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Background: Glaucoma is the leading global cause of irreversible blindness. Glaucoma patients experience 
a progressive deterioration of the retinal nervous tissues that begins with a loss of peripheral vision. An early 
diagnosis is essential in order to prevent blindness. Ophthalmologists measure the deterioration caused by 
this disease by assessing the retinal layers in different regions of the eye, using different optical coherence 
tomography (OCT) scanning patterns to extract images, generating different views from multiple parts of 
the retina. These images are used to measure the thickness of the retinal layers in different regions.
Methods: We present two approaches for the multi-region segmentation of the retinal layers in OCT 
images of glaucoma patients. These approaches can extract the relevant anatomical structures for glaucoma 
assessment from three different OCT scan patterns: circumpapillary circle scans, macular cube scans and 
optic disc (OD) radial scans. By employing transfer learning to take advantage of the visual patterns present 
in a related domain, these approaches use state-of-the-art segmentation modules to achieve a robust, fully 
automatic segmentation of the retinal layers. The first approach exploits inter-view similarities by using a 
single module to segment all of the scan patterns, considering them as a single domain. The second approach 
uses view-specific modules for the segmentation of each scan pattern, automatically detecting the suitable 
module to analyse each image.
Results: The proposed approaches produced satisfactory results with the first approach achieving a dice 
coefficient of 0.85±0.06 and the second one 0.87±0.08 for all segmented layers. The first approach produced 
the best results for the radial scans. Concurrently, the view-specific second approach achieved the best results 
for the better represented circle and cube scan patterns.
Conclusions: To the extent of our knowledge, this is the first proposal in the literature for the multi-view 
segmentation of the retinal layers of glaucoma patients, demonstrating the applicability of machine learning-
based systems for aiding in the diagnosis of this relevant pathology.
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Introduction

According to the 2019 World Report on Vision published 
by the World Health Organization (1), glaucoma is the 
second leading cause of blindness overall, and the first 
cause of irreversible vision loss. This pathology starts with 
a progressive loss of peripheral vision. This gradual process 
may start to affect the central visual field and cause severe 
vision impairment. Since glaucoma is difficult to detect or 
even asymptomatic in its early stages, it may not be noticed 
before it causes irreversible vision loss, leading to significant 
under-diagnosis and over-treatment of the disease (2).

Glaucoma is characterised by the deterioration of the 
nervous fibres responsible for transmitting neural impulses 
from the photosensitive cells in the eye to the visual cortex. 
This process is typically caused by an increase in intraocular 
pressure. This pressure deforms the optical nerve head 
(ONH), damaging the nervous fibres and leading to a 
loss of vision (3). Other forms of glaucoma include angle-
closure glaucoma, which progresses much faster, or normal 
tension glaucoma, in which there is no appreciable increase 
in intraocular pressure. Due to the slow progression of this 
disease, coupled with the variety of forms it may present 
and the irreversibility of its effects over the visual field, an 
early and accurate assessment of the glaucoma is necessary 
in order to preserve patient vision.

In the context of healthcare, the domain of computer-
aided diagnosis (CAD) systems is rapidly advancing, thanks 
to the development of new and improved machine learning 
algorithms coupled with more accessible high performance 
computing architectures. These systems provide assistance 
to healthcare workers in a variety of tasks by means of image 
classification, segmentation or the extraction of biological 
markers. In this sense, CAD systems based on deep learning 
are achieving remarkable progress thanks to the ability 
of convolutional neural networks to automatically extract 
and select visual features that are relevant to the diagnosis 
task (4). In this way, the systems can be developed directly 
by having convolutional models learn visual patterns from 
annotated data. Furthermore, the visual patterns learned by 
a model trained on a particular domain where data is readily 
available (source domain) can be used to develop a model 
intended to work in a similar domain where the annotated 

data is scarcer (target domain), a technique known as 
transfer learning (5,6). This data scarcity can be caused by 
several factors such as data sensitivity and privacy, difficulty 
or subjectivity in annotation and high costs associated to 
data acquisition. All of these are factors that particularly 
affect medical imaging. There are different approaches to 
transfer learning, such as selectively freezing some of the 
model layers and fine-tuning the remaining ones, or pre-
training a model in the source domain and then re-training 
all of the layers using the pre-training as an initialisation, 
which can improve model generalisation (7).

Several computer-aided approaches exist for the 
assessment of glaucoma. These are mainly aimed at 
evaluating the damage to the neural fibres of the eye, by 
either assessing secondary signs such as the cupping of the 
ONH or by measuring changes and deviations to the retinal 
layer structure. Out of these, approaches related to measuring 
the cupping of the ONH in retinal fundus images are the 
most prevalent. By measuring the size of the optic disc (OD) 
and the optic cup in retinal fundus images, a cup-to-disc 
ratio can be extracted to measure the effects of the pressure 
on the ONH. In this line, many works in the literature 
have tackled the automatic segmentation of the OD and 
cup in this image modality by means of computer vision or 
machine learning [for reference (7-11)]. A recent work in 
retinal fundus images has also employed transfer learning 
for the segmentation of the OD, optic cup and fovea (11), 
highlighting the advantages of using transfer learning 
for related ophthalmological diagnosis tasks with results 
comparable with trained experts.

Other works focus on the analysis of the retinal layers in 
optical coherence tomography (OCT) images. As opposed 
to retinal fundus images, which only show a view of the 
surface of the tissue, OCT can produce volumes of data 
which visualise the histological structure of the retina in 
cross-sectional images. This allows direct measurements of 
the thickness of the layers at different points in the retina. 
In order to better assess the glaucoma-related damage that 
a patient may present, ophthalmologists often use different 
patterns, generating multiple views to scan different 
regions of the eye. The most prevalent of these views are 
circumpapillary circle scans around the ONH, macular cube 
scans around the macula and radial scans centred on the OD.
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Circumpapillary scans allow an assessment of nervous 
degeneration close to the optic nerve in all directions. 
Macular scans can provide a visualisation of the area 
responsible for fine-detail vision, with the biggest impact 
on patient quality of life. Finally, OD radial scans allow 
the analysis of ONH deformations and degeneration 
related to glaucoma. These OCT views allow a more 
comprehensive assessment of the disease than retinal fundus 
images, providing insight into how the different anatomical 
structures of the eye may be affected by glaucoma.

Out of all the retinal layers, the inner-most layers of the 
retina: the retinal nerve fibre layer (RNFL), ganglion cell 
layer (GCL) and inner plexiform layer (IPL) show the best 
discriminative power for glaucoma detection (12). Among 
these, the RNFL around the circumpapillary region has 
shown great potential for discrimination (13). The automatic 
detection and segmentation of these layers can be approached 
with different classical digital image processing techniques, 
such as the use of graph search algorithms (14-16), active 
contour models (17-19), level sets (20), geodesic distance (21), 
or fuzzy histogram hyperbolisation (22). Other, more recent 
works have made use of machine learning algorithms for the 
retinal layer segmentation, more specifically convolutional 
neural networks architectures. However, these approaches 
are focused on the segmentation of the retinal layers 

of patients suffering from peripapillary atrophy and 
cataract (23), multiple sclerosis (24), age-related macular 
degeneration (25,26), central serous retinopathy (24,27), 
or diabetic retinopathy (24,26,28). Fewer works have 
approached the problem of segmenting the layers of the 
retina in glaucoma patients, attending to the disease-specific 
degeneration that affects them. Even then, these are limited 
to a single scan pattern, namely the circumpapillary scan 
(28-31) or the ONH (32), while foregoing the analysis of 
the other relevant views for the diagnosis of glaucoma. In 
this sense, to the best of our knowledge, the segmentation 
of the relevant retinal structures for the diagnosis of 
glaucoma in all of the OCT views used for its assessment 
remains to be addressed.

In this work, we present two approaches for the fully 
automatic, multi-view segmentation of the retinal layers 
in OCT images of glaucoma patients. By making use of 
transfer learning (Figure 1), these approaches are able to 
make the most of the available data in order to provide a 
robust segmentation of the anatomical regions of relevance 
for glaucoma diagnosis: the RNFL, retinal layer with 
the highest reported discriminative power for glaucoma 
diagnosis; the inner retina, which comprises the ganglion 
cell bodies and the neural connections of the photosensitive 
cells; and the outer retina, containing the bodies of the 
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Figure 1 Summary of the transfer learning methodology employed to train the different segmentation modules. A baseline module is pre-
trained on a non-glaucomatous dataset. This model is used for weight initialisation of all of the modules employed in the two proposed 
approaches. These are trained in a multi-view or view-specific set of images.
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photoreceptor cells as well as the remaining retinal layers. 
This proposal allows the segmentation of these layers from 
the three most prevalent scans for glaucoma diagnosis: 
circular peripapillary scans showing the thickness of retinal 
layers around the periphery of the OD, and allowing an 
evaluation of early signs of the disease; parallel macular 
cube scans, which allow an assessment of severe cases of 
glaucoma with deterioration that may affect the central 
visual field; and radial scans extracted from the ONH, 
showing the morphology of the OD and deformations close 
to the area most affected by glaucoma. Furthermore, two 
different approaches are proposed for the multi-region 
segmentation of the layers. The first of these approaches 
consists in a common module for the segmentation of the 
layers in all three considered views, taking advantage of 
visual patterns that may be shared between the segmented 
structures in all three views. The second one takes a more 
discrete approach by using a classification network to 
automatically discern between the different scan types and 
use a view-specific module to analyse images from each 
of the scan types. These two approaches have different 
advantages in terms of data availability and performance 
for each of the considered scan types. To the extent of 
our knowledge, this work is the first in the literature to 
propose the multi-view segmentation of retinal layers 
for patients of glaucoma. By providing a robust and fully 
automatic segmentation of the retinal layers in the views 
most commonly used for glaucoma assessment, the clinical 
diagnosis process for this disease can be greatly simplified 
and performed in an objective and less time-consuming 
manner, helping to provide an early diagnosis and preserve 
patient vision and quality of life.

This manuscript is structured as follows: In the Methods 
section we provide a description of the dataset that was 
employed, as well as a detailed explanation of the proposed 
multi-region segmentation approaches. The Results section 
presents the experimental results that were obtained, 
with the Discussion section offering a discussion of said 
results. Finally, in the Conclusions section we present the 
conclusions that were reached and describe possible future 
lines of work.

Methods

In order to facilitate the replicability of this proposal, in this 
section we explain the dataset employed in the development 
of this work (Dataset subsection), its annotation (Annotation 
subsection), as well as the segmentation methodology that 

was followed (Methodology subsection). The technical 
details of model training and transfer learning can be found 
in the Training details section.

Dataset

Two datasets were used in this work, the first dataset (22) 
was used for training the baseline modules employed in 
the transfer learning process. This public dataset contains 
732 images from 61 subjects. They were acquired using a 
Topcon DRI OCT-1 Atlantis in an original resolution of 
1,024×992. It contains cases of high myopia, peripapillary 
atrophy and cataract. The second collected dataset was 
used to train and validate the proposed approaches, as well 
as to compare to the baseline in a glaucomatous domain. 
The collected glaucomatous dataset consists of a total of 
811 OCT images. These were acquired with a Heidelberg 
SPECTRALIS® optical imaging platform. The images were 
inspected to ensure that the retinal layers were visible and 
any patient displaying signs of any non-glaucoma-related 
lesions were not considered for inclusion. The final set of 
images was collected from the eyes of 11 different glaucoma 
patients. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

The distribution of the images in terms of the scan 
modality is as follows:
 Circle class: 139 images. These are circumpapillary 

circular scans taken around the OD at different 
distances, with a resolution of 768×496 pixels. 
This view is most commonly used to estimate the 
thickness of the retinal layers at different sectors 
around the OD. This allows the assessment of early 
glaucoma-related damage.

 Cube class: 540 images. Images from the cube class 
are parallel scans of the macular region. These 
images have a resolution of 512×496 pixels. The 
macular cube scan pattern allows the measurement 
of the thickness of retinal layers close to the area 
responsible for high-acuity vision. Glaucoma-
related damage to the light-sensitive and ganglion 
cells of this area can result in a deterioration of the 
central visual field and a considerable loss of vision.

 Radial class: 132 images. Images belonging to this 
class are taken radially centred on the OD. These 
have a resolution of 768×496 pixels. The radial scan 
is used to assess the morphology of the OD, as well 
as to measure surrounding retinal layer thickness. 
This allows an evaluation of changes to the shape 
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of the OD caused by an increase in ocular pressure 
or other glaucoma-related causes.

The distribution of the images per patient is displayed in 
Table 1.

These images were annotated indicating the RNFL, the 
inner retina and the outer retina, which are detailed in the 
next section.

Annotation

The collected glaucoma dataset was annotated by an 
expert in ophthalmological imaging using the computer 
vision annotation tool (CVAT) (publicly available online: 
https:github.com/opencv/cvat). The annotation process was 
carried out in a sequential manner so that each image in a 
volume or patient was annotated in a consecutive manner, 
ensuring that the annotations were coherent among parallel 
or consecutive scans. The layers were annotated using 
the polygonal drawing tool, reusing the keypoint nodes 
between layers to ensure that no gaps were left. The images 
were annotated with the following layers of relevance for 
glaucoma diagnosis:
 RNFL: the RNFL layer is formed by the fibres of 

the retinal nerve cells which allow the connection 
of the photoreceptor cells to the ONH. It can be 
found between the inner limiting membrane which 

separates the vitreous from the retina and the 
GCL. Damage of this layer is heavily associated 
with loss of vision caused by glaucoma, and has 
been reported to have great discriminatory power 
for glaucoma diagnosis (13).

 Inner retina: this region can be found between the 
RNFL and the outer nuclear layer, comprising the 
GCL, the IPL and the inner nuclear layer as well 
as the outer plexiform layer. This region contains 
the ganglion cells as well as the neural connections 
of the photoreceptor cells. Although not as heavily 
associated to glaucoma as the RNFL, the inner 
retina contains the parts responsible of transmitting 
the impulses detected by the photoreceptor cells to 
the RNFL, and a glaucoma-related deterioration of 
this layer can have a significant impact on vision.

 Outer retina: this region is situated between the 
outer plexiform layer and the choroid, formed by 
the outer nuclear layer, the photoreceptor cells, 
and the retinal pigment epithelium. This layer 
contains the bodies of the photosensitive cells 
responsible for vision. Glaucoma-related damage or 
deterioration of these cells can have a direct impact 
patient sight.

 OD: the OD only appears in the radial scan 
images. This region is formed by the bundles of 
nerve fibres in the ONH. Although not a retinal 
layer per se, deformations in the OD can be 
indicative of glaucoma-related deterioration and 
can translate into damage to other related retinal 
layers. Furthermore, the OD is a blind spot in the 
eye, with no photosensitive cells or retinal layers 
situated beneath.

An illustration displaying the general appearance of 
the three views with their corresponding segmentation 
annotations can be found in Figure 2.

Methodology

As mentioned in the Introduction, two different approaches 
for the multi-view segmentation of the retinal layers were 
explored. These share the same internal segmentation 
architecture, with each of them having a different focus.

Retinal layer segmentation
The segmentation of the retinal layers was modelled as a 
two-stage method based on the MGU-Net architecture (22). 
This architecture has demonstrated its ability to outperform 

Table 1 Glaucoma dataset details displaying the number of images 
contained of each class per patient

Patient Circle Cube Radial

Patient 1 6 94 0

Patient 2 15 117 20

Patient 3 8 50 0

Patient 4 24 0 0

Patient 5 9 38 0

Patient 6 12 83 0

Patient 7 19 0 0

Patient 8 14 0 0

Patient 9 11 0 57

Patient 10 12 0 32

Patient 11 9 158 23

Total per scan 139 540 132

Total 811
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other similar architectures such as U-net (33), ReLayNet (27)  
or DRUNET (32) in terms of their ability to segment 
retinal layers, demonstrating its suitability for this task. The 
first stage consists in a preliminary segmentation of the 
OD and the retinal layers as a whole. The aim of this stage 
is the removal of the background (formed by the vitreous 
humour and the choroid) as well as the OD from the image 
that is analysed by the second stage of the architecture. The 
second stage performs the actual segmentation of each of 
the considered anatomical structures from the retina, using 
the pre-segmented image from the first stage as input. A 
summary of this architecture can be found in Figure 3.

Internally, each stage is performed by a MGU-Net. Each 
of these is in turn formed by an encoder and decoder parts 
with a multi-scale global reasoning (34) module in-between. 
This module uses multiple effective receptive fields in order 
to lessen the influence of the differences in thickness of 
the various segmented anatomical structures. After the two 

stages are complete, the final segmentation is reconstructed 
using the output from both of the stages.

The MGU-Net architecture is used as the basis of all 
the segmentation modules employed in this work, while 
two different approaches were explored in order to study 
how to better adapt to the multiple views employed for 
the clinical assessment of glaucoma. These two approaches 
focus on different aspects of the adaptation to the particular 
visual features of each OCT view. The aim is to determine 
whether sharing said common features can improve the 
robustness of the segmentation, or whether the use of 
view-specific modules can better exploit the anatomic 
particularities of each specific view. These approaches are 
detailed hereunder.

First approach: single multi-view module
The first of the proposed approaches takes on an extensive 
focus, using a single MGU-net based segmentation 

Circle scan Macular cube Radial scan

Labelling

RNFL 

Inner retina 

Outer retina 

Optic disc

Figure 2 Examples of images belonging to the three views with their corresponding segmentation annotations. RNFL, retinal nerve fibre 
layer.

MGU-Net-based retinal layer segmentation module

Stage I: Layer and optic 
disc segmentation

Stage II: Individual layer 
segmentation

Figure 3 Summary of an MGU-Net based retinal layer segmentation model.
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module for the three considered views. This module is 
trained to segment images from each of these regions as 
if they belonged to a singular domain (Figure 4A). The 
motivation behind this approach is to explore whether the 
visual similarities in the appearance of the retinal layers 
between views can be useful to the segmentation. This 
way, the module can be trained to segment the anatomical 
structures in a view and take advantage of that training in 
order to segment the same structures in the similar domain 
of a different scan pattern. However, the use of a single 
architecture for the segmentation of the three considered 
views forces the model to adapt to all three different scan 
patterns at once. While visually similar, the anatomical 
structure of the segmented layers varies greatly between 
different views.

Second approach: view-specific modules
The second approach is complementary to the first, taking 
on a discrete focus, discriminating between the different 
scan patterns and using a view-specific segmentation 
module for each of them. The process of segmenting an 
OCT image through this approach can be understood as a 
two-stage procedure: first, a classifier is used to determine 
the correct segmentation module to use. Next, the image is 
segmented using the selected segmentation module (Figure 
4B). Rather than forcing the modules to generalise for all 
of the scanning presets that are considered, this approach 
enables each of them to be fine-tuned to the appearance of 
the anatomical regions displayed in each view. This allows 
a finer adjustment of each module to their corresponding 
domain, without having to consider the visual features that 
each layer presents in any of the other scanning patterns 
and freeing each module to better fit the distinctive 

characteristic of each anatomical structure in the different 
parts of the eye.

Training details

First, an MGU-Net module was trained on the training 
partition of its original dataset, which did not contain 
glaucoma patients (22). This model was used to set a 
baseline and to perform transfer learning on to develop 
the segmentation modules used in the two proposed 
approaches. The model was trained using the conditions 
described in the original publication, using an Adam (35) 
optimiser with a learning rate of 0.001, dynamically reduced 
by an order of magnitude every 20 epochs, with β1=0.9 and 
β2=1×10−4, for a maximum of 50 epochs. The loss that was 
used for training was a sum of Cross-Entropy and Dice loss, 
doubling the weight of the second stage loss.

To train and validate the segmentation modules, the 
collected glaucoma dataset was partitioned following a 
leave-one-out cross-validation at the patient level. In each 
partition, the images belonging to one patient were set aside 
as the test set, and the images from the remaining patients 
were further partitioned, using 80% for training and 20% 
for validation. Following this leave-one-out cross-validation, 
we ensure that each patient is equally represented in testing 
for all of the segmentation modules, and that no module can 
see images of the test patient in its corresponding training 
and validation sets.

Transfer learning was performed by initialising each 
model to the baseline weights that were pre-trained on 
the non-glaucomatous dataset (22). Then, the initialised 
models were allowed to re-train in their corresponding 
training sets while taking a snapshot of the weights at each 
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epoch in such a manner that the models can be allowed to 
adapt to the specific domain of the glaucomatous dataset. 
Once this training was over, the checkpoint with the lowest 
validation loss was selected for testing. This way, for the 
first approach, all of the images in each of the sets were 
gathered, and transfer learning was performed on a module 
for each of the 11 partitions.

For the second approach, transfer learning was performed 
on each scan pattern-specific module separately using 
only the images belonging to the corresponding scanned 
region. Additionally, for this second approach, a series of 
classification models were trained and validated separately. 
In order to evaluate how different models performed on 
this task, three different architectures were selected for this: 
a DenseNet-121 (36), a ResNet-18 and a ResNet-34 (37). 
These architectures have seen widespread use in similar 
medical imaging classification and segmentation tasks with 
remarkable results (38-41).

Regarding the details of the transfer learning process, 
Adam (35) was used for model optimisation, with identical 
parameters to the baseline training. All of the segmentation 
models were trained using a sum of cross-entropy and dice 
loss, doubling the weight of the second stage loss of each 
segmentation module. These models used a mini-batch 
size of 1 image and were allowed to train for a maximum of 
50 epochs. The classification models were trained on the 
collected dataset in a 5-fold cross-validation, using Cross-
Entropy loss, with 16 images being used per batch. These 
models were allowed to train for a maximum of 100 epochs. 
Additionally, data augmentation was employed in the form 
of horizontal flipping during the training.

Results

In this section we describe the results that were obtained by 
performing transfer learning on the modules that constitute 

each of the proposed approaches. The metrics used for this 
evaluation were accuracy (Eq. [1]), precision (Eq. [2]), recall 
(Eq. [3]), and the dice coefficient and F1 score (Eq. [4]).

Accuracy TP TN
TP TN FP FN

+
=

+ + +  [1]

Precision TP
TP FP

=
+

 [2]

Recall TP
TP FN

=
+

 [3]

2Dice F1
2

TP
TP FP FN

×
= =

× + +
 [4]

The training and validation accuracy evolution during 
the transfer learning process for the modules of both of the 
proposed segmentation approaches can be found in Figure 5.  
After the transfer learning process, the models were 
evaluated on their respective test sets and compared with 
the test results produced by the baseline which trained on 
a non-glaucomatous dataset (Table 2). A breakdown of the 
dice score achieved by each of the proposed approaches 
for each scan pattern can be found in Table 3. The metrics 
for all layers were calculated as the micro-average of all of 
the segmented layers. Complementarily, Figure 6 displays 
some examples of the segmentation results produced by the 
baseline and the two proposed approaches for each of the 
scan patterns. Regarding the classification stage of the second 
approach, the results that were obtained are displayed in 
Table 4. In light of the relative similarity in terms of results, 
the ResNet-18 architecture was selected to be used as the 
classifier for the second approach due to its simplicity in 
terms of trainable parameters and efficiency, a desirable trait 
for the deployment of CAD models in clinical practice.

Discussion

The results that were obtained highlight the substantial 
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Figure 5 Average training and validation accuracy evolution for each of the trained modules of the first approach and the scan pattern-
specific modules for the second approach.
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Table 2 Precision and recall achieved by each of the proposed approaches, compared with the baseline non-glaucomatous training

Location
Baseline Approach 1 Approach 2

Precision Recall Dice Precision Recall Dice Precision Recall Dice

RNFL 0.67±0.12 0.67±0.14 0.67±0.13 0.73±0.13 0.90±0.06 0.79±0.08 0.87±0.09 0.82±0.14 0.84±0.10

Inner retina 0.70±0.13 0.75±0.15 0.72±0.13 0.85±0.08 0.82±0.10 0.83±0.08 0.84±0.14 0.88±0.07 0.85±0.11

Outer retina 0.89±0.08 0.60±0.15 0.71±0.13 0.92±0.08 0.89±0.07 0.91±0.04 0.92±0.07 0.90±0.06 0.91±0.05

All layers 0.76±0.10 0.67±0.15 0.71±0.13 0.85±0.07 0.87±0.06 0.85±0.06 0.88±0.09 0.87±0.07 0.87±0.08

Values are presented as mean ± standard deviation. Approach 1: single multi-view module; Approach 2: view-specific modules. RNFL, 
retinal nerve fibre layer. 

Table 3 Detailed breakdown of the dice coefficient achieved by the proposed approaches for each of the scan patterns 

Location
Approach 1 Approach 2

Circle Cube Radial Circle Cube Radial

RNFL 0.86±0.05 0.76±0.13 0.76±0.06 0.89±0.05 0.83±0.10 0.73±0.05

Inner retina 0.87±0.05 0.83±0.12 0.73±0.05 0.90±0.04 0.91±0.04 0.71±0.09

Outer retina 0.90±0.04 0.93±0.05 0.86±0.05 0.93±0.04 0.93±0.04 0.77±0.07

All layers 0.88±0.04 0.86±0.08 0.78±0.05 0.91±0.04 0.91±0.04 0.74±0.07

Values are presented as mean ± standard deviation. Approach 1: single multi-view module; Approach 2: view-specific modules. RNFL, 
retinal nerve fibre layer.
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Figure 6 Example segmentation results of the different scan patterns. Approach 1: single multi-view module; Approach 2: view-specific 
modules. OCT, optical coherence tomography.
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differences that may be found between images acquired with 
the same modality but extracted from different locations 
in the eyes, as well as the effect that these differences can 
have on the performance of the segmentation. These results 
indicate that while a model may be trained for retinal 
layer segmentation in OCT images extracted from non-
glaucomatous patients, this training may not be sufficient 
to adjust the model to perform the same task in patients 
suffering from glaucoma, with the consequent decrease 
in performance. Visually, this can be seen in Figure 6, 
where the baseline fails to provide consistent layers, 
instead segmenting part of the speckle noise as retinal 
tissue while the proposed approaches provide an accurate 
segmentation of the retinal layers, with some variability 
being found on the OD due to the inherent uncertainty of 
its boundaries. When comparing the results of the baseline 
model, we can see that the application of transfer learning 
using glaucomatous patients translates into an increase 
in precision from 0.76 to 0.85 and in Recall from 0.67 to 
0.87 for all layers. This supposes an overall increase in 
dice coefficient from a baseline 0.71 to 0.85 for the first 
approach which also processes images from the three scan 
patterns jointly.

When comparing the two proposed approaches among 
themselves, we can see that the first approach achieves a 
dice coefficient of up to 0.85±0.06 for all layers, while the 
second approach reaches up to 0.87±0.08 overall. However, 
this increase in performance does not translate equally to 
all of the scan patterns. From the results in Table 2, we can 
see that the view-specific segmentation outperforms the 
single-model approach for all the layers in the circle and 
cube classes, but not the radial class. Although the view-
specific segmentation modules seem to adapt better to 
these first two classes than using a single module for all 
views, the benefit from learning visual patterns from the 
other views seems to benefit the radial class. This class is 
the least represented in this dataset, with only 132 images. 
Furthermore, this scan pattern shows the greatest variability 

of the three, with the morphology of the OD varying 
greatly between patients, which can aggravate this data 
scarcity. This lack of representation for the radial class can 
be addressed in different forms. Aside from incrementing 
the overall amount of images belonging to this under 
represented class, generative adversarial models could be 
used to generate more images that display the visual features 
that are not present in the original images. Furthermore, 
more specific approaches could be taken to this approach 
targeting the specific morphology of the OD, using the 
information contained in the A-scans to better delineate this 
region.

In order to validate the use of transfer learning that was 
used to leverage the data that was available, an experiment 
was performed in which the models were trained without 
an initialisation to the pre-trained weights of the baseline. 
A comparison between these models and the ones that were 
pre-trained can be found in Table 5. These results indicate 
that transfer learning can be especially useful for the least 
represented classes, when compared with the models that 
were not initialised to the baseline. These results show that 
after a pre-training on a source domain such as peripapillary 
radial scans belonging to patients suffering from other 
diseases, transfer learning can be used to increase the 
performance in the similar target domain of OCT images 
acquired with other scanning patterns such as circular or 
macular cube of patients suffering from glaucoma.

Overall, both approaches provide satisfactory results for 
the segmentation of the layers in the three scan patterns, 
with the purpose-specific approach providing better results 
in general, and the multi-view approach showing better 
performance for the under-represented class that displays 
the greatest variability in the dataset. Due to the absence 
of other publicly available glaucoma-related OCT retinal 
segmentation datasets, it was not possible to compare this 
methodology with other existing methods using the same 
test data. Table 6 displays a comparison with other works 
aimed at the segmentation of retinal layers in glaucomatous 
images, focused on a single OCT view. While this 
comparison is not done under equal criterions, the results 
achieved by the proposed approaches are in line with the 
ones achieved by other works in the literature, while able 
to simultaneously segment all the views relevant for clinical 
assessment of glaucoma.

Conclusions

Glaucoma is the global leading cause of irreversible vision 

Table 4 Precision, recall and F1-score achieved by the classifiers 
used for the second approach

Variable Precision Recall F1-score

DenseNet-121 0.98±0.02 0.98±0.02 0.98±0.02

ResNet-18 0.99±0.01 0.99±0.01 0.99±0.01

ResNet-34 0.99±0.01 0.99±0.01 0.99±0.01

Values are presented as mean ± standard deviation.
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Table 5 Dice coefficient comparison for the use of transfer learning for all layers in the two proposed approaches 

Variable
Approach 1 Approach 2

All views Circle Cube Radial

No pre-training 0.87±0.04 0.91±0.05 0.91±0.04 0.63±0.16

With pretraining 0.85±0.06 0.91±0.04 0.91±0.04 0.74±0.07

Values are presented as mean ± standard deviation. Approach 1: single multi-view module; Approach 2: view-specific modules.

Table 6 Reported dice coefficient for the segmentation of the RNFL of other proposals compared to the results achieved in this work 

Variable All views Radial Cube Circle

DRUNET (32) – 0.92±0.03 – –

CCU (15) – – 0.89 –

H-DLpNet (31) – – – 0.90

Berenguer-Vidal et al. (30) – – – 0.93

Baseline 0.67±0.13 0.59±0.04 0.77±0.07 0.68±0.13

Approach 1 0.79±0.08 0.76±0.06 0.76±0.13 0.86±0.05

Approach 2 0.84±0.10 0.73±0.05 0.83±0.10 0.89±0.05

Only the baseline, Approach 1 and Approach 2 share the same test dataset. Values are presented as mean ± standard deviation, when 
available. Approach 1: single multi-view module; Approach 2: view-specific modules. RNFL, retinal nerve fibre layer.

loss, requiring an early diagnosis in order to preserve sight. 
This diagnosis is usually done by detecting damage to the 
retinal layers in different parts of the eye, using different 
OCT scan patterns for this task. We present two different 
approaches for the multi-region segmentation of the retinal 
layers in OCT images of glaucoma. These approaches 
use state of the art segmentation modules in order to 
achieve a robust and accurate segmentation of three 
different anatomical structures of the retina of relevance 
for glaucoma assessment: the RNFL which has the highest 
discriminative power for glaucoma diagnosis, and also 
the most affected layer in this disease; the inner retina, 
containing the ganglion cells and the structure necessary 
for connecting the photosensitive cells to the RNFL; and 
the outer retina, comprising the photosensitive cells which 
enable vision. By making use of transfer learning from a 
similar non-glaucomatous domain, these approaches enable 
the fully automatic analysis of images from the three most 
commonly employed scan patterns. These are extracted 
from a different part of the eye, allowing a comprehensive 
assessment of the whole retinal anatomy.

The results that were obtained demonstrate an increase 
in performance thanks to the application of transfer 
learning to take advantage of the visual features that may 

be learned from a similar source domain when applied 
to the target domain of glaucomatous OCT images 
from various anatomical regions. Furthermore, the two 
proposed approaches explore the different benefits that 
may be gained from sharing the visual features learned 
from different views or the use of view-specific modules 
fine-tuned to the segmentation in each scan pattern. The 
results show that the first general approach may benefit 
the less represented classes which show greater variability, 
allowing the visual features learned from other regions to 
supplement the lack of available visual data. Meanwhile, 
the view-specific approach can provide a more accurate 
segmentation of the retinal layers in the well-represented 
views. Overall, the proposed approaches provide a robust 
and accurate segmentation of the retinal layers in OCT 
images of glaucomatous eyes. To the best of our knowledge, 
this proposal is the first in the literature to address the 
segmentation of retinal layers in multiple anatomical regions 
and using different OCT scan patterns. By providing a 
robust and objective segmentation in the views that are more 
commonly used in clinical practice, the diagnosis process 
of glaucoma can be improved and simplified, helping to 
preserve patient vision and quality of life.

As future work, we plan to supplement the collected 
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dataset with additional images in order to better represent 
the more variable classes. Moreover, the effects of selectively 
freezing some of the retinal layers before fine-tuning the 
rest of the network merits further study. Furthermore, 
these approaches could be extended to the analysis of other 
relevant anatomical structures or pathological signs of 
additional relevant ocular diseases in domains where more 
data is available and allowing a fairer comparison from which 
more conclusions can be drawn regarding its suitability for 
the multi-view analysis in other similar domains.
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