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Background: The American College of Radiology Breast Imaging Reporting and Data System (ACR BI-
RADS) used with ultrasonography cannot guide the individual management of solid breast tumors, but 
preoperative core biopsy categories (CBCs) can. We aimed to use machine learning to analyze clinical and 
ultrasonic features for predicting CBCs and to aid in the development of a new ultrasound (US) imaging 
reporting system for solid tumors of the breast.
Methods: This retrospective study included women with solid breast tumors who underwent US-guided 
core needle biopsy from March 1, 2019, to December 31, 2019. All patients were randomly assigned to a 
training or validation cohort (7:3 ratio). CBC was predicted using 5 machine learning models: random forest 
(RF), support vector machine (SVM), k-nearest-neighbor (KNN), multilayer perceptron (MLP), and ridge 
regression (RR). In the validation cohort, the area under the curve (AUC) and accuracy were ascertained for 
every algorithm. Based on AUC values, the optimal algorithm was determined, and the features’ importance 
was depicted.
Results: A total of 1,082 female patients were included (age range, 12–96 years; mean age ± standard 
deviation, 42.22±13.37 years). The proportion of the 4 CBCs was 4% (44/1,185) for the B1 group, 60% 
(714/1,185) for the B2 group, 5% (57/1,185) for the B3 group, and 31% (370/1,185) for the B5 group. In the 
validation cohort, AUCs of the optimal algorithm constructed RF were 0.78, 0.88, 0.64, and 0.92 for B1, B2, 
B3, and B5, respectively, with an accuracy of 0.82.
Conclusions: Machine learning could strongly predict CBC, particularly in B2 and B5 categories of solid 
breast tumors, with RF being the optimal machine learning model.
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Introduction

Breast tumors are common across the globe and lower the 
quality of life of adult women. Histologically, breast tumors 
are classified as benign, malignant, or borderline. Each breast 
lesion can be treated using different methods, including such 
as biopsy, operation, and imaging follow-up (1,2).

Imaging follow-ups for breast tumors are the most 
common method and include magnetic resonance imaging 
(MRI), ultrasound (US), and mammography. These are 
considered important techniques for assessing breast lesions 
and preliminarily evaluating their pathological properties. 
However, these methods are not without disadvantages; 
mammography is not good at discovering a nodule in dense 
breast tissue (3), and MRI often has a high false-positive 
rate for malignant tumors and a high cost of operation (4). 
In contrast, US does not use radiation, costs less, and is 
widely available. Therefore, US is the preferred imaging 
method for evaluating breast nodules in Asian countries, 
where women tend to have denser breast tissue (5).

The American College of Radiology Breast Imaging 
Reporting and Data System (ACR BI-RADS) is the most 
commonly use classification tool in US. This system can 
predict the probability of malignancy and is suitable only 
for screening, nut it is not suitable for precise individual 
management for radiologists for two reasons. First, 
radiologists currently pay too much attention to probability 
in providing the BI-RADS category and often ignore 
the specific pathological type (e.g., mucinous cancer, 
sclerosing adenosis, or fibroadenoma). To some extent, the 
radiologists’ diagnostic accuracy and understanding of the 
specific pathological type will inevitably decrease in the 
future. Second, lesions treated with neoadjuvant therapy are 
classified into BI-RADS category 6 for the entire treatment 
period. At the moment, BI-RADS category is not capable 
of reflecting dynamic changes. Therefore, radiologists 
must master the diagnosis of specific pathological types, 
which can sometimes provide the necessary guidance for 
individualized clinical management.

There are many types of solid tumors of the breast, and 
it is very difficult for radiologists to be proficient in the 
detailed characteristics of each type of tumor. Core biopsy 
categories (CBCs) help to alleviate this difficulty. According 

to core biopsy reporting guidelines, all breast histological 
types can be classified into 5 categories (B1–B5) (6). CBCs 
can become the basis for building a new radiological 
reporting system to help radiologists master pathological 
types. Thus, machine learning should be applied to conduct 
CBC multiclassification.

Mach ine  l e a rn ing  w i th  many  a lgor i thms  can 
automatically analyze and obtain rules from existing data 
and then use the rules to predict unknown data. Machine 
learning can also complete classification tasks, including in 
the areas of radiology, critical care medicine, and cardiology 
(7-9). Recent studies have shown that machine learning 
can be beneficial to the diagnosis and treatment of cancer, 
including imaging examinations for evaluating breast cancer 
(9-12). Sutton et al. indicated that a machine learning 
classifier combining MRI radiomics with molecular subtypes 
could accurately assess pathologic complete response after 
post-neoadjuvant chemotherapy for breast cancer (13). 
Wu et al. reported that machine learning achieved a high 
level of differentiation between triple-negative and non-
triple-negative subtypes of breast cancer (14). We aimed to 
use machine learning to analyze the clinical and ultrasonic 
features for predicting CBCs and to aid in the development 
of a new US imaging reporting system for solid tumors of the 
breast. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-877/rc).

Methods

Participants

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by the institutional review board of Guangdong 
Provincial People’s Hospital, Guangdong Academy of 
Medical Sciences. The informed consent requirement was 
waived due to the retrospective nature of the study. We 
acquired details of the pathological characteristics of breast 
nodules from histological reports. From March 1, 2019, to 
December 31, 2019, 1,082 female patients were included 
in the study (age range, 12–96 years; mean age ± standard 
deviation, 42.22±13.37 years). A total of 1,185 nodules 
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(815 benign nodules and 370 malignant nodules) met the 
inclusion and exclusion criteria. All patients underwent US-
guided core needle biopsies. Nodules were marked on the 
skin, and ultrasonic images were obtained in the electronic 
system.

The inclusion criteria were as follows: (I) nodules were 
clinically suspicious for breast cancer and underwent biopsy; 
(II) nodules were B1, B2, B3, or B5; (III) patients expressed 
a strong desire to be biopsied; and (IV) solid breast nodules 
were defined as having little or no anechoic components 
based on US images. The exclusion criteria were as 
follows: (I) lesions were metastatic tumors; (II) patients 
had undergone systemic hormone therapy or adjuvant 
chemotherapy; and (III) nodules were B4. (The B4 category 
was excluded, as it cannot provide a definite diagnosis 
or valuable information for clinical practice, and further 
processing is required to determine its pathological type.)

The workflow is shown in Figure 1.

Clinical characteristic acquisition, ultrasonic image 
acquisition, and interpretation

Clinical characteristics included age, height, weight, and 
body mass index (BMI). The images were obtained using 
a 14-MHz linear transducer (Toshiba Aplio 500, Toshiba, 
Tokyo, Japan). The nodules’ images were acquired in a 
standard manner. All images included at least 2 orthogonal 
planes (radial and antiradial planes or transverse and 
longitudinal planes). According to the ACR BI-RADS fifth 
edition classification criteria and a previous study (15), 
all images were analyzed retrospectively by two breast 
radiologists (reader 1 with 10 years’ experience and reader 2 
with 5 years’ experience). The radiologists strictly recorded 
15 ultrasonic features, as follows: orientation, shape, 
echogenic pattern, margin, posterior features, calcifications, 
vascularity grade, vascularity distribution, background 
echotexture of parenchyma (BEP), anteroposterior thickness 

Eligible nodules (n=1,320)
•	 Breast tumor patients need to be treated between 

from March 1 to December 31, 2019

Inclusion criteria
•	 Nodules were clinically suspicious of breast 

cancer and underwent biopsy;
•	 Nodules were B1, B2, B3, and B5;
•	 Patients have the strong desire to be biopsied;
•	 Solid breast nodules

Exclusion criteria
•	 Lesions were metastatic tumors (n=44)
•	 Patients had been exposed to systemic hormone 

therapy or adjuvant chemotherapy (n=91)

Nodules included in the study (n=1,185)

Training cohort
(n=829)

Validation cohort
(n=356)

Development of 
models using  

5 machine learnings

Performance of  
5 machine learnings 
(AUCs and accuracy)

Figure 1 Flowchart of participant inclusion and exclusion. AUC, area under the curve.
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of breast parenchyma (TBP), anteroposterior thickness 
ratio of breast parenchyma to tissue before pectoralis 
fascia (RPT), anteroposterior thickness ratio of breast 
parenchyma to mammary fat (RPF), lymph node metastasis, 
tumor size, and BI-RADS category. RPT and RPF were the 
adjusted parameters of TBP. They were acquired after TBP 
was corrected via thickness of tissue, pectoralis fascia, and 
fat. The detailed interpretations of all ultrasonic features 
are listed in Appendix 1. Two radiologists were blinded to 
the pathological characteristic but not to patient age. Intra- 
and interobserver agreements of 15 ultrasonic features were 
evaluated. For the records of each ultrasonic feature, any 
disagreements between the two radiologists were resolved 
by final consensus following discussion.

Core biopsy reporting categories (6)

According to histological examination, all lesions were 
classified into 5 categories based on clinical and ultrasonic 
characteristics:

(I)	 B1 lesion indicates normal tissue.
(II)	 B2 indicates benign lesion, including fibroadenomas, 

fibrocystic change, sclerosing adenosis, and duct 
ectasia as well as other nonparenchymal lesions such 
as abscesses and fat necrosis.

(III)	 B3 lesion indicates uncertain malignant potential, 
and this category mainly consists of lesions that may 
provide benign histology on core biopsy but either 
are known to show heterogeneity or to be associated 
with an increased risk of malignancy. The category 
includes atypical intraductal epithelial proliferations, 
flat epithelial atypia, lobular neoplasia, phyllodes 
tumors, papillary lesions, radial scars, mucocele-
like lesions, and rare lesions.

(IV)	 B4 indicates suspicious nodules (technical problems 
may have led to crushed or poorly fixed cores that 
contain probable carcinoma that cannot provide 
a definitive diagnosis). Thus, B4 lesions were 
excluded in this study.

(V)	 B5 indicates malignant nodules.

Statistical analysis

Statistical analysis was performed with SPSS version 22.0 
(IBM Corp., Armonk, NY, USA). The statistical significance 
levels were two-sided, and a P value <0.05 was deemed to be 
statistically significant.

Multiple comparisons of the B1, B2, B3, and B5 categories

Multiple differences in all characteristics were assessed 
among the 4 categories. Continuous variables were 
compared using the least significant difference, whereas 
categorical variables were compared using the Bonferroni 
test.

Machine learning in characteristics analysis

RStudio version 1.1.463 (RStudio, The R Foundation 
for Statistical Computing, Vienna, Austria) was used as 
R software. Because there are many machine learning 
models, we chose the more common ones to complete 
the classification. The machine learning models included 
were random forest (RF), support vector machine (SVM), 
k-nearest-neighbor (KNN), multilayer perceptron (MLP), 
and ridge regression (RR). In operations, all cases were 
randomly split into training and validation cohorts based 
on the machine learning model. We achieved normalization 
for each feature in the data preprocessing steps. For the 
hyperparameters, we applied a simple tuning process 
instead of a detailed one since this study did not focus on 
the optimal hyperparameters. The hyperparameters used 
for each classifier are shown in Appendix 2.

Performance of machine learning

The maps of distribution were depicted for variables. 
The table of the validation cohort was used to predict the 
biopsied categories, including area under the curve (AUC) 
and accuracy. The receiver operating characteristic (ROC) 
was provided for every algorithm. According to the highest 
AUC, we determined the optimal algorithm, whose weight 
map was provided to show the importance of ultrasonic and 
clinical features.

Results

Clinical and ultrasonic characteristics

In our study, the proportions of the 4 categories were 
4% (44/1,185) for the B1 group, 60% (714/1,185) for 
the B2 group, 5% (57/1,185) for the B3 group, and 31% 
(370/1,185) for the B5 group. The baseline clinical and 
ultrasonic characteristics are listed in Table 1. There were 
statistically significant differences in 17 features (P<0.05) 
but not for echo pattern or BEP (P>0.05). The horizontal 
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Table 1 Baseline clinical and ultrasonic characteristics

Features B1 (n=44) B2 (n=714) B3 (n=57) B5 (n=370) P

Age (years), mean ± SD 47.55±11.46 36.82±11.34 42.45±8.73 52.02±11.92 <0.001

Height (cm), mean ± SD 158.68±4.67 158.93±4.82 159.02±5.26 157.67±5.07 0.001

Weight (kg), mean ± SD 55.71±8.08 53.96±7.68 56.34±7.91 57.89±8.14 <0.001

BMI (kg/m2), mean ± SD 22.12±2.98 21.37±2.95 22.31±3.25 23.28±3.09 <0.001

Echo pattern, n [%] 0.050

Hyperechoic 0 [0] 0 [0] 0 [0] 0 [0]

Complex cystic and solid 0 [0] 5 [1] 1 [2] 2 [1]

Hypoechoic 27 [61] 332 [46] 19 [33] 152 [41]

Isoechoic 0 [0] 14 [2] 3 [5] 11 [3]

Heterogeneous 17 [39] 363 [51] 34 [60] 205 [55]

Shape, n [%] <0.001

Oval 17 [39] 182 [25] 12 [21] 18 [5]

Round 1 [2] 11 [2] 0 [0] 2 [1]

Irregular 26 [59] 521 [73] 45 [79] 350 [95]

Margin, n [%] <0.001

Circumscribed 11 [25] 222 [31] 11 [19] 17 [5]

Indistinct 17 [39] 115 [16] 14 [25] 47 [13]

Angular 14 [32] 353 [49] 27 [47] 167 [45]

Microlobulated 2 [5] 24 [3] 5 [9] 139 [38]

Orientation, n [%] <0.001

Parallel 37 [84] 648 [91] 47 [82] 267 [72]

Not parallel 7 [16] 66 [9] 10 [18] 103 [28]

Posterior feature, n [%] <0.001

No posterior feature 15 [34] 85 [12] 9 [16] 20 [5]

Enhancement sound 4 [9] 75 [11] 8 [14] 21 [6]

Shadowing 13 [30] 161 [23] 10 [18] 63 [17]

Combined pattern 12 [27] 393 [55] 30 [53] 266 [72]

Calcification, n [%] <0.001

Within a mass 4 [9] 72 [10] 6 [11] 119 [32]

Outside of a mass 0 [0] 3 [0] 0 [0] 0 [0]

Intraductal calcifications 0 [0] 1 [0] 0 [0] 1 [0.3]

None 40 [91] 638 [89] 51 [89] 250 [68]

Vascularity distribution, n [%] <0.001

Absent 31 [70] 260 [36] 15 [26] 44 [12]

Vessels in rim 6 [14] 128 [18] 15 [26] 35 [10]

Internal 7 [16] 326 [46] 27 [48] 291 [78]

Table 1 (continued)
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Table 1 (continued)

Features B1 (n=44) B2 (n=714) B3 (n=57) B5 (n=370) P

Vascularity grade, n [%] <0.001

Grade I 31 [70] 260 [36] 14 [25] 45 [12]

Grade II 8 [18] 271 [38] 28 [49] 107 [29]

Grade III 4 [9] 126 [18] 13 [23] 140 [38]

Grade IV 1 [2] 57 [8] 2 [4] 78 [21]

Lymph node metastasis reported, n [%] <0.001

No 43 [98] 689 [96] 55 [96] 255 [69]

Yes 1 [2] 25 [4] 2 [4] 115 [31]

BEP, n [%] 0.281

Homogenous 10 [23] 148 [21] 11[19] 60 [16]

Inhomogeneous 34 [77] 566 [79] 46 [81] 310 [84]

BI-RADS category, n [%] <0.001

3 2 [5] 36 [5] 3 [5] 1 [0]

4A 15 [34] 135 [19] 10 [18] 7 [2]

4B 15 [34] 335 [47] 12 [21] 37 [10]

4C 11 [25] 166 [23] 23 [40] 96 [26]

5 1 [2] 42 [6] 9 [16] 229 [62]

Tumor size (mm), mean ± SD 11.76±6.50 17.91±9.39 18.03±7.90 24.46±11.66 <0.001

TBP (mm), mean ± SD 7.73±3.21 8.12±2.93 7.75±2.49 9.06±4.47 <0.001

RPT, mean ± SD 0.51±0.14 0.52±0.14 0.52±0.13 0.48±0.21 0.004

RPF, mean ± SD 1.96±1.97 1.93±1.75 1.86±1.23 1.53±1.72 0.004

SD, standard deviation; BMI, body mass index; BEP, background echotexture of parenchyma; BI-RADS, Breast Imaging Reporting and 
Data System; TBP, anteroposterior thickness of breast parenchyma; RPT, thickness ratio of breast parenchyma to tissue before pectoralis 
fascia; RPF, thickness ratio of breast parenchyma to mammary fat.

bar graphs of categorical variables are shown in Figure 2, the 
histograms of continuous variables are shown in Figure 3,  
and multiple comparisons of clinical and ultrasonic 
characteristics are shown in Appendix 3.

Performance of machine learning

All nodules were split into a training cohort (829 nodules) 
and a validation cohort (356 nodules). In the validation 
cohort, the ROCs of 5 algorithms are plotted in Figure 4.  
The prediction results, AUC, and accuracy of the 5 
algorithms are listed in Table 2.

According to the above results, we found that RF was the 
best algorithm for predicting CBCs. The AUCs were 0.78, 

0.88, 0.64, and 0.92, for B1, B2, B3, and B5, respectively. 
In summary, RF showed the best predictive ability with an 
accuracy of 0.82. Since each rank variable was treated as an 
independent variable in the categorical variables, up to 45 
features were included in RF. Because the top 10 variables 
play a major role in building the model, the weight map of 
these variables is shown in Figure 5.

Discussion

Our study demonstrated relationships between several 
clinical and almost all US features with biopsy categories 
of solid tumors of the breast. Based on clinical and US 
features, machine learning models were used to predict 

https://cdn.amegroups.cn/static/public/QIMS-22-877-Supplementary.pdf
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Figure 2 Horizontal bar graphs of the categorical variable. The ordinates represent the assignments of the subcategory variable, and the 
height of each assignment represents its proportion in all cases. The abscissa represents the preoperative biopsy categories, and different 
colours indicate different categories. Blue represents the B1 category, orange the B2 category, green the B3 category, and red the B5 
category. BI-RADS, Breast Imaging Reporting and Data System; BEP, background echotexture of parenchyma.

CBC. This is in contrast to a previous study, in which MRI 
features of B2, B3, and B5 lesions were analyzed in only 
61 cases and focused solely on the distribution of MRI 
features (16). Another study investigated several clinical and 
US features of 102 B3 lesions but did not analyze in detail 
the relationship between B3 lesions and each feature of the 
BI-RADS lexicon (17). To the best of our knowledge, there 
are no previous studies that have used machine learning 
models to predict CBC based on US features.

Ultrasonic terminologies of BI-RADS are used to depict 
the morphology and function of breast tumors. However, 
each feature can exist in both benign and malignant tumors. 
Hypoecho, calcification, and abundant vascularity have been 
reported in benign and malignant tumors (18-20); a similar 
phenomenon was found in our study (Table 1). Benign and 
malignant lesions cannot be accurately predicted with a 
single US feature or clinical feature. Therefore, a model 
that assesses the characteristics of breast lesions is needed.

Machine learning is beneficial for building a predictive 
model and plays an important role in radiological studies 
(9,21). In our study, we used 5 machine learning models 
to analyze US and clinical features and to conduct 
multiclassification for predicting CBC. Our study showed 
outstanding performance of the 5 machine learning models 
in predicting the B2 and B5 lesions, but they could only 
barely predict B1 or B3 lesions (Table 2). We tried to retrain 
the RF model by overrepresenting B1 and B3 within the 
same class. However, there was no significant improvement 
using this approach (Appendix 4).

Similar to previous ultrasonic studies (22,23), our 
study found that RF showed the best overall performance 
among the 5 machine learning models (Table 2). RF 
contains multiple decision trees, and the output category 
is determined by the mode of the category output by 
the individual tree. Therefore, RF is advantageous for 
conducting the classification. According to the weight map 

https://cdn.amegroups.cn/static/public/QIMS-22-877-Supplementary.pdf
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Figure 3 Histograms of each continuous variable. Blue represents the B1 category, orange the B2 category, green the B3 category, and 
red the B5 category. Different colors represent corresponding categories. BMI, body mass index; TBP, anteroposterior thickness of breast 
parenchyma; RPT, thickness ratio of breast parenchyma to tissue before pectoralis fascia; RPF, thickness ratio of breast parenchyma to 
mammary fat.

of RF, we found that the top 10 features were age, tumor 
size, BMI, microlobulated margin, TBP, RPF, RPT, weight, 
height, and no reported lymph node metastasis.

Age is not included in the risk stratification of ACR US 
BI-RADS, but it influences the doctor’s determination. 

Increasing age is closely related to a higher incidence of 
breast cancer worldwide (24,25). Ordinarily, tumor size 
is not considered to be a risk factor in US BI-RADS. 
Nevertheless, based on the tumor biological behavior, the 
faster the tumor size increases, the higher the possibility of 
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malignancy. BMI showed a strong ability to predict CBC. 
BMI was highest in the B5 category, and a higher BMI 
indicated a greater likelihood for malignancy. It has long 
been recognized that overweight and obese individuals 
are at increased risk of postmenopausal breast cancer, 
notably hormone receptor-positive cancers (26). In our 
study, increased age and higher BMI were associated with 
a higher CBC.

Lesions with microlobulated margins are likely to be 
classified as malignant (27). The greater desmoplastic 

reaction leads to noncircumscribed margins, including 
microlobulated margins (28). As the parameters of breast 
parenchyma, TBP, RPF, and RPT performed well in our 
predictive task. The performance of TBP was very strong, 
and the TBP of the B5 category was the greatest. The 
interaction of tumor cells and host stromal cells is associated 
with breast cancer, and the parenchymal stromal cells play 
an important role in the formation and development of 
breast cancer, acting as a matrix to promote tumor growth 
(29,30). A small number of ultrasonic studies found that 

Figure 4 ROC curves of the 5 machine learning models. (A) RF; (B) SVM; (C) KNN; (D) MLP; (E) RR. Class 1: B1 category; class 2: 
B2 category; class 3: B3 category; class 4: B5 category. ROC, receiver operating characteristic; RF, random forest; SVM, support vector 
machine; KNN, k-nearest-neighbor; MLP, multilayer perceptron; RR, ridge regression.
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Table 2 AUCs and accuracy of the 5 algorithms

Model HIS
PRE

B1 B2 B3 B5 AUC Accuracy

RF B1 0 12 0 1 0.78 0.82

B2 0 204 0 11 0.88

B3 0 16 0 1 0.64

B5 0 23 0 88 0.92

SVM B1 0 13 0 0 0.69 0.81

B2 0 204 0 11 0.87

B3 0 15 0 2 0.65

B5 0 27 0 84 0.92

KNN B1 0 13 0 0 0.73 0.77

B2 0 210 0 5 0.81

B3 0 16 0 1 0.62

B5 0 46 0 65 0.87

MLP B1 1 10 0 2 0.71 0.80

B2 1 198 0 16 0.86

B3 1 15 0 1 0.68

B5 0 25 0 86 0.92

RR B1 0 10 0 3 0.69 0.81

B2 0 203 0 12 0.84

B3 0 16 0 1 0.55

B5 0 24 0 87 0.93

AUC, area under the curve; HIS, actual histological result; PRE, predicted histological result; RF, random forest; SVM, support vector 
machine; KNN, k-nearest-neighbor; MLP, multilayer perceptron; RR, ridge regression.

Age 
Tumor size 

BMI 
Micro-Iobulated margin 

TBP 
RPF 
RPT 

Weight 
Height 

No-lymph-node-metastasis-reported

0   0.02 0.04 0.06 0.08  0.1 0.12 0.14 0.16

Importance

Figure 5 Weight map of the RF model. The weight of age was 
the highest, and the weights of the remaining features decrease 
sequentially. BMI, body mass index; TBP, anteroposterior thickness 
of breast parenchyma; RPT, thickness ratio of breast parenchyma 
to tissue before pectoralis fascia; RPF, thickness ratio of breast 
parenchyma to mammary fat; RF, random forest.

thick breast parenchyma promotes the occurrence of breast 
cancer (31-34). Similar to previous studies (35,36), our 
study found that the reported lymphatic metastasis was able 
to predict malignancy.

Our study was not without limitation. First, although RF 
was determined as the optimal machine learning for CBC, 
it missed 13 B5 and B2 lesions. As expert mathematicians 
further perfect the RF, we will try to use the latest RF 
algorithm to improve the accuracy of CBC prediction in 
the future. Second, the sample size was small, particularly 
in the B1 and B3 categories. A larger data set is needed to 
validate the robustness of RF and to build the application 
to automatically predict the preoperative biopsy category. 
Third, the study did not integrate other clinical risk factors 
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due to the inherent incompleteness of the retrospective 
study data. Prospective studies with complete data sets (i.e., 
those including family history, serological, and menopausal 
period) should be carried out. Last but not the least, 
the subjective analysis of some ultrasonic features led to 
inevitable deviation. Consequently, objective parameters 
(i.e., radiomics features and contrast-enhanced US) should 
be used to improve this model.

Conclusions

Based on clinical and ultrasonic features, we used machine 
learning models to predict the CBCs of solid breast tumors. 
Of the 5 models, RF was the optimal machine learning 
model, as it had the highest accuracy of 0.82. Especially for 
B2 and B5, RF performed well, and its AUCs were 0.88 and 
0.92, respectively. In practice, our study can aid in clinically 
precise individualized management with BI-RADS and can 
also assist in developing a new US imaging reporting system 
for solid breast tumors.
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Supplementary

Appendix 1

According to the criteria of the ACR BI-RADS fifth edition and our previous studies (37,38), the detailed descriptions of 
imaging features are as follows.

Breast BEP

(I)	 BEP contains fat and fibro-glandular parenchyma (homogeneous and heterogeneous). Homogeneous echotexture 
consists of fat or fibroglandular homogeneity. Heterogeneity can be either focal or diffuse. The breast echotexture is 
characterized by multiple small areas of increased and decreased echogenicity and may be companied by shadowing.

(II)	 The qualitative parameters of breast parenchyma and fat adjacent to lesions were measured in the maximal diameter of 
the tumor’s image. The mean diameter was based on 3 measurements. Each mean diameter should be obtained based on 
three measurements as follows.

RPT = a/c. RPT is the ratio (the largest thickness of TBP/thickness of pectoralis fascia). RPF = a/b. RPF is the ratio (the 
thickness of TBP/thickness of mammary fat).

Shape

(I)	 Oval: a mass that is elliptical or egg-shaped (may include 2 or 3 undulations; i.e., gently lobulated or macrolobulated).
(II)	 Round: a round mass is one that is spherical, ball-shaped, circular, or globular. It has an anteroposterior diameter equal 

to its transverse diameter; to qualify as a round mass, it must be circular in perpendicular projections.
(III)	 Irregular: this lesion shape is neither round nor oval.

Orientation

(I)	 Parallel: the long axis of the mass parallels the skin line. Masses that are only slightly obliquely oriented might be 
considered parallel.

(II)	 Not parallel: the long axis of the mass is not parallel to the skin line. The anterior-posterior or vertical dimension is 
greater than the transverse or horizontal dimension. These masses can also be obliquely oriented to the skin line. Round 
masses are not parallel in their orientation.

Margin

(I)	 Circumscribed: a circumscribed margin is one that is well defined, with an abrupt transition between the lesion and the 
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surrounding tissue. For a mass to be described as circumscribed at US, its entire margin must be sharply defined. Most 
circumscribed lesions have round or oval shapes.

(II)	 Indistinct: there is no clear demarcation of the entire margin or any portion of the margin from the surrounding tissue.
(III)	 Angular: some or all of the margin has sharp corners, often forming acute angles.
(IV)	 Microlobulated: the margin is characterized by short-cycle undulations, but the significant feature is that the margin of 

the mass is not circumscribed.

Echogenic pattern

(I)	 Hypoechoic: the term “hypoechoic” is defined relative to subcutaneous fat; hypoechoic masses, which are less echogenic 
than fat, are characterized by low-level echoes throughout.

(II)	 Isoechoic: isoechogenicity is defined as having the same echogenicity as subcutaneous fat.
(III)	 Hyperechoic: hyperechogenicity is defined as having increased echogenicity relative to fat or equal to fibroglandular 

tissue.
(IV)	 Complex cystic and solid: a complex mass contains both anechoic (cystic or fluid) and echogenic (solid) components.
(V)	 Heterogeneous: a mixture of echogenic patterns within a solid mass.

Posterior features

(I)	 No posterior features: no shadowing or enhancement is present deep to the mass; the echogenicity of the area 
immediately behind the mass is not different from that of the adjacent tissue at the same depth.

(II)	 Enhancement sound transmission: there is no impediment in the passage through the mass. Enhancement appears as a 
column that is more echogenic (whiter) deep to the mass.

(III)	 Shadowing: there is attenuation of the acoustic transmission. Sonographically, the area posterior to the mass appears 
darker.

(IV)	 Combined pattern: these are lesions with more than one pattern of posterior attenuation.

Calcifications

(I)	 Calcifications in a mass.
(II)	 Calcifications outside of a mass: calcifications situated in fat or fibro-glandular tissue.
(III)	 Intraductal calcifications.
(IV)	 No calcification.

Vascularity distribution

(I)	 Absent: cysts are the most common avascular lesions. Some solid masses also have little or no vascularity.
(II)	 Vessels in rim: the blood vessels may be marginal, forming part or all of a rim around a mass.
(III)	 Internal vascularity: blood vessels are present within the mass. Vessels may penetrate the margin of the mass or display 

an orderly or disorderly pattern within the mass.

Vascularity grade (39)

(I)	 Grade I: nonvascularity.
(II)	 Grade II: less than 1 mm in diameter.
(III)	 Grade III: a main vessel is visible in the area, and/or several small vessels are visible.
(IV)	 Grade IV: four or more vessels are visible.
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Reported lymph node metastasis
(I)	 No: US doctor did not report lymph node metastasis.
(II)	 Yes: US doctor reported lymph node metastasis.

Tumor size

The largest diameter is the only feature used. The largest measurement should represent the longest axis of a lesion.

Appendix 2

The hyperparameters used for RF, SVM, KNN, MLP, and RR.

RF: n_estimators (200, test in [50, 100, 150, 200])
       max_depth (5, test in [2, 3, 4, 5, 6])
       n_features (none, since we want to test all features)

SVM: c (1, test in [0.1, 1, 10])
           Kernel (‘rbf’, test in [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’])
           degree (3, test in [2, 3])

KNN: n_neighbors (40, test in [3, 5, 10, 20, 30, 40, 50])
            weights (‘uniform’, test in [‘uniform’, ‘distance’])

MLP: hidden_layer_sizes (128, test in [32, 64, 128])
           activation (‘relu’, test in [‘logistic’, ‘relu’])

RR: alpha (1.6, test in [0, 0.1, 0.2, …, 1.9, 2.0])

Parameters not mentioned above were set as the default values.

Appendix 3

Pairwise comparison of clinical and ultrasonic characteristics

Characteristics HIS B1 B2 B3 B5

Age B1 * * *

B2 * * *

B3 * * *

B5 * * *

Height B1

B2 *

B3

B5 *

(continued)
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(continued)

Characteristics HIS B1 B2 B3 B5

Weight B1

B2 *

B3

B5 *

BMI B1 * *

B2 * * *

B3 * *

B5 * * *

Echo pattern B1

B2 *

B3

B5 *

Shape B1 * *

B2 * *

B3

B5 * *

Margin B1 *

B2 *

B3 *

B5 * * *

Orientation B1

B2 *

B3

B5 *

Posterior feature B1 *

B2 *

B3 *

B5 * * *

Calcification B1 *

B2 *

B3 *

B5 * * *

(continued)
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(continued)

Characteristics HIS B1 B2 B3 B5

Vascularity distribution B1 * * *

B2 * * *

B3 * *

B5 * *

Vascularity grade B1 * *

B2 * *

B3 *

B5 * * *

Lymph node metastasis 
reported

B1 *

B2 *

B3 *

B5 * * *

BEP B1

B2

B3

B5

BI-RADS category B1 * *

B2 * *

B3 *

B5 * * *

Tumor size B1 * * *

B2 * *

B3 * * *

B5 * * *

TBP B1 *

B2 *

B3 *

B5 * * *

RPT B1

B2 *

B3

B5 *

RPF B1

B2 *

B3

B5 *

*, P<0.05. HIS, actual histological result; BMI, body mass index; BEP, background echotexture of parenchyma; BI-RADS, Breast Imaging 
Reporting and Data System; TBP, anteroposterior thickness of breast parenchyma; RPT, thickness ratio of breast parenchyma to tissue 
before pectoralis fascia; RPF, thickness ratio of breast parenchyma to mammary fat.
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Appendix 4

ROC curves, areas under the curve, and accuracy of the RF model with overrepresentation of B1 and B3 to the same class (class 1).

PRE: class 1 (B1 + B3), class 2 (B2), class 3 (B5), AUCs, accuracy.
HIS: class 1 (B1 + B3), [0, 26, 4, 0.67], 0.81
         class 2 (B2) [0, 200, 15, 0.88]
         class 3 (B5) [0, 24, 87, 0.93]
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