96 (0.9–0.98) 0.97 0.58 0.74

VBH-L5 28.18±2.87 30.32±3.91 0.00* 0.53 (0.19–0.72) 0.67 2.53 3.63

IDH_L1-L2 9.40±1.58 9.67±1.61 0.09 0.84 (0.77–0.88) 0.85 0.62 0.92

IDH_L2-L3 11.02±1.47 11.31±1.67 0.07 0.90 (0.84–0.94) 0.93 0.51 0.69

IDH_L3-L4 11.71±1.30 12.04±1.54 0.02* 0.88 (0.77–0.92) 0.91 0.57 0.73

IDH_L4-L5 9.85±1.72 8.08±2.34 0.00* 0.54 (0.04–0.79) 0.78 1.88 2.30

Mean is the reference standard. Model is the parameter measured by the Model. Data are expressed as the mean ± SD. *, P (paired t-test) 
<0.05 indicates the statistical significance between the model and the reference standard of the near parameters. VBH is the average 
height of the left and right vertebral body; IDH is the average height of the left and right intervertebral disc. ICC (95% CI), intra-class 
correlation coefficient (95% confidence interval); r, Pearson correlation coefficient; MAE, the mean absolute error; RMSE, the root mean 
square error; VBH, vertebral body height; IDH, intervertebral disc height. 
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Figure 4 Bland-Altman plots (left) and correlation scatter diagrams (right) show the model’s and the reference standard’s differences and 
correlations. VBH, vertebral body height; SD, standard deviation; IDH, intervertebral disc height.
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Variability in traditional manual measurements is a 
common and unavoidable phenomenon where accuracy 
and reproducibility are primarily dependent on operator 
experience and judgment (34). However, three physicians 

with many years of experience in diagnostic musculoskeletal 
imaging underwent uniform training to ensure the accuracy 
of the data used for the model training set. In the present 
study, the percentage of inter-observer landmark distance 



Quantitative Imaging in Medicine and Surgery, 2023 9

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023 | https://dx.doi.org/10.21037/qims-22-540

within the 3-mm threshold was 86% to 95%, except for 
L5, while the PCK within the 3-mm distance threshold for 
landmarks predicted by the model ranged from 99.77% 
to 99.46%, indicating that the model predicted the L1 
to L4 vertebral key points with better accuracy than the 
radiologists. The PCK of the L5 vertebral body within 
the 3-mm threshold was reduced compared with the 
other vertebral bodies, mainly due to the natural anterior 
convexity of the lumbar spine in the standing position of the 
human body and the anterior and posterior edges of the L5 
vertebral body are not at the same level when performing 
anterior and posterior X-ray projection of the lumbar spine, 
and the incident X-rays cannot reach the tangential position 
for imaging, resulting in a limited view of the upper and 
lower edges of the L5 vertebral body (35) and reduced 
clarity. This situation is objective and unavoidable, and it 
is difficult for radiologists to accurately identify key points, 
independently from the deep learning algorithm.

There are some limitations in this study. First, the model 
struggled to identify and determine accurately the presence 
of transitional vertebrae, which impacted the accuracy of the 
results. We will train the model separately for the transition 
vertebrae in the future. Second, the dataset was not rich 
enough, and the prediction process was based only on 
1,368 anteroposterior digital radiographic representations 
of the lumbar spine without clinical information such as 
age, sex, and weight, all factors that may be needed to link 
imaging findings to true clinical significance (36). In future 
studies, we intend to expand the lumbar anteroposterior 
digital radiograph dataset to include a broader range of 
cases and diseases to train the model better and investigate 
the relationship between age, sex, weight, diseases, and 
model performance. Finally, the performance of the 
measured parameters of the model is close to the level of 
the radiologist, which can reflect the diagnostic ability of 
the model from the side, but this study did not specifically 
explore how many patients were correctly diagnosed.

In conclusion, we developed a deep learning algorithm-
based model for automatically measuring VBH and IDH 
from anteroposterior digital radiographs of the lumbar 
spine. The model has a good agreement in key-point 
identification and parameter measurement compared 
with radiologists, and its performance is comparable to or 
better than radiologists’. The model has yet to incorporate 
additional datasets and disease categories to train and 
improve the accuracy and stability of the model to assist 
clinicians in diagnosing and treating lumbar spine disorders 
from an efficient, accurate, and quantitative perspective.
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Appendix 1

Data sets

Out of all 1734 cases, 213 cases with a history of spinal surgery, 26 with severe spinal deformities, eight with metabolic 
bone disease, 15 cases with spinal tuberculosis, 12 cases with spinal tumors, 24 cases with poor image quality, and  
68 cases with severe osteophytes were excluded based on the study's study’s inclusion and exclusion criteria. Therefore, 
1,368 anteroposterior digital radiographs of the lumbar spine were included, which were randomly assigned as training set, 
validation set, and test set according to the ratio of 65%, 20%, and 15%, respectively. The training set was used to optimize 
the model parameters (n=893), the validation set was used to adjust the model hyperparameters (n=269), and the test set 
was used to verify the performance of the trained network (n=206). The training and test sets did not overlap to ensure an 
objective evaluation of the model.

The standard and equipment of anteroposterior digital radiography of the lumbar spine

Gansu Provincial Hospital of Traditional Chinese Medicine imaging center equipment: U.S. RICO (Kodak DR3000), GE (GE 
Definium6000).

Photographic criteria: The patient stood in an anteroposterior position in front of the photographic frame with the 
centerline aligned approximately 5 cm above the anterior superior iliac spine (at the level of the L3 vertebrae). The radiation 
field was 28×35.0 cm, the photographic distance was 120 cm, the exposure was automatically controlled by the central 
ionization chamber, the filter-grid ratio was 10:1, the voltage was 60–70 kV, and the current was 20–40 mAs. The patient was 
exposed by holding his/her breath in a calm breathing state. 

Appendix 2

Model construction

The Cascaded DARK model construction process was divided into two stages to retain detailed information on lumbar spine 
images: lumbar spine vertebrae detection and landmark identification. In the first stage, the HRNet output 20 channels, 
and each channel corresponds to a key point responsible for detecting the coarse position of each vertebra. According to the 
vertebrae to which each landmark belongs, the outer rectangle expanded by 60 pixels of every four landmarks determines the 
region where a vertebra is located. In the second stage, the output layer of HRNet has four channels, which are used to more 
precisely identify the four key points on the vertebrae from L1 to L5. The above two phases consist of two DARK models, 
denoted as Cascaded DARK for convenience, both of which use the same network architecture HRNet-32 and differ only in 
the number of output channels. The same training strategy described in DARK is used to train both models independently. 
HRNet’s HRNet’s main feature is that the feature maps maintain their high resolution throughout the process by gradually 
adding multiple branches of low-resolution feature maps in parallel to the main network of high-resolution feature maps, 
allowing for multi-scale fusion and feature extraction. The final estimated key points are the output of the high-resolution 
backbone network; therefore, the method can maintain high resolution from beginning to end and achieves strong semantic 
information and accurate localization for key points. 

Heatmap technology is widely used in landmark detection tasks (37). We used the heatmap method to supervise the 
recognition of neural networks to the key points of the vertebral body. Furthermore, heatmap, similar to class label smoothing 
regularization, may effectively reduce the risk of model overfitting in training by taking into account not only contextual clues 
but also the inherent target position ambiguity. The coordinate encoding was a label representation process from the coordinate 
to the heatmap, which generated a 2-dimensional Gaussian distribution centered at the labeled coordinate of each landmark. 
Formally, we denote by g=(u,v) the ground-truth coordinate of a landmark. The resolution reduction was defined as:

( )' ', ' ,u vu v
λ λ λ

 = = =  
 

gg 	 [1]

where λ is the downsampling ratio.
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Subsequently, the heatmap centered at the accurate coordinate g' can be denoted as:

( ) ( ) ( )2 2

2 2

' '1, ; ' exp
2 2

x u y v
x yς

πσ σ

 − + −
= − 

 
 

g 	 [2]

where ( ),x y  specifies a pixel location in the heatmap, and σ denotes a fixed spatial variance. In this work, σ is set to 2. 
Coordinate decoding is a process from heatmap to coordinate, inferring the underlying maximum activation based on 

the distribution structure of the predicted heatmap. At test time, the HRNet outputted multi-channel heatmaps where 
each heatmap corresponded to the probability of a landmark. The DARK method and an efficient Taylor-expansion-based 
coordinate decoding procedure take the HRNet-predicted heatmaps as input and output precise landmark coordinates in the 
original image space. 

Finally, the mean square error was selected as the loss function, and the Adam optimizer was adopted. The parameters 
obtained by pre-training on the ImageNet dataset were used for initializing the weights of HRNet through transfer learning 
techniques to accelerate the convergence of the model and reduce the risk of overfitting. During the prediction process, 
the exact 20 landmark locations can be obtained from the original radiographs with the trained Cascaded DarkPose model 
following the key point localization process. Based on the calculation method in parameter measurement, the relevant 
radiological parameters are then calculated from the coordinates of the predicted landmarks, thus enabling automatic 
measurement.
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Figure S1 The bounding box of vertebral bodies.
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Figure S2 Key point positioning process.

Figure S3 Representative images illustrate landmark detection produced by our model. The blue points are the reference standard, and the 
red points are the model prediction point.


