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Background: Isocitrate dehydrogenase (IDH) mutation status is an important biomarker for the treatment 
strategy selection and prognosis evaluation of glioma. The purpose of this study is to predict the IDH 
mutation status of gliomas based on multicenter magnetic resonance (MR) images using radiomic models, 
which were composed from the selected radiomics features and logistic regression (LR), support vector 
machine (SVM), and LR least absolute shrinkage and selection operator (LASSO) classifiers.
Methods: We retrospectively reviewed the medical records of 205 patients with gliomas. We enrolled  
78 patients from Shandong Provincial Hospital from January 2018 to December 2019 as testing sets and  
127 patients from The Cancer Genome Atlas (TCGA) as training sets. Preoperative MR images were 
stratified according to their IDH status, and the participants formed a consecutive and random series. Four 
MR modalities, including T1C, T2, T1 fluid-attenuated inversion recovery (FLAIR), and T2 FLAIR, were 
used for analysis. Five-fold cross-validation was adopted to train the models, and the models’ performances 
were verified through the testing set. Tumor volumes of interest (VOI) were delineated on the 4 MR 
modalities. A total of 428 radiomics features were extracted. Two feature selection algorithms, Pearson 
correlation coefficient (PCC) and recursive feature elimination (RFE), were used to select radiomics features. 
These features were fed into 3 machine learning classifiers, which were LR, SVM, and LR LASSO, to 
construct prediction models. The accuracy (ACC), sensitivity (SEN), specificity (SPEC), and area under the 
curve (AUC) were applied to measure the predictive performance of the radiomics models.
Results: The LR (SVM and LR LASSO) classifier predicted IDH mutation status with an average testing 
set ACC of 80.77% (80.64% and 80.41%), a SEN of 73.68% (84.21% and 89.47%), a SPEC of 87.50% 
(67.50% and 62.50%), and an AUC of 0.8572 (0.8217 and 0.8164).
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Introduction

Glioma is the most common primary brain tumor, accounting 
for about 80% of malignant brain tumors (1). One of the 
most significant discoveries in brain glioma biology has 
been the identification of isocitrate dehydrogenase (IDH) 
mutation status as a biomarker for therapy and prognosis (2). 
Moreover, the 2021 World Health Organization (WHO) 
Classification of Tumors of the Central Nervous System 
adapted these molecular markers into the revised grading 
criteria of IDH mutant and IDH wild-type gliomas as a 
grading system within tumor types (3). Patients with IDH 
mutant gliomas and IDH wild-type gliomas have different 
treatments and prognostic performances. IDH wild-type 
gliomas are heterogeneous tumors that are more aggressive 
and infiltrative than are IDH mutant gliomas (4). Several 
studies reported that patients with IDH wild-type gliomas 
have a better response to chemoradiation therapy and longer 
overall survival than do those with IDH mutant gliomas (5,6). 
Moreover, patients with IDH mutant glioma have better 
prognoses than do those with IDH wild-type gliomas (7). 
Therefore, determining the mutation status of IDH before 
surgery is beneficial to implementing targeted therapy for 
patients with gliomas (8). Identifying the IDH mutation 
status becomes even more important for patients with brain 
tumors who cannot have a biopsy due to the high risk of 
injury.

Currently, the only way to definitively identify the IDH 
mutation status of gliomas is based on immunohistochemistry 
(IHC) or gene sequencing on tissue specimens obtained via 
biopsy or surgical resection. However, repeated invasive 
biopsies or surgical resections are not practical or feasible 
in clinical practice considering the tolerance of patients. 
Magnetic resonance (MR) spectroscopy can potentially be 
used to determine IDH mutation status. Mutations in IDH 
result in neomorphic activity of the enzyme catalyzing the 
production of the oncometabolite 2-hydroxyglutarate (2-HG) 
from alpha-ketoglutarate (alpha-KG) (9). MR spectroscopic 

methods have been developed to noninvasively identify 2-HG 
in gliomas (10-12). However, accurate detection of the 2-HG 
concentration by MR spectroscopy is highly dependent on 
the magnetic field intensity, and high false positivity rates 
and costs limit its clinical application (13). Conventional 
MR is noninvasive, is widely used in the preoperative clinical 
diagnosis of glioma, and can reflect the overall information 
of the tumor. However, MR images cannot objectively 
reflect the physiological and pathological characteristics of 
the tumors, and the results are easily affected by subjective 
and experience factors. “Radiomics” refers to the extraction 
and analysis of large amounts of advanced quantitative 
imaging features with high throughput from radiological 
images obtained with computed tomography, positron 
emission tomography, or MR imaging (MRI) (14). Unlike 
conventional MR images, radiomics can transform the 
subjective descriptions of traditional imaging diagnosis, such 
as tumor range, tumor size, and tumor location, into objective 
and quantitative parameters, such as histogram features and 
texture features (15,16), which can better reflect glioma 
heterogeneity. The appropriate machine learning models 
can be further constructed based on the selected radiomics 
features to achieve a remarkable prediction performance.

Radiomics features involve the extraction of predefined 
features, such as shape, intensity, and texture, from the 
segmented volumes of interest (VOI) (17). Past work has 
attempted to correlate radiomics features with predicting 
IDH mutation. For example, Gihr et al. (18) determined 
the relation of intensity features to IDH status, which 
found apparent diffusion coefficient (ADC) histogram-
profiling could help differentiate tumor grade and estimate 
growth kinetics and probably prognostic relevant genetic as 
well as epigenetic alterations in low-grade gliomas. Jakola  
et al. (19) determined the feasibility of texture features to 
predict IDH status on fluid-attenuated inversion recovery 
(FLAIR). They found that homogeneity and volume 
could classify IDH status with an area under the curve 

Conclusions: The radiomics models based on MR modalities demonstrated the potential to be used as 
tools across different data sets for the noninvasive prediction of the IDH mutation status in glioma.
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(AUC) of 0.940 using the generalized linear model. Singh 
et al. (20) elucidated novel radiomic and radiogenomic 
workflow concepts and state-of-the-art descriptors in 
subvisual MR image processing, with relevant literature on 
applications of such machine learning techniques in glioma 
management. Radiomics application to preoperative MR 
images demonstrated promising results for predicting IDH 
mutation, methylguanine-methyltransferase (MGMT) 
methylation, and 1p/19q codeletion in glioma (21). The 
integrated study of data from radiographical and genomic 
scales was termed radiogenomic. Corr et al. (22) provided 
a broad and informative state-of-art picture and illustrated 
the latest developments in radiogenomic markers regarding 
prognosis. Radiomics could lead to a noninvasive, objective 
tool that captures molecular information important for 
clinical decision-making. Considering that MR image 
intensities seem to be sensitive to different protocols and 
machines, the effectiveness of radiomics models should be 
verified using multicenter data. Future studies should use 
multicenter data and external validation and investigate the 
clinical feasibility of radiomics models.

The aim of this multicenter study was to predict the IDH 
status of glioma patients using 4 preoperative routine MR 
modalities images (including T1C, T2, T1 FLAIR, and T2 
FLAIR) using machine learning-based radiomics models. 
Meanwhile, we also explored the predictive performance 
using each of the 4 MR modalities. We present the 

following article in accordance with the STARD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-836/rc).

Methods

Study design

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by and registered with Shandong Provincial 
Hospital Involves the Ethics Committee of Biomedical 
Research on Humans (SWYX: No. 2021-470). Individual 
consent for this retrospective analysis was waived.

In this section, we first describe the patients used in 
our present work. Then, we introduce the 5 steps of our 
research in detail. Figure 1 shows the overall workflow of 
this paper, which includes 5 parts: (I) image acquisition; (II) 
VOI specification; (III) radiomics feature extraction; (IV) 
model training; and (V) performance testing.

Patients

The multimodal MR images of patients with gliomas were 
collected from Shandong Provincial Hospital (SPH) and The 
Cancer Genome Atlas (TCGA) (23). Participants from SPH 
and TCGA formed a consecutive and random series. The 
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Figure 1 schematic illustration of the overall pipeline consisting of 5 parts: (I) image acquisition, (II) VOI specification, (III) radiomics 
feature extraction, (IV) model training, and (V) performance testing. VOI, volumes of interest; FLAIR, fluid-attenuated inversion recovery; 
LASSO, least absolute shrinkage and selection operator.
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flow diagram of the study population is shown in Figure 2. A 
total of 174 patients who underwent preoperative MRI for 
newly diagnosed gliomas from January 2018 to December 
2019 at SPH were considered for inclusion. Meanwhile, we 
downloaded 128 MR images of patients with glioma from 
TCGA data set and performed the same screening criteria 
as for the patients from SPH. In our study, the time interval 
between MR and pathology was 2 weeks because if the time 
interval was shorter than this, the mutation status of IDH 
would have hardly changed. The inclusion criteria were 
as follows: (I) gliomas confirmed by pathology; (II) known 
IDH mutation status; (III) preoperative MR protocol, 
including T1C, T2, T1 FLAIR, and T2 FLAIR images; 
and (IV) age over 18 years. The exclusion criteria were as 
follows: (I) history of biopsy or surgery for a brain tumor; 
(II) the absence of T1C, T2, T1 FLAIR, or T2 FLAIR; (III) 
unknown IDH status; and (IV) age under 18 years.

Finally, 78 patients (43 males and 35 females; mean age 
51.06±13.42 years; range, 18–79 years; 38 IDH-mutated, 

40 IDH wild-type) from SPH met the inclusion criteria. 
All diagnoses were histopathologically proven after surgical 
resection or tumor biopsy according to the 2016 WHO 
Classification of Tumors of the Central Nervous System 
tumors by neuropathologists who were blinded to the MR 
images and the patients’ clinical information. These patients 
were allocated to the testing set. In addition, a total of  
127 patients (66 males and 61 females;  mean age 
51.30±15.39 years; range, 18–84 years; 52 IDH-mutated, 75 
IDH wild-type) met the inclusion criteria from TCGA and 
were used as the training set. The clinical characteristics 
of all the selected patients from SPH and TCGA are 
summarized in Table 1. The IDH mutation type was marked 
as 1, and the wild-type was marked as 0.

Image acquisition and VOI specification

The patients came from 2 centers, and the MR image 
acquisition from these centers had different parameters. 

History of biopsy or surgery:
14 SPH

Absence of T1C, T2, T1 FLAIR or 
T2 FLAIR: 1 TCGA, 48 SPH

No available IDH status:
23 SPH

Age under 18 years:
11 SPH

Two different data sets:
128 TCGA, 174 SPH

Treatment of native glioma:
128 TCGA, 160 SPH

Presence of T1C, T2, T1 FLAIR, or 
T2 FLAIR: 127 TCGA, 112 SPH

Available IDH status:
127 TCGA; 89 SPH

Age over 18 years:
127 TCGA, 78 SPH

Training set: 127 TCGA
Testing set: 78 SPH

Figure 2 The flow diagram of the study population. The data from TCGA and SPH were screened according to the same screening process. 
Finally, the data that met the experimental standards were obtained and divided into training sets and testing sets according to different 
institutions. TCGA, The Cancer Genome Atlas; SPH, Shandong Provincial Hospital; FLAIR, fluid-attenuated inversion recovery; IDH, 
isocitrate dehydrogenase.
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All patients from SPH were examined in a supine position 
with a 3.0 T MR machine (Magnetom Skyra, Siemens 
Healthineers, Erlangen, Germany) using a transmit/receive 
quadrature 16-channel head and neck combined coil. The 
detailed parameters of T1C, T2, T1 FLAIR, and T2 FLAIR 
were as follows: T1C—repetition time/time to echo (TR/
TE) 2,300/2.3 ms, inversion time (TI) 900 ms, field of view 
(FOV) 240 mm × 240 mm, slice thickness 1 mm, flip angle 
(FA) 8°, and 192 slices; T2—TR/TE 3,700/109 ms, FOV 
220 mm × 220 mm, slice thickness 5 mm, FA 150°, and 19 
slices; T1 FLAIR—TR/TE 1,820/13 ms, FOV 230 mm ×  
230 mm, slice thickness 5 mm, FA 150°, and 19 slices; and 
T2 FLAIR—TR/TE 8,000/81 ms, FOV 220 mm × 220 mm,  
slice thickness 5 mm, and FA 150°, and 18 slices.

For the data from TCGA, the VOIs were specified. 
The VOIs for data from SPH were defined as the ones 
that covered the tumor area, which was delineated on 
the 4 modalities with 3 dimensions. T2, T2 flair, and T1 
FLAIR were registered to T1C, and the segmentation was 
performed manually on postcontrast T1C images and then 
applied to the registered T2, T2 FLAIR, and T1 FLAIR. 
Manual segmentation was performed by a radiologist with 
15 years of experience in neuroradiology, and the results 
were confirmed by another radiologist with 10 years of 
experience in neuroradiology using the noncommercial 
software ITK-SNAP (version 3.6.0; http://www.itksnap.
org). A consensus was reached after a careful discussion 
if divergence existed. Only the whole tumors, including 

both enhancing and necrotic areas, were covered for 
segmentation, and adjacent vessels were avoided. Any 
tumors that occupied over 2 axial slices were segmented 
according to their size.

Radiomics features extraction

Before features were extracted, MR images of 4 modalities 
were preprocessed using N4 bias correction to remove 
radiofrequency inhomogeneity (24) and intensity 
normalization to the zero-mean and unit variance.

Then, we extracted 7 types of features from each MR 
image’s modality (25): (I) 18 first-order statistics; (II)  
14 three-dimensional (3D) shape-based features; (III)  
24 gray-level co-occurrence matrices (GLCM); (IV)  
16 gray-level run length matrixes (GLRLM); (V) 16 gray-
level size zone matrices (GLSZM); (VI) 14 neighboring gray-
tone difference matrices (NGTDM); and (VII) 5 gray-level 
dependence matrices (GLDM). Since 4 different modalities 
were involved in the present work, a total of 428 radiomics 
features were extracted for each patient.

It should be noted that the sample contained more 
patients with IDH wild-type than those with IDH mutant 
type, which led to an imbalanced data set in machine 
learning. To correct the imbalance of the training data set, 
we adopted the synthetic minority over-sampling technique 
(SMOTE) to balance the positive and negative samples (26). 
The idea of SMOTE can be summarized as interpolating 

Table 1 The clinical characteristics of selected patients from the different data sets

Type SPH (n=78) TCGA (n=127) P value (statistical method)

Age (years), mean ± SD 51.06±13.42 51.30±15.39 0.77 (Mann-Whitney)

Sex, n (%) 0.67 (chi-squared)

Male 43 (55.13) 66 (51.97)

Female 35 (44.87) 61 (49.03)

IDH status, n (%) 0.31 (chi-squared)

Wild-type 40 (51.28) 75 (59.06)

Mutation 38 (48.72) 52 (40.94)

WHO grade, n (%) 0.001 (Kruskal-Wallis)

II 33 (42.31) 28 (22.05)

III 19 (24.36) 30 (23.62)

IV 26 (33.33) 69 (54.33)

SPH, Shandong Provincial Hospital; TCGA, The Cancer Genome Atlas; SD, standard deviation; IDH, isocitrate dehydrogenase; WHO, 
World Health Organization.
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between minority samples to generate additional samples. 
In detail, the training data set was divided into a majority 
sample set Tmaj and a minority sample set Tmin. We randomly 
selected a sample named X from Tmin. The K-nearest 
neighbor method was used to find the K samples closest to 
X in Tmin, where the distance was defined as the Euclidean 
distance between the samples in the feature space. Then, 
one of the K neighboring samples, Xk, was randomly 
selected, and the following formula was used to generate a 
new sample Xnew:

( )new KX X X X δ= + − ×  [1]

Where δ is a random number between 0 and 1. We 
repeated the above steps to bring the data into balance.

The distribution of feature values may be inconsistent. 
Different radiomics features may have different units and 
ranges depending on the distribution of feature values, and 
some features might be given a larger weight compared to 
others (27). To avoid the occurrence of the above situation, 
we applied z-score normalization to the feature values, 
making the range of each feature relatively uniform (28).

Model training

As shown in Figure 1, the model training phase was 
divided into 2 steps: feature selection processing and the 
classification phase.

To select the most discriminative features, we calculated 
the Pearson correlation coefficient (PCC) for the feature 
pair to compare the similarity (29). We randomly eliminated 
1 of them if the PCC value of the feature pair was larger 
than 0.99. After this process, the dimension of the feature 
space was reduced, and each feature was independent of 
the other. After reducing the dimensionality of the feature 
value, we used recursive feature elimination (RFE) to 
select features (30). The goal of RFE was to select features 
based on a classifier by recursively considering a smaller 
set of features, and the weight of each feature remained 
consistent. In this way, the dimension of features was 
constantly reduced.

With the selected key features, we adopted 3 classifiers, 
namely logistic regression (LR) (31), support vector 
machine (SVM) (32), and LR least absolute shrinkage 
and selection operator (LASSO) (33), along with the trial 
and error method, to generate predictive models of IDH 
mutation status based on 4-modality MR images. LR 
classifier used the linear combination of features as an 
independent variable and a logistic function to map the 

independent variable to [0, 1]. The SVM algorithm was 
trained to maximize the margins that separated values 
belonging to the 2 categories in the feature space. It is one 
of the most commonly used classifiers for classification in 
machine learning. LR LASSO adds an L1-norm term based 
on standard linear regression, which, in this study, helped to 
alleviate overfitting by thinning model parameters.

Moreover, to exploit the use of each modality of MR 
images, we constructed the models corresponding with 
T1C, T2, T1 FLAIR, and T2 FLAIR. For each model, we 
repeated the process several times in the training cohort, 
which was randomly divided into 5 folds. Then, the best 
number of features and parameters for the models with the 
maximum mean cross-validation AUC for the classification 
of the IDH mutation status were adopted.

Performance testing

In order to demonstrate the model performance using our 
multicenter MR radiomics in predicting IDH mutation 
status, we calculated their accuracy (ACC), sensitivity 
(SEN), specificity (SPEC), and AUC, and drew the receiver 
operating characteristic (ROC) curves based on Python.

In addition, we calculated the evaluation metrics of ACC, 
SEN, SPEC, and AUC, and drew ROC curves to evaluate 
whether the image-fusion model that used the 4-modalility 
MR images could predict IDH status more accurately than 
could each modality MR image alone.

Results

Construction of the radiomic signature

For each patient’s MR sequence (T1C, T2, T1 FLAIR, and 
T2 FLAIR), the number of extracted radiomics features 
totaled 428, and 107 features were extracted from each 
MR sequence. Subsequently, the PCC and RFE algorithms 
were adopted to select useful features. As shown in Figure 3,  
to select the appropriate number of features to interpret 
glioma characteristics, we conducted multiple classification 
experiments with different numbers of features (range, 
1–40; interval 1) combined with different classifiers (i.e., 
LR, LR LASSO, and SVM) with an idiomatic model 
optimization method. In addition, we found that when the 
feature number was set to 24, the ACC evaluation metric 
with different classifiers showed a better classification 
performance compared with other feature number settings. 
Hence, the number of selected features was set to 24 in this 
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study. In addition, in order to better understand the source 
of the selected features in the selected 24 features, we 
visualized the weights and sources of the selected features, 
as shown in Figure 4. We found that 10 features, 7 features, 
4 features, and 3 features were from T2, TIC, T1 flair, 
and T2 FLAIR MR sequences, respectively. Furthermore, 
the weight of each MR sequence was generally balanced, 
which verified the complementary role of the multimodality 
sequence in predicting IDH mutation status of gliomas.

Generally, results from multiple experiments we 
performed proved that the multimodality features based 
on radiomics were essential. A better classification result 
could be obtained when the feature number was set to 24 
compared with the other number settings.

Model training and validation

After the feature selection phase, a total of 24 radiomics 
features were obtained. These features were regarded as the 
input for 3 different classifiers to obtain the classification 
performance, along with the 5-fold cross-validation method. 
After classification performance the training phase, the 
trained model was verified using the testing data set.

First, based on the classification performance results, the 
evaluation metrics of ACC, SEN, SPEC, and AUC were 
obtained. Based on these, the cross-validation performance 
combined with 3 baseline classifiers was obtained and is 
shown in Table 2. Figure 5 shows the ROC of the training 
set and the testing set of the 3 classifiers. The selected 
feature vector of multimodality MR images combined with 
the 3 baseline classifiers (LR/SVM/LR LASSO) presented 
good classification results (ACC: 0.91/0.91/0.90; SEN: 
0.8462/0.8462/0.9423; SPEC: 0.96/0.96/0.8667; AUC: 
0.9541/0.9513/0.9574) in the model training phase. The 
metrics of ACC and AUC of the 3 classifiers in the model 
training groups were all greater than 0.9, which indicated 
that the classifiers were successful in the model training 
groups. The LR classifier model had the best training 
performance among the 3 classifier models. In addition, the 
average cross-validation of the LR, SVM, and LR LASSO 
classifiers was 0.894, 0.876, and 0.888, respectively, which 
meant that there was less chance of overfitting during the 
model training phase.

As mentioned above, the selected features combined with 
the LR classifier achieved good classification performance. 
Hence, for the single modal MR sequence, we compared the 
classification results obtained by the different MR sequences 
with the LR classifier. For the T1C, T1 FLAIR, T2, and 
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Figure 3 The curve of classification results based on different 
numbers of selected features. We conducted multiple classification 
experiments with different numbers of features (range, 1–40; 
interval 1) combined with different classifiers with an idiomatic 
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Figure 4 Extracted features and weights. We visualized the 
weights and sources of the selected features. GLDM, gray-level 
dependence matrices; GLRLM, gray-level run length matrixes; 
GLSZM, gray-level size zone matrices; GLCM, gray-level co-
occurrence matrices; FLAIR, fluid-attenuated inversion recovery.
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T2 FLAIR MR sequence, the ACC metrics were 0.8819, 
0.8661, 0.8661, and 0.8976, respectively; the SEN metrics 
were 0.9231, 0.7692, 0.7692, and 0.7885, respectively; and 
the SPEC metrics were 0.8533, 0.9333, 0.9333, and 0.9733, 

respectively. The value of the AUC metrics was 0.9487, 
0.9185, 0.9185, and 0.9223, respectively. By comparing 
the experimental results, we found that the classification 
performance of multimodality MR sequences was better 

Table 2 Evaluation metrics using 3 baseline classifiers in the training and cross-validation phase

Type Classifier ACC SEN SPEC AUC 95% CI

Multimodality LR 0.9100/0.8346 0.8462/0.8077 0.9600/0.8533 0.9541/0.8941 0.9134–0.9872/0.8311–0.9486

SVM 0.9100/0.8346 0.8462/0.7308 0.9600/0.9067 0.9513/0.8762 0.9087–0.9856/0.8055–0.9372

LR LASSO 0.9000/0.8583 0.9423/0.8077 0.8667/0.8933 0.9574/0.8879 0.9168–0.9890/0.8194–0.9451

T1C LR 0.8819/0.8583 0.9231/0.7692 0.8533/0.9200 0.9487/0.8931 0.9045–0.9839/0.8291–0.9508

SVM 0.9055/0.8268 0.8462/0.7308 0.9467/0.8933 0.9497/0.8556 0.9048–0.9855/0.7789–0.9247

LR LASSO 0.8898/0.8661 0.9036/0.7500 0.8800/0.9467 0.9508/0.8813 0.9090–0.9855/0.8119–0.9436

T1 FLAIR LR 0.8661/0.8189 0.7692/0.7692 0.9333/0.8533 0.9185/0.8644 0.8858–0.9512/0.7907–0.9344

SVM 0.8819/0.8189 0.7885/0.7500 0.9467/0.8667 0.9146/0.8564 0.8871–0.9421/0.7802–0.9278

LR LASSO 0.8740/0.8110 0.7500/0.7692 0.9600/0.8400 0.9190/0.8528 0.8702–0.9678/0.7732–0.9251

T2 LR 0.8661/0.8346 0.7692/0.6923 0.9333/0.9333 0.9185/0.8354 0.8510–0.9669/0.7521–0.9179

SVM 0.8819/0.8268 0.7885/0.7308 0.9467/0.8667 0.9146/0.8356 0.8556–0.9627/0.7530–0.9089

LR LASSO 0.8740/0.8110 0.7500/0.7308 0.9600/0.8933 0.9190/0.8382 0.8596–0.9648/0.7549–0.9158

T2 FLAIR LR 0.8976/0.8346 0.7885/0.7308 0.9733/0.9067 0.9223/0.8631 0.8628–0.9737/0.7854–0.9326

SVM 0.8976/0.8110 0.7885/0.7115 0.9733/0.8000 0.9200/0.8529 0.8624–0.9713/0.7729–0.9236

LR LASSO 0.8898/0.8425 0.7885/0.8269 0.9600/0.9333 0.9187/0.8556 0.8617–0.9688/0.7772–0.9289

Each performance value was calculated by averaging the results of the 5-fold cross-validation. The first and the second values in each 
column represent evaluation metrics using 3 baseline classifiers in the training and cross-validation phases, respectively. ACC, accuracy; 
SEN, sensitivity; SPEC, specificity; AUC, area under the curve; CI, confidence interval; LR, logistic regression; SVM, support vector 
machine; LASSO, least absolute shrinkage and selection operator; FLAIR, fluid-attenuated inversion recovery.
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than that of any single modality.
The model we obtained was constructed based on 

optimal model parameters and radiomics features after 
feature selection. Table 3 shows the results obtained using 
test data to verify the validity of the model obtained in the 
training phase. The selected feature vector of multimodality 
MR images combined with the 3 baseline classifiers (LR/
SVM/LR LASSO) had good classification results (ACC: 
0.8077/0.8064/0.8041; SEN: 0.7368/0.8421/0.8947; SPEC: 
0.875/0.675/0.625; AUC: 0.8572/0.8217/0.8164). As shown 
in Figure 5, the values of the AUC of the testing datasets of 
the 3 classifier models were all greater than 0.8, indicating 
that the constructed models still had a good ability to 
distinguish the testing sets of the different centers.

The 3 machine learning algorithms selected in this study 
reached an ACC of more than 80%, showing that radiomics 
could predict IDH mutation status effectively. Similar to 
the training phase, the best classifier performance in the 
testing phase was LR. After integrating the ROC image 
analyses of the 3 classifiers, we found that the classification 
performance of the LR model was higher than that of 
the other 2 models, and the AUCs of the 3 models were 

all higher than 0.8, indicating that radiomics had certain 
potential in predicting the IDH mutation of gliomas.

Discussion

IDH mutation status has become an important marker for 
the treatment strategy selection and prognosis evaluation 
of gliomas. In order to predict the IDH mutation status 
of gliomas, in this multicenter study, we proposed an 
optimal model integrating the radiomics features based on 
multimodality MR images.

First, the results showed that the model based on 
multimodality radiomic signatures after feature selection and 
3 baseline classifiers had better classification performance 
than did the single-modality models.  Second, the 
multimodality radiomic signatures combined with the LR 
classifier achieved optimal results. In addition, we found 
that the multimodality radiomic signatures for the feature 
selection phase demonstrated good differentiation efficacy 
with high ACC. Furthermore, the number of features 
was also validated. We conducted multiple classification 
experiments with different numbers of features (range, 1–40; 

Table 3 Testing performance measures from various classifiers

Type Classifier ACC SEN SPEC AUC 95% CI

Multimodality LR 0.8077 0.7368 0.875 0.8572 0.7697–0.9314

SVM 0.8064 0.8421 0.675 0.8217 0.7349–0.9125

LR LASSO 0.8041 0.8947 0.625 0.8164 0.7192–0.9000

T1C LR 0.7564 0.8684 0.65 0.8086 0.6757–0.8692

SVM 0.7308 0.8684 0.6 0.7763 0.6691–0.8703

LR LASSO 0.7308 0.8158 0.65 0.7987 0.6726–0.8684

T1 FLAIR LR 0.6667 0.7105 0.625 0.6895 0.5522–0.7838

SVM 0.6923 0.7105 0.675 0.6974 0.5313–0.7727

LR LASSO 0.6795 0.5789 0.775 0.6875 0.5461–0.7863

T2 LR 0.7564 0.7368 0.775 0.7493 0.5789–0.8278

SVM 0.6795 0.8421 0.525 0.7185 0.5688–0.8155

LR LASSO 0.7564 0.6579 0.85 0.7586 0.5985–0.8366

T2 FLAIR LR 0.641 0.5526 0.725 0.6671 0.5304–0.7785

SVM 0.641 0.6316 0.65 0.6743 0.5183–0.7647

LR LASSO 0.641 0.6316 0.65 0.6704 0.5292–0.7741

Each performance value was calculated on the test set. ACC, accuracy; SEN, sensitivity; SPEC, specificity; AUC, area under the curve; 
CI, confidence interval; LR, logistic regression; SVM, support vector machine; LASSO, least absolute shrinkage and selection operator; 
FLAIR, fluid-attenuated inversion recovery.
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interval 1) combined with different classifiers (i.e., LR, LR 
LASSO, and SVM) with an idiomatic model optimization 
method. Through weight scoring of the selected 24 features, 
we found that features of the 4 MR sequences had a 
balanced effect using weight visualization operation, which 
indicated that the information of the 4 MR sequences could 
complement each other to achieve high classification ACC.

Radiomics can extract potential radiomics feature 
parameters from preoperative MR images. It has been 
widely used in the diagnosis, treatment, and prognosis of 
glioma and has shown satisfactory diagnostic efficiency. 
The AUCs of the 3 classic radiomics models in this study 
were all greater than 0.8 with an ACC rate greater than 
80%, which showed that the diagnostic performance was 
satisfactory. Our study verified that the radiomics model 
was competent in diagnosing preoperative gliomas. The 
results of this study showed that, based on the same MR 
images, different machine learning models had different 
diagnostic performances. Among them, the LR model based 
on multimodal images had the highest AUC of 0.8572 on 
the test data.

Regardless of the histological grade, the prognosis and 
treatment response of gliomas with IDH mutation was 
reported to be superior to IDH wild-type gliomas (34,35). 
This finding led to the IDH mutation status being adopted 
as a decisive marker for glioma classification in the updated 
fourth edition of the WHO Classification of Tumors of the 
Central Nervous System [2016].

Regardless of IDH status, maximum tumor resection 
has been the standard treatment for gliomas, but it was 
discovered that predicting IDH status before surgery could 
help in planning treatments, including surgery (36). This 
finding led to research on predicting the IDH status. In one 
study, the estimation of the extent of lesion enhancement 
in a qualitative manner with an visual assessment was prone 
to both intraobserver and interobserver variability (37). 
Another study found that radiomics could extract large 
amounts of quantitative features from imaging that could 
complement visual assessment, may information related to 
tumor heterogeneity and microenvironment, and was less 
susceptible to intraobserver and interobserver variability (38). 
Zhou et al. (39) compared the results of the same radiomics 
model using texture features and visually accessible 
rembrandt images (VASARI) annotations features for IDH 
status prediction. They found that the radiomics model with 
the texture feature achieved higher ACC than did the model 
using the VASARI features.

In the screening of radiomics features, histogram features 

and GLCM features accounted for a larger proportion. The 
possible reason for this was that the histogram and GLCM 
features were more related to the biological information of 
the tumor than were other features. In the comparison of 
histogram features, GLCM features, and GLRLM features, 
Ryu et al. (40) found that the entropy in GLCM features 
showed good diagnostic performance in distinguishing 
high- and low-grade gliomas and grade III and IV gliomas 
(AUC of 0.83 and 0.94, respectively), which was better than 
its histogram features and GLRLM features. Meanwhile, 
Qin et al. (41) found that entropy was significantly related 
to the glial fibrillary acidic protein (GFAP) expression of 
glioma cells, which is the specific marker related to the 
malignant degree of gliomas. It was further reported that 
as the expression of GFAP decreased, and the degree of 
tumor malignancy increases (42). This finding indicates that 
entropy could reflect the degree of tumor malignancy.

Recently, deep learning based on radiomics has become 
the preferred methodology to substantially improve the 
performance of existing machine learning algorithms and 
has shown good applied prospects in tumor diagnosis 
and prognosis prediction. For example, Park et al. (43) 
established a fully automated hybrid model for IDH status 
prediction that was based on two-dimensional (2D) tumor 
images and radiomic features from 3D tumor shape and 
loci. Their model achieved accuracies of 78.8–93.8% and 
an AUC of 0.86–0.96. Bangalore Yogananda et al. (44) 
developed a highly accurate, MRI-based, deep learning 
IDH classification network using only T2-weighted MR 
images. Their network achieved a mean cross-validation 
testing ACC of 97.4%, representing an important milestone 
toward clinical translation. Karabacak et al. (45) predicted 
the diagnostic performance of glioma IDH mutations by 
combining the Bayes theorem with deep learning. With 
a known pretest probability of 80.2%, the Bayes theorem 
yielded a posttest probability of 97.6% and 96.0% for a 
positive test and 27.0% and 30.6% for a negative test for 
the training sets and validation sets, respectively. Although 
deep learning based on radiomics has shown excellent 
performance for predicting IDH status, deep learning 
requires more training samples compared to conventional 
machine learning approaches. This issue is a challenge for 
practical use.

Radiomics has significant obstacles when it is applied to 
clinical implementation. First, powerful tumor segmentation 
is a major challenge for radiomics. Second, for radiomic 
features, a major cause of limited reproducibility is the 
lack of a standard method for the computation of intensity 
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features. Therefore, radiomics has not been well applied 
to the clinical diagnosis of brain tumors. To generate 
convincing results regarding the potential clinical value 
of radiomics as a practical tool, we must consider larger 
patient cohorts and the variety of technical infrastructure 
at different centers. However, there are few relevant studies 
on the generalizability of radiomics models. The proof 
of generalizability must be carried out in a test set with 
a different similarity to the training set. In our study, we 
attempted to simulate the feasible clinical scenario in which 
a training model was developed on one data set and applied 
to data sets from another data center.

Our study had several limitations that could be improved 
in future research. First, this was a retrospective study with 
a relatively limited sample size. A larger dataset is necessary 
to improve the reliability and clinical application of this 
radiomics study. Second, the number of samples in the training 
set was not balanced, and the results may be biased. Third, 
we only explored the classification of gliomas according to 
IDH genotype, and for the sake of ACC, the effects of other 
molecular derivatives on gliomas should be explored.

Conclusions

We demonstrated that radiomics models could accurately 
predict IDH mutation status on different datasets from 
multiple centers. This means that the radiomics model has 
good stability and generalizability in clinical practice.
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