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Background: To develop an unsupervised anomaly detection method to identify suspicious error-prone 
treatment plans in radiotherapy.
Methods: A total of 577 treatment plans of breast cancer patients were used in this study. They were 
labeled as either normal or abnormal plans by experienced clinicians. Multiple features of each plan were 
extracted and selected by the learning algorithms. The training set consisted of feature samples from 400 
normal plans and the testing set consisted of feature samples from 158 normal plans and 19 abnormal plans. 
Using the k-means clustering algorithm in the training stage, 4 normal plan clusters were formed. The 
distance between the samples in the testing set and the cluster centers were then determined. To evaluate 
the effect of dimensionality reduction (DR) on detection accuracy, principal component analysis (PCA) and 
autoencoder (AE) methods were compared.
Results: The sensitivity of the anomaly detection model based on PCA and AE methods were 84.2% (16/19) 
and 94.7% (18/19), respectively. The specificity of the anomaly detection model based on PCA and AE 
methods were 64.6% (102/158) and 69.0% (109/158), respectively. The areas under the receiver operating 
characteristic (ROC) curve (AUCs) based on PCA and AE methods were 0.81 and 0.90, respectively.
Conclusions: The unsupervised learning method was effective for detecting anomalies from the feature 
samples. Accuracy could be improved with the introduction of AE-based DR technique. The combination of 
AE and k-means clustering methods provides an automated way to identify abnormal plans among clinical 
treatment plans in radiotherapy.
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Introduction

Alongside recent technical advances, radiotherapy has 
evolved into a complex process which requires high 
precision (1,2). Radiotherapy can achieve treatment goals 

by delivering a high dose to the target volume while 

protecting the surrounding normal tissues. However, any 

small deviation could lead to higher costs and risks to 

patient health. Therefore, extreme caution and enhanced 
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quality control are necessary during radiotherapy planning. 
Nevertheless, incidents that compromise treatment output 
in radiotherapy have continued to occur worldwide. In the 
worst case, patients may die due to unintentional delivery of 
an extremely high dose. An example is the Panama incident, 
where 16 patients were severely overexposed (approximately 
twice the prescribed dose) in late 2000 and early 2001, 
resulting in 8 treatment-related deaths (3).

Although physics plan and chart check are the most 
effective quality control methods for reducing human 
error in radiotherapy (2,4,5), they rely heavily on manual 
reviewing, which is inefficient and can lack accuracy (6). 
A thorough plan check requires a review of the diagnosis, 
prescription, planning, and physician approval, in addition 
to approximately 20 field-specific parameters (5,7). Each of 
these parameters could affect the treatment outcome and 
patient safety. For manual reviewing, each reviewer could 
take an hour to thoroughly check hundreds of parameters on 
different charts; even an experienced human reviewer could 
unintentionally miss an error. A study by Gopan et al. showed 
that only 38% of errors that were potentially detectable on 
treatment plans were identified in the review procedure (8). 
Therefore, automated plan checking tools are important to 
assist current manual reviewing processes.

Automated plan checks have been widely adopted in 
clinical practice to partially or completely replace the manual 
reviewing process (4-7,9-11). Early research focused on 
developing a system which compared data in the planning 
system against data in the recording and verification system 
before treatment delivery. Lack et al. developed a software 
tool to detect two categories of errors in data transferring 
and planning using root cause analysis (4). Furhang et al. 
developed software to automatically carry out intraplan 
and interplan reviews (7). Yang and Moore conducted 
a study to use dynamic scripting to automatically verify 
treatment plan integrity (6,11). Dewhurst developed a 
semiautomated system named AutoLock for radiotherapy 
treatment plan quality control (QC). This system integrates 
automated treatment plan QC, an electronic checklist, and 
plan finalization (9). Siochi developed an electronic quality 
assurance (QA) software that can read data and compare it 
against parameters in the recording and verification system’s 
database. Compared with the original paperless system, 
error detection was improved significantly (10).

Azmandian et al. (1) first used machine learning (ML) 
to help detect human errors in radiotherapy treatment 
plan checking in 2007. They used 1,000 plans to build 
the clusters, and another 650 plans were used to test the 

proposed method. A total of 8 distinct features were 
extracted from each patient’s plan. This preliminary work 
has been promising for automatic plan checking, but more 
efforts are needed to meet strict clinical requirements. 
Deep learning-based anomaly detection methods have been 
successfully applied in industries such as traffic control and 
bank fraud detection, among others (12-18). With proper 
modification, these models could be used in radiotherapy 
plan QA and checking. Recently, ML for patient-specific 
QA has been increasingly investigated in patient-specific 
QA. Wang et al. developed a novel multitask autoencoder 
(AE)-based classification-regression model for patient-
specific volumetric modulated arc therapy (VMAT) QA (19). 
The model was compared with other popular models and 
showed significant improvement in prediction accuracy. For 
plan checking, there are limited ML applications due to the 
low number of available data sets.

In this  s tudy,  577 hybrid intensi ty-modulated 
radiotherapy treatment (IMRT) plans for patients 
undergoing breast cancer radiotherapy at our institute were 
collected, and 35 features were extracted. Dimensionality 
reduction (DR) techniques were introduced to enhance 
model learning. The k-means clustering algorithm was used 
to partition samples into clusters in which normal plans 
remained together and outliers were isolated. The rest of 
this paper is organized as follows. In Methods, patient data, 
workflow, DR algorithms, and the unsupervised ML model 
are explained. In Results, the performance of both AE and 
principal component analysis (PCA) methods are compared 
and analyzed quantitatively. In Discussion, the advantages 
and disadvantages of the proposed anomaly detection 
model are discussed. We present the following article in 
accordance with the Standards for Reporting Diagnostic 
accuracy studies (STARD) reporting checklist (available at 
https://qims.amegroups.com/article/view/10.21037/qims-
22-825/rc). 

Methods

The workflow of the proposed anomaly detection method 
is shown in Figure 1. There were four steps: (I) data 
preprocessing; (II) DR; (III) model learning; and (IV) 
anomaly detection. All programs were developed on 
MATLAB_R2018b (MathWorks, Natick, MA, USA). The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The Institutional Ethics 
Committee of the Cancer Hospital, Chinese Academy 
of Medical Sciences, and Peking Union Medical College 
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approved this study. Informed consent was waived due to 
the nature of the retrospective study.

Data preprocessing

Treatment plans for 577 breast cancer patients treated at 
our hospital between 2010 and 2020 were extracted from 
MOSAIQ (Elekta, Stockholm, Sweden). The treatment 
plans were labelled as either “normal” (558/577) or 
“abnormal” (19/577) by 3 experienced medical physicists. 
All plans were deliverable and clinically approved for 
treatment. Normal plans were those which fully matched 
our treatment planning protocol. Abnormal plans were 
those which met the goal of radiotherapy treatment but 
had low quality or were less rational in some respects. For 
example, beam orientations may not have been optimized to 
deliver high doses to organs at risk, or additional radiation 
fields or higher monitor units (MUs) were used, extending 

the treatment time significantly. These abnormal plans were 
not erroneous but were considered to have low quality in 
some aspects. In routine practice, treatment plans are first 
checked by a rule-based computer program and the error 
plans are identified when certain thresholds are not meet 
or rules are not followed. These clinically feasible plans are 
then manually reviewed by an experienced clinical physicist 
to check the quality and rationality. If the values of certain 
plan parameters deviate from their normal distribution, a 
warning is issued to the planners to request they verify their 
plan parameters and make the necessary modifications. 

In this study, all treatment plans were hybrid plans 
consisting of 2 conventional tangent fields and 2 IMRT 
fields (20). To characterize the plans, the most important 
35 features were extracted from each plan (Table 1). The 
segment in tangent fields was always 1 and was considered 
to have no impact on anomaly detection. The number of 
segments of IMRT field was variable and each plan had 2 

Feature extraction

Samples splitting

Training set Testing set

Dimensionality reduction

Training set after DR Testing set after DR

K-means Clustering

Clusters

Outlier?

Abnormal Normal

Y N

Data preprocessing

Dimensionality reduction
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Figure 1 Workflow of the proposed anomaly detection process for plan checking in radiotherapy. DR, dimensionality reduction.
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IMRT fields. The dose was 290 or 200 MU for an IMRT field 
or tangent field, respectively. For the other features, including 
collimator position, collimator angle, gantry angle, and MU 
per field, there were 4 features for the 4 fields of each plan. 
To provide a common scale for the variables, all feature 
values were normalized using z-score normalization (21).  
About 70% (400/558) of the normal plans were randomly 
selected and used for generating the training samples, and 
the remaining 30% (158/558) of the normal plans and the 
19 abnormal plans were used for generating the testing 
samples.

DR

To improve the efficiency and robustness of model 
learning, these 35 features were further reduced to fewer 
features. For this purpose, DR methods were needed. 
The standard method is PCA, which represents high-
dimensional data by fewer principal components without 
losing major information (22,23). PCA aims to find a linear 
mapping from high-dimension space to lower dimension 
space. However, in practice, high-dimensional data often 
contain highly nonlinear structures which violate the basic 
assumption of the linear DR models. 

Recently, AE was successfully used in a deep-learning 
network for the feature extraction layers. AE can compress 
high-dimensional data with nonlinear structures (12-18). 
As shown in Figure 2, the AE model mainly consisted of 
3 components: the encoder, a bottleneck layer, and the 
decoder (12-14). The encoder learned the mapping to 

transfer the input data into latent representation (or latent 
variables), which was the bottleneck layer. The decoder then 
learned the mapping to reconstruct the input data from 
the latent representation in the bottleneck layer. The mean 
square error (MSE) between input data and reconstructed 
data was used to train the AE model. Through this training 
process, the latent representation of the input data could 
be achieved and used to represent the input data with fewer 
dimensions. 

The network structure of the AE model is shown in 
Figure 2 and was constructed using the trainAutoencoder 
toolbox provided in MATLAB (https://ww2.mathworks.cn/
help/deeplearning/ref/trainautoencoder.html). The network 
consisted of 7 layers of neurons, including 1 input layer, 1 
output layer, 2 encoding layers, 2 decoding layers, and 1 
bottleneck layer. The number of neurons in the 7 layers was 
35, 24, 16, 9, 16, 24, and 35, respectively (24). The structure 
could also be predetermined by neuroevolution methods for 
the optimal hyperparameters (25-27). The transfer function 
used for the second decoding layer was pure linear transfer 
function (purelin). The transfer function for the other 
encoding and decoding layers was saturating linear transfer 
function (satlin). Early stopping was used to find a sufficient 
number of training epochs and prevent overtraining the 
model. The main training steps of the AE model were as 
follows:

(I)	 Load and scale training dataset for network; 
(II)	 Define the number of features and the encoder 

dimensions;
(III)	 Build up the encoding and decoding layers to form 

Table 1 Summary of the original features obtained from IMRT plans

Feature Description Fields Number of features Type Unit

Segment Number of segments of the field IMRT 2 Integer number

SSD Source to skin distance IMRT/tangent 4 Float cm

Collx1 Collimator position in x1 direction IMRT/tangent 4 Float cm

Collx2 Collimator position in x2 direction IMRT/tangent 4 Float cm

Colly1 Collimator position in y1 direction IMRT/tangent 4 Float cm

Colly2 Collimator position in y2 direction IMRT/tangent 4 Float cm

Cθ Angle of collimator IMRT/tangent 4 Integer degree

Gθ Angle of gantry IMRT/tangent 4 Integer degree

Meter set MU per field IMRT/tangent 4 Float MU

Dose Dose per fraction IMRT/tangent 1 Float cGy

IMRT, intensity-modulated radiation therapy; SSD, source to skin distance; MU, monitor unit.

https://ww2.mathworks.cn/help/deeplearning/ref/trainautoencoder.html
https://ww2.mathworks.cn/help/deeplearning/ref/trainautoencoder.html
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the entire model;
(IV)	 Predict the new training data and calculate the cost 

function;
(V)	 Adjust the network weights to minimize the cost 

function;
(VI)	 Repeat steps (IV) and (V) until the training 

algorithm converges.

Unsupervised learning 

Unsupervised learning is an important branch of ML. Users 
do not need to label samples and teach the model how to 
learn the mapping relationship. Instead, it allows the model 
to work on its own to discover patterns and information 
from a collection of unlabeled data. Clustering is the most 
important unsupervised learning method for partitioning 
data into groups (or clusters). As a result, samples in the 
same cluster are similar to each other and dissimilar to 
samples in other clusters. Among the different types of 
clustering algorithms, k-means clustering is popular and 
easy to implement (28). The main steps of the k-means 
clustering algorithm are as follows:

(I)	 Choose k initial cluster centers; 
(II)	 Estimate the center of each cluster by calculating 

the mean and the standard deviation (σ) of the 
data points within each cluster. The mean of each 
cluster is used as the cluster’s center. The standard 
deviation of each cluster is used as the cluster’s 
boundary;

(III)	 Assign each data point to its closest cluster based 
on its Euclidean distance to the cluster’s center;

(IV)	 Repeat steps (II) and (III) until the assignments do 
not change.

It should be noted that the number k, the initial positions 
of cluster centroids (or seeds), and the distance metric must 
be predetermined. Improper setting of these parameters 
will cause the algorithm to fall into the local optimum (3). 
In this study, the parameters and methods were investigated 
and examined by 4 evaluation criteria: silhouette coefficient 
(Sil), Davies-Bouldin index (DB), Calinski-Harabasz index 
(CH), and Dunn validity index (DVI) (29-34). Details 
of candidate distance metrics and centroid initialization 
methods are described in Appendix 1.

Anomaly detection

With the clusters established based on the training samples 
by the k-means clustering algorithm, the center and 
boundary of each cluster were formed and used for anomaly 
detection. In this study, the standard deviation of each 
cluster established by the training set was defined as the 
boundary of each cluster and was used to select the preset 
threshold. The testing samples were judged to be normal 
or abnormal plans based on their Euclidean distance to the 
center of the closest cluster. If this distance was greater than 
a preset threshold, the plan was assumed to be abnormal; 
otherwise, it was normal. An optimal threshold was selected 
to assure a low false positive rate (FPR; i.e., identifying a 
point as an anomaly when in fact it is normal) and high true 
positive rate (TPR; i.e., identifying a point as an anomaly 
when it is, in fact, an anomaly). 

Evaluation

The results of clustering based on the samples generated by 
the 2 DR algorithms were compared using the silhouette 

Input Output

Bottleneck

Encoder Decoder

Figure 2 The structure of the AE model for dimensionality reduction. AE, autoencoder.
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coefficient, which is calculated as below:

( ) ( )( )
( ) ( )( )max ,

b i a i
S

a i b i
−

= 	 [1]

Where a and b represent the mean distance between 
sample i and all other samples in the same cluster and in 
the other clusters, respectively. S represents the silhouette 
coefficient for 1 sample. The silhouette coefficient used 
here was the coefficient for a whole sample set, which 
was the mean of the coefficient for all samples. Silhouette 
coefficient measures how well a sample is matched to its 
identified cluster compared to other clusters. The larger 
the silhouette coefficient is, the more correct the cluster 
distribution is (35).

The effect of the 2 DR algorithms, AE and PCA, on the 

accuracy of anomaly detection was evaluated by 10 repeat 
tests (36,37). In each test, the samples were shuffled and 
split into a training set and testing set. The training set 
was then used to generate clusters of samples compressed by 
the AE method and PCA method. Performance of anomaly 
detection was evaluated over the testing set based on the area 
under the receiver operating characteristic curve (AUC) (38).  
In addition, model performance was also quantified in terms 
of sensitivity/true posititve rate (TPR) = TP/(TP + FN), 
specificity/true negative rate (TNR) = TN/(TN + FP), false 
posititve rate (FPR) = FP/(FP + TN), and false negative rate 
(FNR) = FN/(FN + TP), where TP is true positive, TN is 
true negative, FP is false positive, FN is false negative, and 
R is rate. In clinical practice, the FPR indicates the ratio of 
normal plans being wrongly detected as an abnormal plan, 
whereas FNR indicates the ratio of abnormal plans being 
wrongly detected as a normal plan.

In addition to the k-means clustering algorithm, 2 other 
popular clustering algorithms, fuzzy c-means (FCM) and 
partitioning around medoids (PAM), were also used for 
comparison. FCM is a popular unsupervised clustering 
algorithm that groups data into n clusters with every 
data point related to every cluster. Data points close to 
a cluster center are assigned a high degree of belonging 
(connection) to that cluster. Data points far away from the 
cluster center are assigned a low degree of belonging to that 
cluster (39). PAM is another typical clustering algorithm. 
K data points are initially selected and moved towards the 
best cluster repeatedly. All combinations of data points 
are then analyzed and the clustering quality for all pairs of 
data points are derived. If a point is found with the best-
improved value of distortion function, the new data point 
will replace the current best data point. These newly 
generated best data points form the new medoids (40-42).

Results

DR

The contribution of the top 15 features was calculated 
as shown in Figure 3 and Figure 4 for the PCA and 
AE methods, respectively. For the PCA method, the 
contribution of the top 10 principal components was 
90.5%. The contribution of the 11th principal component 
was 1.7%, which was less. Thus, the top 10 principal 
components were adopted in the PCA method. For AE, the 
average reconstruction loss was decreased as the number 
of latent variables of the bottleneck layer increased. The 

Figure 3 The contribution of the top 15 principal components in 
the PCA method. PCA, principal component analysis.
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average reconstruction loss increased quickly as this number 
was more than 9. As a compromise, 9 latent variables were 
adopted in the AE method as their contribution had the 
smallest mean and standard deviation of reconstruction 
errors.

The quality of the clusters using the 2 DR algorithms 
was evaluated using the silhouette coefficient. The 
silhouette coefficients for clusters from the PCA- and AE-
based models were 0.18±0.02 and 0.47±0.01, respectively. 
The quality of clusters of the AE-based method was better 
than that of the PCA-based method. Multicollinearity 
tests were also performed to evaluate the linear correlation 
among latent variables resulting from the PCA and AE 
methods. Variance inflating factor (VIF) was used to test 
the presence of multicollinearity. For 35 features in the raw 
data set, the mean value of VIF was 89, whereas their values 
were 1 and 3.5 using the lower number of features resulting 
from the PCA and AE methods, respectively. Note that VIF 
values between 1–5 indicate low multicollinearity and values 
higher than 5 indicate high multicollinearity.

Clustering parameters

To determine the best value of the number k and the 
optimal distance metrics and centroid initialization 
methods, different settings were evaluated using 4 indexes 
(Sil, CH, DVI, and DB). Larger values of Sil, CH, and 
DVI and a smaller value of DB indicated better clustering 
performance. As shown in Table 2, the optimal cluster 

number with the best values among the 4 indexes was 4. For 
distance metrics, sqeuclidean (squared Euclidian distance) 
showed the best performance among the 4 indexes (Figure 5). 
For centroid initialization methods, the plus method showed 
the best performance among the 4 indexes (Figure 6). Note 
that in our study, these optimal parameters and methods 
were adopted in the learning model. 

 

Anomaly detection

The receiver operating characteristic (ROC) curve of the 
3 anomaly detection models with and without DR are 
shown in Figure 7. The ROC showed the performance of 
classifiers based on the PCA and AE methods for different 
threshold values. The performance of the AE-based k-means 
clustering method was better than that of the PCA-based 
k-means clustering method, and both were better than that 
of k-means clustering without DR. For the competitor 
models, the performance of the AE/PCA-based k-means 
clustering method was better than that of the AE/PCA-
based FCM/PAM clustering methods. However, without 
DR, the performance of the k-means clustering method 
was inferior to that of the FCM/PAM clustering methods. 
Performance measures of the different methods are 
presented in Table 3. The AUC scores were 0.83, 0.81, and 
0.90 for the original, PCA-based, and AE-based k-means 
clustering methods, respectively. The AUC scores were 
0.83, 0.81, and 0.81 for the original, PCA-based, and AE-
based FCM clustering methods, respectively. The AUC 
scores were 0.82, 0.76, and 0.85 for the original, PCA-
based, and AE-based PAM clustering methods, respectively. 
Among the 9 unsupervised learning models, the AE-
based k-means clustering method demonstrated the best 
performance in anomaly detection.

When the threshold was 1σ, the mean sensitivity of 
the PCA-based and AE-based k-means clustering models 
were 100% (19/19) and 100% (19/19), respectively. The 
specificity of the PCA-based and AE-based k-means 
clustering models were 5.7% (9/158) and 6.3% (10/158), 
respectively. When the threshold was 2σ, the sensitivity of 
the PCA-based and AE-based clustering models were 84.2% 
(16/19) and 94.7% (18/19), respectively. The specificity of 
the PCA-based and AE-based k-means clustering models 
were 64.6% (102/158) and 69.0% (109/158), respectively. 
When the threshold was set at 3σ, the sensitivity of the 
PCA-based and AE-based k-means clustering models 
were 42.1% (8/19) and 57.9% (11/19), respectively. The 
specificity of the PCA-based and AE-based clustering 

Table 2 Average value (mean ± standard deviation) of clustering 
indexes for different number k

K Sil DB CH DVI

2 0.68±0.11 0.87±0.25 828.81±198.35 0.49±0.07

3 0.79±0.00 0.52±0.01 908.73±34.38 0.48±0.13

4 0.82±0.09 0.46±0.00 1,804.52±423.92 0.51±0.16

5 0.76±0.06 0.80±0.05 1,479.15±343.41 0.07±0.03

6 0.71±0.06 0.99±0.13 1,349.24±64.63 0.05±0.02

7 0.62±0.08 1.15±0.08 1,257.43±29.37 0.05±0.01

8 0.59±0.08 1.22±0.09 1,142.37±40.95 0.05±0.01

9 0.52±0.05 1.28±0.05 1,043.51±30.52 0.04±0.01

10 0.53±0.09 1.31±0.11 1,010.32±41.61 0.05±0.01

Sil, silhouette coefficient; DB, Davies-Bouldin index; CH, 
Calinski-Harabasz index; DVI, dunn validity index.
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Figure 5 The indexes evaluated for 4 distance metrics. Sil, silhouette coefficient; DB, Davies-Bouldin index; CH, Calinski-Harabasz index; 
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Figure 6 The indexes evaluated for 4 centroid initialization methods. Sil, silhouette coefficient; DB, Davies-Bouldin index; CH, Calinski-
Harabasz index; DVI, dunn validity index.
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Figure 7 ROC curves for 3 clustering models with and without 
PCA/AE-based dimensionality reduction. PCA, principal 
component analysis; AE, autoencoder; FCM, fuzzy c-means; PAM, 
partitioning around medoids; TPR, true positive rate; FPR, false 
positive rate; ROC, receiver operating characteristic.

models were 92.4% (146/158) and 91.8% (145/158), 
respectively. For balancing sensitivity and specificity, 2σ was 
the optimal threshold.

Discussion

Both DR methods, PCA and AE, were quantitatively 
evaluated in this study. The results showed that the AE-
based clustering model outperformed the PCA-based 
clustering model in several aspects. First, the AE method 
employed nonlinear transfer function in encoding/decoding 
layers. This allowed the network to learn more complex 
mapping relationships between high-dimension space 
and low-dimension space, which may have caused less 
information loss during the DR process. Second, the AE-
based clustering model could result in better clusters by fewer 
parameters, which were 9 latent variables (Figure 4). The 
clustering results were quantified by silhouette coefficient, 
which also showed that the quality of AE-based clusters 
was better than PCA-based clusters. Third, the AE-based 
clustering model showed higher sensitivity and specificity in 
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Table 3 The performance of 3 clustering models with and without PCA/AE-based dimensionality reduction

Models Sensitivity Specificity FPR FNR AUC

K-means 0.37 0.98 0.02 0.63 0.83

PCA k-means 0.84 0.65 0.35 0.16 0.81 

AE k-means 0.95 0.69 0.31 0.05 0.90 

FCM 0.32 0.96 0.04 0.68 0.83 

PCA FCM 0.26 0.97 0.03 0.74 0.81 

AE FCM 0.32 0.96 0.04 0.68 0.81 

PAM 0.11 0.99 0.01 0.89 0.82 

PCA PAM 0.11 1.00 0.00 0.89 0.76 

AE PAM 0.11 0.99 0.01 0.89 0.85 

PCA, principal component analysis; AE, autoencoder; FCM, fuzzy c-means; PAM, partitioning around medoids; FPR, false positive rate; 
FNR, false positive rate; AUC, area under curve.

anomaly detection. The ROC and AUC scores also showed 
that the AE-based clustering model outperformed the PCA-
based clustering model. 

The application of AE-based clustering in anomaly 
detection of radiotherapy treatment plans was promising. 
However, the method could be improved in several aspects. 
First, the original features extracted from plans were mainly 
based on expert experience and less quantitative. Several 
features that may have been sensitive to abnormal plans 
were not included in our study due to inconsistencies among 
plans. Second, the current AE-based clustering model should 
be improved to meet more complex clinical scenarios. For 
example, treatment plans become more complex and error-
prone for new treatment technologies such as VMAT, 
adaptive radiotherapy, and magnetic resonance (MR)-
guided radiotherapy. Third, the AE model used in this study 
was a simple model, and most model parameters were not 
optimized for the specific task. With better models and more 
optimized parameters, the performance of AE could be 
further improved. In the future, neuroevolution could be used 
to learn the optimal architecture of AE and its parameters. 
The benefit of neuroevolution is that it is a scalable and non-
gradient method.

The specificity of the AE-based clustering model was 
69.0% when the threshold was set to 2σ. The high FPR of 
the AE model caused about 31.0% of the normal plans to 
be identified as abnormal plans. In clinical use, plans that 
are identified as abnormal plans need further verification 
by clinical physicists, and this high FPR may increase 
clinical workload. When the threshold was set to 2σ, the 
TPR dropped to 84.2% and 94.7% for the PCA-based and 

AE-based clustering models, respectively. Alternatively, 
the FNR for both models increased to 15.8% and 5.3%, 
respectively. This means that fewer abnormal plans were 
wrongly identified as normal plans for the AE-based model 
than that for the PCA-based model. In addition, only 
19 plans in this study were labeled as abnormal by the 
experienced physicists. It is possible that some abnormal 
plans may have not been identified by the experienced 
physicists, which could have contributed to the high 
FNR. The verification of abnormal plans is important but 
challenging for clinical physicists. 

Conclusions

The proposed AE-based k-means clustering method is 
feasible for detecting abnormal plans from normal plans 
for patients undergoing IMRT treatment. The k-means 
clustering model with AE-based DR is more effective than 
the other models and has potential to replace the current 
manual procedure for automatically identifying low-quality 
plans from regular plans in radiotherapy plan checking. 
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Supplementary

Appendix 1

Distance metrics for k-means clustering

The choice of distance measures is a critical step in clustering. It defines how the similarity of 2elements (x, y) is calculated 
and will influence the shape of the clusters. In this study, the impact of 4 different distance metrics on clustering results was 
evaluated. The following table contains the description of different distance metrics and their formulas. 

Distance metric Description Formula

Sqeuclidean Squared Euclidean distance. Each centroid is the mean of the points in that 
cluster.

( ) ( )
2

1
d x,y n

i ii
x y

=
= −∑  (1)

Cityblock Sum of absolute differences. Each centroid is the component-wise median 
of the points in that cluster.

( ) ( )1
d x,y n

i ii
x y

=
= −∑  (2)

Cosine 1 minus the cosine of the included angle between points. Each centroid is 
the mean of the points in that cluster, after normalizing those points to unit 
Euclidean length.
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 (3)

Correlation 1 minus the sample correlation between points (treated as sequences of 
values). Each centroid is the component-wise mean of the points in that 
cluster, after centering and normalizing those points to 0 mean and unit 
standard deviation.
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Centroid initialization methods for k-means clustering

K-means clustering aims to converge on an optimal set of cluster centers (centroids) and cluster membership based on 
distance from these centroids via successive iterations. It is intuitive in that the more optimal the positioning of these initial 
centroids, the fewer iterations of the k-means clustering algorithms will be required for convergence. This suggests that 
some strategic consideration to the initialization of these initial centroids could prove useful. Four methods for centroid 
initialization were tested in this study, as follows:

Method Description

Plus First, a data point is randomly selected from the input data set, and its distance from the nearest cluster center is then 
calculated. A new data point with larger distance is then selected as the new cluster center. This procedure is repeated 
until k cluster centers are selected. The idea is that the initial seeds should be as far away from each other as possible. 

Sample The k cluster centers are selected from the data set randomly.

Cluster Perform a preliminary clustering on a subset of 10% data points. This preliminary clustering is initialized using the ‘sample’ 
method. If the number of data points in the subset is less than k, then k data points are selected from the data set 
randomly.

Uniform Select k data points uniformly and randomly from the range of data set. 


