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Background: This study aimed to investigate the association of superficial cerebral veins (SCVs) with sex-
related cognitive differences and the possible hemodynamic mechanisms underlying these associations.
Methods: This investigation was a prospective case-control study. A total of 344 healthy volunteers were 
recruited. In all, 200 volunteers were included to establish the deep learning model, and 144 volunteers 
were used for the research, including 72 males (50%) and 72 females (50%). No significant differences in 
age (P=0.358) or education (P=0.779) were observed between the sexes. Cognitive functioning was evaluated 
using neuropsychological tests, including the Mini-Mental State Examination (MMSE) and the Montreal 
Cognitive Assessment-Basic (MOCA-B). Susceptibility-weighted imaging scans were acquired with a 3.0 T  
magnetic resonance imaging system using a 32-channel high-resolution phased array coil. Minimum 
intensity projection images were obtained by reconstructing susceptibility-weighted imaging data. A deep 
learning model was trained on the minimum intensity projection images to quantify the diameter, tortuosity 
index, length, and the number of SCVs in the bilateral cerebral hemispheres. Finally, the association between 
cognitive differences between males and females and the properties of the SCVs was analyzed.
Results: The MMSE and MOCA-B scores of males were significantly higher than those of females 
(P<0.05). Males had more SCVs in the bilateral cerebral hemispheres than did females (right hemisphere: 
P<0.01; left hemisphere: P<0.05). The number of SCVs in the right cerebral hemisphere was significantly 
and positively correlated with the MMSE and MOCA-B scores (correlation coefficients: 0.246 and 0.201, 
respectively; P<0.05). The number of SCVs in the left cerebral hemisphere was positively correlated with the 
MMSE scores (correlation coefficient: 0.196; P<0.05) and the MOCA-B scores. In this study, no significant 
correlations were observed between cognition and the diameter, length, or tortuosity index of the SCVs in 
the bilateral cerebral hemispheres.
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Introduction

Both the prevalence of certain diseases and their 
manifestations and treatment efficacy may differ depending 
on the sex of the patient. Thus, the identification of 
populations with particular individual characteristics is 
important to improve clinical prevention and treatment 
effects (1-3). It is well-established that the performance of 
cognition is related to many factors, which can be divided 
into social and biological factors. As many studies have 
pointed to the differences in cognition between sexes, the 
relevant pathophysiological mechanisms underlying sex-
related differences in thinking and cognitive performance 
have generated considerable research interest and attention, 
particularly the differences in brain anatomy between the 
sexes. Sex differences of the brain have been observed in 
both humans and mice. For example, the brain volumes of 
healthy males are significantly larger than those of females 
(4-7). Moreover, differences in the shape and functions 
of the cortex are known contributors to the cognitive 
differences between sexes. Many researchers believe that 
sex differences in cognition are determined by biological 
factors, such as genetic and hormonal factors that affect 
brain anatomy, function, or both (7,8). The difference in 
hemodynamics is also presumed to be a reason for the 
difference in the brain volume, which may be the potential 
reason why cognitive performance differs between sexes (9).  
However, the mechanism underlying the correlation between 
hemodynamics and cognition requires further exploration.

Previous tissue anatomy studies have reported that 
typical penetrating venules appear to drain the blood 
supplied by 4 to 5 penetrating arterioles (10,11). A 
schematic representation of the vascular anatomical 
structure of the veins and arteries in the cortex is shown in 
Figure 1A. Due to these anatomical features of the cortical 
vasculature, stenosis, or occlusion of one penetrating venule 
can evidently increase resistance in multiple upstream 
arterioles. The mechanism underlying the hemodynamic 
changes due to this venous structure is shown in Figure 1B. 

Given the aforementioned information, we hypothesized 
that, because of the characteristics of the human cortical 
angioarchitecture, the penetrating venules located at the 
center of the perfusion domain may be a point of vulne
rability in patients with cerebrovascular disease. Thus, 
an exploration of the potential relationship between 
cerebral veins and cerebrovascular-related diseases and 
the related mechanism may be valuable. It is well-known 
that susceptibility-weighted imaging (SWI) is the primary 
method for noninvasively investigating the cerebral veins 
in vivo. The SWI sequence uses full velocity-compensated 
high-resolution 3-dimensional (3D) gradient echo 
sequences, in which the difference in magnetic susceptibility 
between tissues is used to enhance the image contrast. Based 
on this imaging principle, SWI has been used to visualize 
hemosiderin, deoxyhaemoglobin, and other substances. 
Therefore, SWI is useful for observing the intracranial 
venous system. Moreover, it has gradually become a 
powerful and useful tool to delineate venous structures in the  
brain and to study diverse pathological conditions (12-15).

In recent studies, SWI has been used to assess the 
correlation between cerebral veins, especially deep 
medullary veins (DMVs), and diseases, including cerebral 
small-vessel disease, leukoaraiosis, and white-matter 
hyperintensity (WMH), which may lead to cognitive 
decline (16-19). The difference in the veins visualized 
on an SWI scan may be used to evaluate and diagnose 
various diseases. For instance, because the intravenous 
deoxyhaemoglobin level is increased in regions of decreased 
perfusion, venous visualization is increased on SWI scans 
in patients with acute cerebral infarction compared with 
that in healthy controls (20). SWI has also been used to 
assess diffusion–perfusion mismatch (21). Researchers (22) 
reported transient prominence of the venous vasculature on 
SWI scans detected in patients with migraine aura. Other 
researchers (23) also noted that the epileptic foci in patients 
with acute-stage pediatric encephalopathy are consistent 
with the venous area highlighted on SWI scans. However, 
many previous studies examining cognition have focused on 

Conclusions: The cognitive function of males was better than that of females, and the different numbers 
of SCVs may be one of the explanations for this phenomenon of sex-based differences in cognition.
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DMVs. Based on the anatomical characteristics of the veins 
and arteries in the cortex, the important role of the cortex 
in the cognitive function and the sex-based differences in 
cognitive performance, we posited that the morphological 
characteristics of the superficial cerebral veins (SCVs) 
potentially reflect the hemodynamic features of the cortex 
and may be correlated with cognitive differences between 
the sexes. At present, there are few studies available on 
SCVs, and there is still no effective and recognized SCV 
assessment method. Most researchers adopt the subjective 
visual assessment method, which is based on their own 
experience in SCVs. Usually, a visual qualitative evaluation 
system is used to assess the changes of SCVs’ visibility 
in patients with epilepsy, acute cerebral infarction, and 
migraine (23-26). This method is subjective and not very 
reliable and is mainly used for an approximate estimation of 
the changes of SCVs during clinical disease progression. In 
addition, since SCVs are widely distributed in the human 

brain, quantifying SCVs usually requires a lot of time when 
large sample sizes are involved. To overcome these issues, 
we independently established a deep learning model to 
quantify the morphological characteristics of SCVs based 
on minimum intensity projection (MinIP) images. Then, we 
used this model to explore the study data using the improved 
model. We further investigated the potential hemodynamic 
mechanisms underlying the differences in sex-based 
cognitive performance based on the characteristics of the 
SCVs. We present the following article in accordance with  
the STROBE reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-87/rc).

Methods

Participants

This prospective, case-control study was approved by the 

Figure 1 Schematic representation of the vascular anatomical structure of the veins and arteries in the cortex and the mechanism of 
hemodynamic changes due to the venous structure under pathological conditions. (A) Cerebral vascular structure of veins in the cortex. The 
red lines represent the penetrating arterioles in the cortex, and the blue lines represent the penetrating venules, each of which has to drain 
blood supplied by 4 to 5 penetrating arterioles. (B) The dynamic process of blood flow stasis in the upstream supplying arteries due to the 
changes in the state of venous blood flow. The green arrows represent the ability to circulate blood. Gradually lighter coloring indicates 
the decreased blood flow. The blood flow status is normal at first, but drainage is hindered when the veins undergo pathological damage, 
resulting in slow blood flow in the upstream arteries and possible occlusion. Arterial stasis further aggravates venous drainage obstruction.
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Ethics Committee of Guangzhou First People’s Hospital 
(No. K-2019-166-01) and was conducted after the 
volunteers’ written informed consent was obtained and in 
accordance with the Declaration of Helsinki (as revised 
in 2013). We recruited volunteers from the community 
between August 2018 and December 2021. A total of 344 
volunteers were recruited. In all, 200 volunteers were used 
for establishing the deep learning model, and 144 volunteers 
were included in the research including 72 males (mean 
age 58.96±6.37 years) and 72 females (mean age 60.32± 
7.41 years). All enrolled volunteers in this study (I) were 
right-handed Chinese-speaking individuals of Chinese 
ethnicity; (II) had completed more than 7 years of education; 
(III) exhibited no obvious abnormalities in vision and 
hearing and had a sound mental state; (IV) had no history 
of brain tumors or craniocerebral surgery; (V) had no 
conditions known to influence cerebral function, such as 
alcoholism, current depression, Parkinson disease, epilepsy, 
severely damaged liver and kidney function, or abnormal 
thyroid function; and (VI) had no contraindications 
to magnetic resonance imaging (MRI). During the 
experiment, some people were found to (I) have moderate 
or more severe depression during the Hamilton Anxiety 
Scale (HAMA) evaluation [the methods for assessing mental 
state used in this study were the HAMA and Hamilton 
Depression Scale (HAMD)], which affects the accuracy 
of the cognitive function evaluation; (II) were unable 
to cooperate with the performance of an MRI scan and 
cognitive function tests; and (III) had intracranial lesions 
underlying an unknown condition. Thus, 23 participants 
with the aforementioned problems were excluded from 
this study. Finally, 344 participants, including 200 persons 
for establishing the model and 144 for the experiments, 
were included (Figure 2). The cognitive function tests were 
conducted by 3 trained independent researchers using the 
Mini-Mental State Examination (MMSE) and the Montreal 
Cognitive Assessment-Basic (MOCA-B).

MRI data acquisition

All volunteers were scanned with a Siemens Skyra 3.0 T 
MRI scanner (Siemens Healthineers, Erlangen, Germany) 
using a 32-channel high-resolution phased array coil in 
the Nansha Imaging Center of Guangzhou First People’s 
Hospital. None of the participants were taking any medication 
that might have influenced cognition during the scans at the 
time of the study. The volunteers laid in a supine position 
with their heads fixed snugly with foam pads to minimize 

head motion. MRI sequences included 3D T1-weighted 
imaging and 3D SWI. An axial orientation parallel to the 
anterior commissure to the posterior commissure (AC-PC) 
line in all sequences covered the entire brain. T1-weighted 
imaging was performed under the following parameters: 
repetition time (TR) =2,530 ms, echo time (TE) =2.96 ms,  
slice thickness =1.0 mm, flip angle =7°, field of view 
=256×256 mm2, and acquisition matrix =352×352. SWI was 
performed with the following parameters: TR =28 ms, TE 
=20 ms, slice thickness =1.0 mm, flip angle =15°, field of view 
(FOV) =220×193.8 mm2, and acquisition matrix =352×352.

MRI data processing

Data set collection
Since the SCVs are tortuous and branched, we used volume 
imaging to reconstruct the original SWI data. Through 
a pre-experimental comparison and analysis of various 
reconstruction layer thicknesses, MinIP images were 
reconstructed with a layer thickness set at 20 mm and an 
interlayer distance set to 1 mm. Importantly, the MinIP 
images were used as the image data for model construction. 
Two hundred MinIP images from the healthy participants 
were imported into a MicroDicom Viewer (https://www.
microdicom.com/). The window width (WW) and window 
level (WL) were fixed in the range of 20–40. The vascular 
structure of the SCVs in the bilateral cerebral region was 
observed at the level of the lateral ventricle. Three layers 
between the upper and lower edges of the lateral ventricle 
were chosen as samples for the regions of interest (ROIs) 
to select the area in which the SCVs was best visualized. 
Finally, 600 sets of images were chosen.

Preprocessing steps
The original images were stored in DICOM format; 
this format prohibited the neural network from directly 
analyzing the images, and thus they were converted to the 
general JPG format. The number of images obtained after 
conversion to JPG format was the same as the number of 
layers after SWI, and each image displayed the complete 
image information of a slice. The number of layers and 
the location of the SCVs were quickly located through the 
position information and the number of scan layers. The 
selected layer image was imported into Labelme software 
(https://github.com/wkentaro/labelme). All visible SCVs 
were outlined by the neuroradiologists with more than  
2 years’ work experience. Because the data set in this study 
was small, it was expanded through data augmentation 

https://www.microdicom.com/
https://www.microdicom.com/
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procedures. According to the ratio of 67%, some images 
are randomly selected from the 600 data sets. The selected 
images were expanded through data augmentation 
procedures, including translation, rotation, left-right 
mirroring, and random noise, which were added to the 
original data set to expand the number of images to 1,000. 
By using these image augmentation methods, the robustness 
of the model could be increased while preventing model 
overfitting. The 1,000 images were used to train the model.

SCVs refer to the cerebral veins in the area of the cerebral 
cortex. In the MinIP images, the SCVs are represented by the 
linear black part of the cerebral cortex, which is distinguished 
from the surrounding white brain parenchyma. Our objective 
in this study was to identify the SCVs and automatically 
quantify their morphological characteristics; notably, only 
the brain parenchyma needed to be analyzed. Therefore, the 
extraction of the brain parenchyma from the image, as the 
outer contour of the brain, might have affected the learning 
of the neural network.

Deep learning model

The experiment was performed on a Windows 10 system, 

and the central processing unit (CPU) was an Intel Core 
i7-8565U1.80 GHz (Santa Clara, CA, USA). PyTorch 
framework version 1.4 (Linux Foundation, San Francisco, 
CA, USA) and Python version 3.6 (Python Software 
Foundation, Wilmington, DE, USA) were used. The 1,000 
sets of data were randomly divided into training (n=600), 
validation (n=200), and test sets (n=200). The amount of 
data used for establishing a deep learning model at each 
stage is summarized in Table 1. In the experiment, the 
DeepLabV3+ network (27) (Hasty, Berlin, Germany) 
was used to train the segmentation image of SCVs. The 
main body of this network structure decoder is a deep 
convolutional neural network (DCNN) with atrous 
convolution, and its basic network structure, Resnet, is used 
to extract image features. In addition, the network structure 
decoder also has atrous spatial pyramid pooling (ASPP), 
which is mainly used to introduce multiscale information 
and a decoding module and, in addition, to fuse low-level 
features with high-level features and improve the accuracy 
of segmentation boundaries. A gradual decrease method 
was adopted for the learning rate to avoid falling into a 
local optimum; specifically, after every 200 iterations, the 
learning rate was adjusted. The input image size was fixed to 

Figure 2 Participants included at different stages of this study and reasons for exclusion. MRI, magnetic resonance imaging. 

All participants recruited from the community  
(n=367)

After excluding the above-mentioned reasons,  
344 participants remained

6 participants with moderate or higher anxiety or 
depressive symptoms.
7 participants were found have tumor, brain cyst, 
or a large area of encephalomalacia during the 
process of MRI scan. 
4 old participants with a loss of hearing or who 
could not understand what the researchers meant 
during the experiment.
6 participants dropped out of the experiment due 
to intolerance to the noise of MRI scans or other 
reasons.

The participants used for the design 
of the deep learning model  

(n=200)

The participants included  
in this study  

(n=144)
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512×512, and the output data were the model classification 
prediction results. The main parameters for training the 
deep learning model were the following: model depth =19, 
hidden layer =16, dropout =0.5 [dropout may effectively 
alleviate the occurrence of overfitting and achieve the effect 
of regularization to a certain extent (28)], batch size =64 
(batch size refers to the number of data samples captured 
in a training session), pretrained = true, number of epochs 
=200 (epochs refer to the number of times all data have 
been traversed), and learning rate =0.01 (the learning rate 
controls the learning progress of the model). The neural 
network structure training process is shown in Figure 3. The 
segmentation and recognition steps for the SCV images are 
shown in Figure 4.

Model application

The SWI scans of the 144 participants in this study were 
processed with the same reconstruction parameters to 
obtain MinIP images. Then, the largest layer of the brain 
was selected in each participant’s MinIP image and fed 
into the SCV morphological feature quantification model. 
The model then automatically identified and quantified the 
diameter, tortuosity index (TI), length, and number of SCVs 
in the bilateral cerebral hemispheres. The TI was calculated 
as the total tortuous length divided by the total straight 
length. The diameter was defined as the ratio of the area of 
the SCVs to the tortuous length. Finally, the diameter, TI, 
length, and number of all recognized SCVs in the largest 
bilateral cerebral hemisphere level were summed, and the 
means of these indexes were calculated for each participant.

Statistical analysis

Statistical analyses were conducted using SPSS software 

(version 25.0; IBM Corp., Armonk, NY, USA). Study 
participants were categorized by sex. Measurement data 
with a normal distribution are reported as means ± standard 
deviations, and the independent sample t test was used for 
comparisons between groups. Measurement data with a 
skewed distribution are presented as the median and the first 
and third quartile [M (Q1, Q3)], and the Mann-Whitney 
test was used to compare results between groups. Potential 
SCV-related effects on cognition were investigated by 
calculating the Spearman correlation coefficients, with the 
cognitive score and the quantified characteristics of SCVs 
serving as variables. A P value less than 0.05 indicated a 
statistically significant difference.

Results

Performance evaluation of the deep learning model

The results for the evaluation of the performance of the 
deep learning model in analyzing both the training and 
validation sets are shown in Figure 5. The accuracy is 
defined as the mean of the union of the intersection area 
ratios of the marker map and the recognition map. The 
epochs refer to the number of times all data have been 
traversed. Generally, the accuracy of the model increased 
consistently as the number of epochs increased. After 20 
epochs, the model eventually stabilized and was highly 
accurate for both the training and validation sets, as shown 
by the blue curved line in Figure 5. Finally, the accuracy of 
the deep learning model reached 98.86% for the training set 
and 98.02% for the validation set. The loss values obtained 
in the process of model training and model validation are 
also shown in Figure 5 and are indicated by the green curve. 
The loss function decreased gradually as the number of 
epochs increased, indicating good model convergence.

Demographic and cognitive characteristics

Demographic information and cognitive performance of 
the volunteers in this study are shown in Table 2. A total 
of 144 volunteers were included in this study. The average 
age was 59.64 years, the numbers of males and females 
were 72 (50%) and 72 (50%), respectively, and the average 
education level was 11.49 years. No significant differences 
in age or education were observed between the groups. The 
results shown in Figure 6 indicate that in terms of cognitive 
performance, males scored significantly higher than females 
on both the MMSE and MOCA-B (P=0.016 and P=0.015, 
respectively).

Table 1 Amount of data used at each stage of establishing the deep 
learning model

Stage Number 

Participant used for establishing the model 200

Layers of MinIP image for model 600

Image after expansion 1,000

Images for training 600

Images for validation 200

Images for test sets 200

MinIP, minimum intensity projection.
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Figure 3 Framework of the neural network model for the automatic quantification of SCVs. DCNN, deep convolutional neural network; 
SCV, superficial cerebral vein.

Figure 4 Segmentation and recognition steps for SCV images. (A) Original MinIP image. (B) Identified SCVs. (C) Superimposition of the 
identified SCVs on the MinIP map and automatic generation of the different quantified indexes of the SCVs. The red lines in (C) represent 
the actual length of the SCVs, the green lines represent the actual area of the SCVs, and the yellow lines represent the target area, which 
was automatically identified, namely, the area between the 2 ends of the SCVs. SCV, superficial cerebral vein; MinIP, minimum intensity 
projection.
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Quantitative characteristics of the SCVs in patients 
stratified by sex

The SCVs characteristics of the study participants were 
quantified and are shown in Table 3. Males had significantly 

more SCVs in the bilateral cerebral hemispheres than did 

females (P<0.01 for the right cerebral hemisphere; P<0.05 

for the left cerebral hemisphere). No significant differences 

in the diameter, length, or TI of the SCVs in the bilateral 
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cerebral hemispheres were observed between males and 
females in this study (Figures 7,8).

Correlations between SCV characteristics and cognition

The number of SCVs in the right cerebral hemisphere 
was positively correlated with both the MMSE (r=0.246; 
P=0.003) and MOCA-B scores (r=0.201; P=0.016), while 
the number of SCVs in the left cerebral hemisphere was 
significantly and positively correlated with the MMSE 
score (r=0.196; P=0.019) and positively but not significantly 
correlated with the MOCA-B score (Figure 9). No significant 

correlations were observed between cognition and the 
diameter, length, or TI of the SCVs in the bilateral cerebral 
hemispheres in this study (Table 4).

Discussion

In the present study, we created and successfully performed 
a preliminary test of an automatic SCV recognition and 
quantification deep learning model. According to the 
performance evaluated of the deep learning model, the 
accuracy was high and the convergence was good. Therefore, 
we used this model in our present study. Based on imaging 

Figure 5 Accuracy and loss versus the number of epochs in the deep learning model. (A) Accuracy and loss for the training set. (B) Accuracy 
and loss for the validation set. The epochs refer to the number of times all data have been traversed. Generally, the accuracy increased and 
the loss function gradually decreased as the number of epochs increased for both the training and validation sets, indicating good model 
accuracy and convergence. SWI, susceptibility-weighted imaging.

Table 2 Demographic and cognitive characteristics of participants in this study

Characteristics All participants Males Females z/t P

Demographics

N 144 72 72 – –

Age (years) 59.64±6.92 58.96±6.37 60.32±7.41 –0.918 0.358

Education (years) 11 [9–15] 11 [9–15] 11 [9–14] 0.281 0.779

Cognitive test

MMSE 27 [25–29] 28 [26–29] 27 [25–28] 2.413 0.016

MOCA-B 23 [21–26] 24 [22–27] 22 [19–26] 2.432 0.015

Values are presented as mean ± standard deviation or medians [interquartile ranges] for each variable. MMSE, Mini-Mental State Examination; 
MOCA-B, Montreal Cognitive Assessment-Basic.
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results, our research validated the hypothesis that the state 
of SCVs’ blood flow affects cognitive performance. We also 
further verified that the cognitive function of males was 
better than that of females. Our study preliminarily assessed 
the relationship between SCVs and cognitive function, which 
has rarely been reported upon in any literature. In addition, 
our study may provide a potential cerebral vein biomarker for 
detecting cognitive decline using SWI.

Quantification of the SCVs

In previous studies, the reported scoring criteria and 
automatic quantification methods for evaluating the cerebral 
veins focused on the DMVs (16,18,29-31). Researchers 
have developed and evaluated a method for automatically 
detecting and quantifying DMVs, which is both fast and 
reliable (29). Some studies have noted that morphological 
changes in the DMVs, including a decrease in the 
number and an increase in the curvature, were correlated 
with WMHs, which are considered one of the causes of 
cognitive decline (18,31,32). The authors postulated that 
differences in venous morphology may provide a new 

Figure 6 MMSE and MOCA-B scores of females and males. 
The lines in boxes indicate the median MMSE and MOCA-B 
scores for each group. The MMSE and MOCA-B scores of males 
were significantly higher than those of females. *P<0.05. MMSE, 
Mini-Mental State Examination; MOCA-B, Montreal Cognitive 
Assessment-Basic. 

Table 3 Quantitative characteristics of the superficial cerebral veins in patients stratified by sex

Characteristic Males Females z P

Diameter (mm)

Right 1.30 [1.22–1.37] 1.30 [1.19–1.41] −0.511 0.609

Left 1.32±0.15 1.34±0.16 −0.672 0.502

Tortuosity index

Right 1.30 [1.17–1.45] 1.25 [1.16–1.39] −1.099 0.272

Left 1.17 [1.13–1.24] 1.16 [1.13–1.22] −0.603 0.546

Length (mm)

Right 16.58 [13.58–19.47] 16.17 [12.49–20.52] −0.308 0.758

Left 15.84 [13.42–20.00] 16.56 [13.21–21.73] −0.188 0.851

Number

Right 5 [4–6] 4 [2–5] −4.388 0.000

Left 5 [4–6] 4 [2–6] −2.421 0.015

Values are presented as mean ± standard deviation or medians [interquartile ranges] for each variable. The independent samples t test was used 
to assess differences in diameter in the left cerebral hemisphere between males and females. Other sex-specific differences were assessed 
using the Mann-Whitney test; Right, right cerebral hemisphere; Left, left cerebral hemisphere.
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Figure 7 Quantitative analysis of the characteristics of the SCVs, including diameter, TI, length, and number, in males and females. *P<0.05; 
*** P<0.001. SCV, superficial cerebral vein; ns, no significant difference; TI, tortuosity index.

perspective on vascular involvement in dementia. Based on 
our understanding of tissue anatomy, we reasoned that the 
SCVs would also be important. The information that can 
be gleaned from the SCVs may be even greater than that 
from the DMVs because the former are visualized in MinIP 
images more clearly than are the latter, thus facilitating a 
more accurate evaluation and imparting greater suitability 
for clinical application. However, the SCVs are limited to a 
subjective and sometimes unreliable visual evaluation based 
on the researcher’s experience. We adopted a deep learning 
method and established an image segmentation recognition 
model that automatically quantified the SCVs, ensuring 
that the morphological characteristics of the SCVs were 
more intuitive and objective. We evaluated the performance 
of this deep learning model and achieved high accuracy 

and good model convergence. This model is a preliminary 
attempt to automatically quantify the morphological 
features of the SCVs, which may help fill the knowledge 
gap regarding this structure.

Sex differences in cognition

In previous studies, researchers have noted that the 
incidence and symptoms of neurological and psychiatric 
diseases show significant sex differences. Further studies 
of sex differences of the brain and cognition are needed to 
better understand the mechanisms underlying neurological 
and psychiatric diseases (33,34). In the present study, the 
MMSE and MOCA-B scores of males were significantly 
higher than those of females, indicating that males have 
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better cognition than females. This result is consistent 
with previous studies. Researchers have performed a 
meta-analysis and found that males with mild cognitive 
impairment (MCI) performed better than did females in all 
cognitive domains in a manner that could not be explained 
by differences in age (35). In addition, some researchers 
found that females with Alzheimer disease (AD) also show 
a greater prevalence of disease and steeper declines in 
memory or more severe cognitive symptoms (1). Overall, 
these findings indicate that cognition is both more severely 
and widely manifest in females than in males (36-38).

Sex differences in SCV-dependent cognition

In addition to the effects of genes and hormone levels, 
cerebral blood microcirculation is an important factor 
affecting sex-based cognitive differences. However, few 
studies have assessed differences in the blood drainage of 
the cerebral microvasculature, which may be an important 
factor contributing to cognitive decline (39). Compared 
with those of arteries, the walls of veins are thinner, the 
diameters are larger, and they possess less elastic tissue and 
muscle, indicating that the vascular compliance of veins 

Figure 8 Distribution of the SCVs in the bilateral cerebral hemispheres of patients stratified by sex. (A,B) Images from males. (C,D) Images 
from females. The number of SCVs in both hemispheres of males was significantly greater than that in females. SCV, superficial cerebral vein.
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is high and, hence, the volume of the vein might flexibly 
change as the pressure changes (40). Therefore, veins are 
highly distensible, expanding easily to accommodate large 
volumes of blood. This dynamic difference in the cerebral 
veins is clearly observed on SWI scans. Researchers 
found that during an aura episode, patients with migraine 
exhibited characteristic hypoperfusion with fewer SCVs 
and a reduced diameter on SWI scans, while those who 
underwent SWI examinations during the headache phase 
had hyperperfusion with more SCVs and an increased 
diameter (41). Thus, SWI of the SCVs may reflect the state 
of human brain perfusion and drainage. In addition, given 
the anatomical characteristics of the penetrating venules and 
arteries in the cortex, the former become vulnerable points 
during the course of cerebrovascular and neurodegenerative 
disease because of their core position in the large perfusion 
domain. In a previous study, researchers noted two potential 
underlying mechanisms of the different cognitive states due 
to the different states of the SCVs. First, the blood flow of 
the upstream arterioles is slow when the penetrating venule 
drains poorly (42,43). Second, poor venous drainage also 
obstructs metabolite excretion in the brain (10,44). In our 

study, the number of SCVs was positively correlated with 
cognition, and males had more SCVs than did females. 
Combining these findings with those from a previous study, 
we can infer two explanations for these results. First, males 
may have a greater arterial blood volume than do females, 
and their venous blood vessels are more dilated. Thus, the 
number of images displayed on MinIP in males is greater 
than that in females. Second, the number of congenital 
veins in males is large, and thus males have an anatomical 
advantage over females, as this difference reduces the risk of 
microinfarction and other vascular lesions that might affect 
cognitive performance as a result of venous blood stasis. 
Therefore, in our study, males had more SCVs than did 
females, and their cognitive function was better. The results 
of our study indicate that the different drainage statuses 
of the SCVs may lead to differences in cognition between 
males and females. The differences in the SCVs provide a 
new perspective on vascular involvement in cognition.

This study is a preliminary exploration of the automatic 
quantification of the SCVs with deep learning. We used 
this deep learning model to explore the connection between 
the SCVs and cognitive differences between the sexes. 

Figure 9 Correlation between cognition and the number of SCVs in the bilateral cerebral hemispheres. *P<0.05, **P<0.01. R, right cerebral 
hemisphere; L, left cerebral hemisphere; SCV, superficial cerebral vein. 

Table 4 Spearman correlation coefficients between quantitative characteristics of the superficial cerebral veins and cognition

Variable
Diameter (mm) Tortuosity index Length (mm) Number

Right Left Right Left Right Left Right Left

MMSE 0.122 0.094 0.082 −0.070 −0.046 −0.130 0.246 0.196

MOCA-B 0.107 −0.008 0.052 −0.111 −0.002 −0.041 0.201 0.075

MMSE, Mini-Mental State Examination; MOCA-B, Montreal Cognitive Assessment-Basic; Right, right cerebral hemisphere; Left, left cerebral 
hemisphere.
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Future studies should better clarify the effect of SWI image 
contrast on the data and further validate this model and the 
study results. In addition, the SCVs should be quantitatively 
analyzed in the different functional areas of the brain. We 
will subsequently combine arterial spin labelling (ASL) and 
functional MRI (fMRI) to verify and evaluate the differences 
in cerebral blood supply and brain function between the 
sexes in the future. Finally, we will also explore whether 
SCVs can predict cognition better than can deep veins.

Conclusions

In this study, we achieved preliminary morphological 
feature multi-index quantification of the SCVs in the 
bilateral cerebral hemispheres through image segmentation 
on SWI results with a deep learning–based model and 
observed differences in the number of SCVs between the 
sexes. By evaluating the cognition of males and females, we 
also found that the difference in the number of SCVs may 
be potentially associated with cognitive differences between 
the sexes. In addition, we speculate that the number of 
SCVs in the human brain is potentially related to cognitive 
function, and the decrease of the number of SCVS may 
reflect cognitive decline.
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